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Abstract. Electromagnetic NDT methods and in particular eddy currents play an 

important role in nondestructive testing of conducting materials. In testing conductive 

structures, rectangular coils are often more useful than circular coils. A particular 

configuration consists of two rectangular coils located above the conductive plates, 

one placed parallel to the plates serving as an excitation coil and the other 

perpendicular to the plates serving as a sensing coil. In this work we derive analytical 

expressions for the induced voltage variations in the pick-up coil. Then the influences 

of the plate thickness, the exciting frequency and the moving speed of the conductor on 

the induced voltage variation are analyzed. The analytical calculation results are 

verified using the finite element method. 

Key words: Eddy current testing, Conductive plates, Rectangular coil,  Induced voltage,  

Finite element method.  

1.  INTRODUCTION 

 Eddy current testing (ECT) techniques are widely used in testing of conductive 

structures with advantages of high sensitivity when testing for surface flaws [1-3]. In 

standard eddy current testing a circular coil carrying current is used to test the conductive 

specimen. The alternating current in the coil generates an alternating magnetic field, 

which interacts with the test specimen and generates eddy currents. However, rectangular 

coils are more useful than circular coils, because the rectangular coil is not axisymmetric, 

hence it affects the field inside the medium resulting in higher sensitivity to sub-surface 

flaws [4]. In spite of these advantages, rectangular coils have been seldom discussed in 

the literature. In this paper, we analyse a model with two rectangular coils, one serving as 

the exciting coil and the other is the pick-up coil, both located above the conductive 

plates. The conductive materials’ characteristics or parameters of flaws can be evaluated 
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from the induced voltage variation in the pick-up coil. The validity of the theoretical 

analysis is confirmed by the finite element method (FEM). 

2.  THEORETICAL ANALYSIS 

2.1. Analytical model 

Fig. 1 shows two rectangular single-turn coils located above multi-layer conductive 

plates. The exciting coil is parallel to the surface of the conductor which coincides with 

the z = 0 plane. The dimensions of the exciting coil are 2a1, 2b1 and a lift-off z0. An AC 

harmonic current tjIe   flows in the coil. The pick-up coil is parallel to the yz plane and 

perpendicular to the conductor, it has dimensions of 2a2, 2b2 and a lift-off z0+w2. The 

thickness, conductivity and permeability of the two layer conductive plate are assumed to be 

di, σi and μi (i =1, 2) and the conductive media are assumed to be linear, isotropic and 

homogeneous.  
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Fig. 1 Filamentary rectangular coils above a multi-layer conductor 

To simplify the analysis, the solution region is divided into region 0, 1 and 2. In 

Region 0 (z > 0), the incident magnetic flux density Bi generated by the exciting current 

and the reflected magnetic flux density Br generated by inducted eddy currents exist 

simultaneously. The incident magnetic flux density Bi can be expressed by the vector 

potential Ai as: 

 JAi 0  (1) 

 ii AB   (2) 

The reflected magnetic flux density Br satisfies the following:  

 0 rB  (3) 

 02  rB  (4) 

Region 1 )0(  zd  is the top conductive plate. The magnetic flux density B1 in this 

region satisfies the following: 

 
2 1

1 1 1 1 1 1 0
B

B v j B
y

   


   


 (5) 

 1 0B   (6) 



Calculation Model for the Induced Voltage in Rectangular Coils above Conductive Plates 29 

Region 2 )( dz   is the lower conductive plate. The magnetic flux density B2 in this 

region satisfies:  

 0222
2
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B
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To solve these equations, the double Fourier transform and its inverse are introduced: 
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where ξ and η are the integration variables. 

2.2. Incident magnetic flux density  

The single filamentary rectangular coil consists of four finite length wires, as shown in 

Fig.1. By solving (1), the vector potential generated at an arbitrary point ),,( zyxp  by a 

source point )',','( zyx  in the coil can be written as: 

 
v R

dvzyxJ
zyxA
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4
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


 (11) 

where J is the current density in the coil, v is the coil segment carrying current, R is the 

distance of ),,( zyxp  to the source point )',','( zyx  as follow: 

 222 )'()'()'( zzyyxxR   (12) 

Performing the Fourier transform on (11), the expression of the vector potential in 

the region z < z0 is obtained as: 
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Similarly, the components of the incident magnetic flux density are obtained by 

performing the Fourier transform on (2): 
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 As shown in Fig. 1, the wire parallel to the x axis satisfies IzyxJ )',','( , 0' yy   and 

z  z0 < 0. Substituting these into (13), the x component of the vector potential becomes:   
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Similarly, the wire parallel to the y axis satisfies IzyxJ )',','( , 0' xx  and z  z0 < 0, 

substituting into (13), the y components of the vector potential becomes: 
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The x components of the magnetic flux density can be obtained by substituting (15) 

and (16) into (14) as follows: 
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Similarly, the y and z components of the magnetic flux density can be obtained as: 
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The general solution for the z component of the incident magnetic flux density in region 

0 is: 
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where the coefficients Ciz are: 
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2.3. Reflected magnetic flux density  

Performing the Fourier transform on (4), the reflected magnetic flux density in region 

0 can be expressed as:  
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In similar fashion, performing the Fourier transform on (5) and (7), the magnetic flux 

density in region 1 and 2 can be expressed as: 
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The normal component of B and the tangential components of H must be continuous 

on the z = 0 and z = -d planes.  
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Applying the continuity of Bz, we obtain 

 zrziz bbb 1  (z = 0)  (25) 

    zz bb 21   (z = d) (26) 

Applying the continuity of Hx, we obtain 
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Applying the continuity of Hy, we obtain 
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Due to the fact that 0 J , the current density Jz does not exist in regions 1 and 2, 

and we get: 
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The following equations are obtained from (3) 
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Following similar steps, the following equations are obtained from (6) and (8): 
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The coefficient of the reflected magnetic flux density is obtained by solving the above 

equations: 
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The coefficient of the reflected magnetic flux density becomes:  
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The x component of the reflected magnetic flux density becomes: 
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The x component of the reflected magnetic flux density in region 0 is obtained by 

performing the inverse Fourier transform on (41): 
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Fig. 2 shows two multi-turn rectangular coils obtained by extending the two single-

turn coils shown in Fig. 1 in width and length respectively. The coil parallel to the surface of 

the conductor is the excitation coil and the coil perpendicular to the conductor is the pick-up 

coil. The turns of the excitation and pick-up coil are N1 and N2 respectively. The lower 

surfaces of the two rectangular coils are level with each other.  
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Fig. 2 Configuration of two multi-turn rectangular coils 

The reflected magnetic flux density generated by the multi-turn rectangular exciting coil 

shown in Fig. 2 is obtained by integrating (42) with respect to the width and length as follows: 
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where 
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Fig. 3 shows a comparison of the variation of the reflected magnetic flux density’s x 

component as calculated from (43) and as simulated using Maxwell 3D respectively. The 

results of the simulation are obtained by subtracting the x component of the magnetic flux 

density without the conductor from the x component of the magnetic flux density with the 

conductor. The points shown belong to the line between (-16,0,5) and (16,0,5) which is 

located below the exciting coil and above the conductive plate. It can be seen that the 

analytical calculation results agree with the simulated results very well. 

-20 -15 -10 -5 0 5 10 15 20
-40

-30

-20

-10

0

10

20

30

40

Position along x axis (mm)


 B

x
（

G
a
u

ss
）

FEM

Fourier transform

 

Fig. 3 Variations of the x component the magnetic flux density  

calculated from the analytical and FEM simulation 

3. INDUCED VOLTAGE IN PICKUP COIL 

3.1. Magnetic flux penetrating through the pick-up coil 

To obtain the reflected magnetic flux penetrating through the multi-turn rectangular 

pickup coil shown in Fig. 2, we first derive the reflected magnetic flux penetrating through 

the single-turn rectangular coil with lengths 2a2, 2b2, and assume it is located at (c, 0, zc), 

where zc = z1 + w2 + a2. The reflected magnetic flux penetrating through the single-turn coil is 

obtained by integrating (43) on the area of coil as: 
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Then the reflected magnetic flux penetrating through the multi-turn rectangular pickup coil 

is obtained by integrating (46) with respect to the width and length of pickup coil as follows: 
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3.2. Induced voltage in the rectangular pickup coil 

The relationship between the magnetic flux penetrating through the pickup coil and 

induced voltage is: 
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4.  RESULTS 

The induced voltage variation of the rectangular pick-up coil is now calculated by 

considering the influencing factors based on the expressions derived in the previous section. 

The parameters of the coils and the conductive plates are given in Tables 1 and 2 respectively. 
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Table 1 Parameters of the rectangular coil 

Exciting coil Pick-up coil 

a1 (mm) 12 a2 (mm) 3 

b1 (mm) 12 b2 (mm) 5 

z1 (mm) 1 z1 (mm) 1 

w1 (mm) 2 w2 (mm) 5 

h1 (mm) 8 h2 (mm) 2 

turns 500 c  (mm) 6 

  turns 300 

Table 2 Parameters of the conductive plate 

Top layer 
σ1 (S/m) 3.8×10

7
 

μr1 1 

Lower layer 
σ2 (S/m) 5.8×10

7
 

μr2 1 

Fig. 4 shows the induced voltage due to the conductive plates as a function of the 

excitation frequency. The thickness of the top-layer conductor is 200 μm and the thickness 

of the lower-layer is semi-infinite and both conductors are stationary. c is the distance from 

the center of the pick-up coil to the z axis. It can be seen from Fig. 4 that the variation of the 

induced voltage increases with frequency. At any given exciting frequency, the pick-up coil 

with larger distance to the z axis has a higher induced voltage. 
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Fig. 4  Induced voltage in the pickup coil as a function of exciting frequency 

Fig. 5 compares the induced voltage calculated from the analytical method and FEM 

simulation. The analytical results are calculated as the square root of the sum of squares of the 

real and imaginary parts of the induced voltage. The results of the FEM are the effective values 

of the induced voltage obtained in pick-up coil, simulated with a time-dependent formulation. 
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Fig. 5 Comparation of the induced voltage variation in rectangular pick-up coil  

from analytical and FEM at different excitation frequency 

The induced voltages in the coil for different thicknesses of the top-layer conductor are 

shown in Fig. 6. The excitation frequencies are fixed at 0.5, 2, and 5 kHz respectively, and the 

conductor is stationary. The distance from the center of the pick-up coil to the z axis is fixed at 

9 mm. The induced voltage variation initially increases with the thickness, then, at a specific 

thickness, the induced voltage reaches a maximum, followed by a decreases with increasing 

thickness. As can be seen from Fig. 6, the higher excitation frequency produces a higher 

maximum at a smaller thickness, but the induced voltage decreases faster with increasing 

excitation frequency. 
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Fig. 6  Induced voltage in pickup coil as a function of top-layer conductor thickness 

The speed characteristics are shown in Fig. 7. The induced voltage variations are calculated 

at speeds from v = 0 to 50 m/s. The excitation frequency is fixed at 2 kHz. Fig. 7 shows the 

differences of the coils induced voltage at different speeds of the conductor relative to the 
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coils’ induced voltage when the conductor is stationary. The rectangular coils’ induced voltage 

variation keeps increasing with the moving speed of conductor, the maximum variation of 

induced voltage is achieved with the top-layer conductor of thickness 200 μm. 
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Fig. 7  Induced voltage of pickup coil at different speed of conductor 

5. CONCLUSION 

A closed-form expression for the induced voltage between a pair of rectangular coils 

above a multi-layered conductive plate has been derived using a 2D Fourier transform 

method. The excitation coil is parallel to the plates and the pickup coil is perpendicular to the 

conductor. We discussed the influencing factors on the induced voltage, such as the excitation 

frequency, the thickness of the top-layer conductor and the speed of the conductor. The 

calculation model and results can be extended and used in the forward model of quantitative 

detection for eddy current testing of multi-layer conductive structures.  
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