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Abstract. A new approach to mathematical modelling of lightning current derivative is 

proposed in this paper. It builds on the methodology, previously developed by the authors, 

for representing lightning currents and electrostatic discharge (ESD) currents waveshapes. It 

considers usage of a multi-peaked form of the analytically extended function (AEF) for 

approximation of current derivative waveshapes. The AEF function parameters are estimated 

using the Marquardt least-squares method (MLSM), and the framework for fitting the multi-

peaked AEF to a waveshape with an arbitrary number of peaks is briefly described. This 

procedure is validated performing a few numerical experiments, including fitting the AEF to 

single- and multi-peaked waveshapes corresponding to measured current derivatives.  
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current function, lightning stroke, Marquardt least-squares method 

1. INTRODUCTION 

Besides different parameters of lightning electromagnetic field and lightning discharge 

currents, which greatly endanger the functionality of power systems, electrical equipment and 

electronic devices, lightning current derivative signal is often measured at tall instrumented 

towers, towers at elevated terrain and at rocket-triggered stations, [1]-[8]. Current derivatives 

approximation is important for calculation of lightning induced overvoltages and for further 

improvements of lightning discharge models [1], [5], [9]. 

Generalizing the function for representing lightning currents from [10]-[12], the 

proposed multi-peaked analytically extended function (AEF) has been applied by the authors 

to modelling of different lightning currents, including those defined in the IEC Standard 

62305-1 [13], slow and fast-decaying ones, as well as measured ones, see e.g. [14]-[16]. 

Furthermore, it has been recently used in [9] and [17] for representation of the electrostatic 

discharge (ESD) current corresponding to the IEC Standard 61000-4-2 waveshape as given 
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in [18]-[19]. The AEF’s parameters were fitted to the desired current waveshapes using 

the Marquardt least-squares method (MLSM), [20].  

In this paper we explore the possibility of reproducing the waveshape of the lightning 

current first derivative using the AEF and adjusting its non-linear parameters employing 

the MLSM. The validity of approximation and this methodology is tested by performing a few 

numerical experiments related to modelling of lightning current derivative signals measured at 

the CN Tower [5]. Since installation, simultaneous measurements of currents and current 

derivatives by Rogowski coils, corresponding electromagnetic field values detected by sensors 

and high-speed cameras at a few km distance from the tower have been providing useful data 

for analysis, [1]-[5]. Reflection coefficients are estimated for the CN Tower and employed for 

magnetic field calculation in [5]. Reflections occur from the tip of this tower, top and 

bottom of its restaurant and from the ground, so as at the upward-propagating lightning return-

stroke channel front, and produce peaks in the current derivative waveshape.  

In this paper, lightning current derivative approximation is done taking into account the 

initial peak and subsequent peaks in the derivative waveshape, regardless of their cause. The 

same procedure may be used in the case when measured current derivatives have multi-

peaked waveshapes for other reasons, e.g. due to various configurations of the terrain and 

some tall structures, or due to lightning current channel discontinuities and branching. 

2. MODELLING OF THE LIGHTING CURRENT DERIVATIVE 

2.1. Analytically extended function (AEF) and some of its properties 

The basic building block of the multi-peaked AEF is, as referred to in [18], the power 

exponential function (PEF) given by  

 1( ; ) ( ) ,0 ,tx t te t     (1) 

where the β-parameter determines the steepness of both its rising and its decaying part.  

The AEF is constructed as a function consisting of piecewise linear combinations of 

PEFs that have been scaled and translated to ensure that the resulting function is continuous. 

In [18], it is defined as  
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where: 

 
1 2
, ,...,

pDm Dm DmI I I  - the difference in height between each pair of peaks,  

 
1 2
, ,...,

pm m mt t t  - the times corresponding to these peaks,  

 0qn   - the number of terms in each time interval, 

 ,q k  - real values so that ,1
1qn

q kk
  , and 

 , ( )q kx t  - PEFs defined by ,q k  parameters in the following way: 
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where 
1q q qm m mt t t


   .  

Expression (2) can be written more compactly as 

 

 

 

1

1
T

1

T

1

, , 1 ,
d ( )

d
, , 1,

k q q q

k p

q

Dm Dm q q m m
k

p

Dm q q m
k

I I t t t t q p
i t

t
I t t t q p










    


 
   






x

x





  (4) 

after introducing 
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The first derivative of the multi-peaked AEF corresponds to the second derivative of 

the lightning discharge current, i(t), and can be easily found since the AEF consists of 

elementary functions. Compact form is given by 

 

 

 

1

1

T

2

2

T

( )
, , 1 ,

d ( )

d ( )
, , 1,

q

q q q

q q

q

q p

q q

m q

Dm q q q m m

m m

m q

Dm q q q m

m m

t t x t
I t t t t q p

t t t
i t

t t t x t
I t t t q p

t t






   

 
 


  



η B x

η B x

 (5) 

where qB  are diagonal matrices: 
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Based on this expression, it is easy to see that the current’s second derivative is also 

continuous since it will be zero at each 
qmt .  

The integral of the AEF corresponds to the lighting discharge current i(t) and is also 

relatively straightforward to find, since the integral of the PEF can be written using the 

lower incomplete gamma function ([21]) i.e. 
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t e       is the incomplete gamma function. 

Combining (6) and (2) we obtain the integral of the rising part of the AEF 
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The integration formula corresponding to the decaying part is 
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2.2. Marquardt least-squares method (MLSM) 

Detailed explanation of the MLSM algorithm is given in [15], [16], here we just go 

over the parts specific for the multi-peaked AEF. 

The MLSM is used for estimating β-parameters, and from these, the corresponding η–

parameters are calculated. In each iteration step, η–parameters are obtained using the 

regular least-square method since for fixed β-parameters the AEF is linear in η. Based on 

these η–parameters, a new set of β-parameters is found.  

The MLSM uses a Jacobian matrix, denoted by J, containing partial derivatives of the 

residuals. The least square fitting of the multi-peaked AEF to a set of data points can be done 

separately between each peak (and after the final one), and the corresponding J matrix is 
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where qk  is the number of data points between the (q-1)th and qth peak, and ,q rt  is the 

time corresponding to these data points, and  
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3. AEF REPRESENTING MEASURED LIGHTING CURRENT DERIVATIVE - EXAMPLES 

In this section we validate our model by attempting to represent measured lightning 

current derivatives data obtained at the 553m CN Tower, Toronto, Canada, [5]. Time and 

current values corresponding to AEF peaks were chosen manually and the rest of the AEF 

parameters were obtained using the framework briefly described in Section 2.2. The 

number of time intervals and terms in each of them vary from example to example. 

General notation, AEFp(n1, …, np) for nq, q=1, …, p, is used to denote an AEF with p 

peaks and chosen number of terms nq in each time interval q. 

3.1. Single-peaked waveshape 

The first example illustrates the application of a single-peaked AEF to representation 

of the measured initial current derivative impulse occurring in the first 0.5 s given in [5, 

Fig. 4]. The best fitting was obtained choosing two terms in each of the two time intervals: 

0-tm and tm-0.5 s (the moment tm corresponds to the maximum current derivative). Current 

derivative value at t=0 is treated as the first point of approximation, so there are 4 terms in 

total, for these 2 intervals. Obtained AEF2(2,2) model is illustrated in Fig. 1a along with 

the measured data, data points used for the MLSM fitting, and the locations of peaks 

observed in this waveshape. Using the expressions (7) and (8) we also obtained the AEF’s 

integral, i.e. the lighting discharge current. It can be observed in Fig. 1b along with the 

numerically integrated measured data. 
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a) 

 
b) 

Fig. 1 a) AEF2(2,2) representing measured lightning current derivative from [5, Fig. 4], 

and b) the corresponding lightning current 

3.2. Multi-peaked waveshapes 

In this part we attempt modeling of the measured current derivatives data that include 

the initial and a number of subsequent impulses. The recoded waveshapes have great number 

of peaks and therefore is harder to model them using standard functions, but these are 

more suitable for modelling by the multi-peaked AEF.  

The first example corresponds to an event of lightning discharge measured at the CN 

Tower, using the Rogowski coil positioned at 474 m, illustrated in [5, Fig. 2] in 10 s. 

Such current derivative waveshape corresponds to typical fast-rising negative lightning 

discharge which occurs in about 80% of the registered cases (in 126 flashes out of 160 

[5]). The complexity of the AEF used for modelling of such multi-peaked waveshapes 

depends on the desired level of accuracy of the data representation.  



 Novel Approach to Modelling of Lighting Current Derivative 251 

In Fig. 2 are presented two AEFs with different number of peaks, including the starting 

current derivative value at t = 0 and other peaks which are chosen such that they correspond 

to local maxima only: a) AEF6(1,2,2,2,2,2) with 6 intervals and 11 terms in total, and b) 

AEF8(1,2,2,2,2,2,2,2) with 8 intervals and 15 terms in total. The increased number of time 

intervals fixes representation of the waveshape part corresponding to the period between 

the fourth and fifth peak of AEF6, and also after its sixth peak, so that the total number of 

intervals in AEF8 is increased by 2, whereas the number of terms by 4.  

 
a) 

 
b) 

Fig. 2 Multi-peaked AEFs (using starting point and maxima only) representing measured 

lightning current derivative from [5, Fig. 2]: a) AEF6(1,2,2,2,2,2) with 6 peaks, 

b) AEF8(1,2,2,2,2,2,2,2) with 8 peaks 
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Additional improvement is needed and could be achieved by further segmentation and 

including also local minima, so as by increasing the number of terms. Two such AEF 

models are illustrated in Figs. 3a and 3b, both with thirteen peaks, but for different number 

of terms chosen to represent some of its intervals. Thirteen peaks in AEF13 include 4 minima 

added to AEF8 and also one more maximum at its ending part, so that the number of peaks is 

increased from 8 (in Fig.2b) to 13 (in Figs. 3a and 3b). These two AEFs are denoted by 

a)  AEF13a(1,1,1,1,1,2,1,1,1,1,2,2,1) with 13 intervals and 16 terms in total, and 

b) AEF13b(1,1,2,1,2,2,1,2,1,2,2,2,2) with 13 intervals and 21 terms in total, where the bold 

numbers in brackets point out to the changed number of terms, in some intervals increased 

from 1 to 2. 

 
a) 

 
b) 

Fig. 3 Multi-peaked AEFs with 13 peaks (using starting point, 8 maxima and 4 minima) 

representing measured lightning current derivative from [5, Fig. 2]:  

a) AEF13a(1,1,1,1,1,2,1,1,1,1,2,2,1), b) AEF13b (1,1,2,1,2,2,1,2,1,2,2,2,2) 



 Novel Approach to Modelling of Lighting Current Derivative 253 

Results for the same lightning current derivative measured at CN Tower are given in first 

7s in Figs. 4a and 4b for fitting by AEFs corresponding to data from [5, Fig. 6]. Model 

AEF7(1,2,2,2,2,2,2) with 7 peaks (starting point and maxima only) and 13 terms is presented in 

Fig. 4a, able to capture the initial impulse and subsequent peaks due to reflections at the tower 

discontinuities. AEF7 has one more peak added at the end of AEF6, and 2 more terms in total.  

In Fig. 4b, AEF13c(1,2,2,2,2,2,2,2,2,1,1,2,2) model is presented with the total of 13 

peaks (the starting point, 8 maxima and 4 minima), which almost perfectly models measured 

set of data. It has 23 terms in total, 4 terms added and 2 excluded compared to AEF13b. The 

difference between those two is that 1 peak was added for AEF13c between tenth and 

eleventh peak of AEF13b, which improved significantly the approximation, and the thirteenth 

peak was excluded from the end of AEF13b. 

 
a) 

 
b) 

Fig. 4 Multi-peaked AEF representing measured current derivative from [5, Fig. 6]:  

a) AEF7(1,2,2,2,2,2,2) with 7 peaks (using starting point and maxima only), 

b) AEF13c(1,2,2,2,2,2,2,2,2,1,1,2,2) with 13 peaks (starting point, 8 maxima & 4 minima) 
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Figure 5 illustrates lighting discharge currents corresponding to above modelled multi-

peaked current derivative waveshapes. Again, expressions (7) and (8) are employed to calculate 

them, and the numerically integrated measured data is also given for comparison. Fig. 5a 

corresponds to AEF13b(1,1,2,1,2,2,1,2,1,2,2,2,2) model shown in Fig. 3b, while Fig. 5b relates 

to model AEF13c(1,2,2,2,2,2,2,2,2,1,1,2,2) from Fig. 4b. 

 
a) 

 
b) 

Fig. 5 Lightning currents corresponding to derivatives modelled by AEFs:  

a) AEF13b (1,1,2,1,2,2,1,2,1,2,2,2,2) from Fig. 3b,  

b) AEF13c(1,2,2,2,2,2,2,2,2,1,1,2,2) from Fig. 4b 
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4. CONCLUSIONS 

Approximation of lightning current derivatives is needed for calculation of lightning 

induced effects and for improvements of lightning discharge models. Suitability of the multi-

peaked AEF to represent lightning current derivatives is presented in this paper through a few 

examples.  

AEF’s non-linear parameters are calculated using Marquardt least-squares method 

(MLSM), so that the measured current derivatives signals [5] are well approximated. The 

approximation by AEFs in this paper is done for single- and multi-peaked current derivative 

waveshapes. Increasing the number of maxima and minima, so as the number of terms in total, 

improves the approximation of the current derivative by AEF. The lightning current waveshape 

is obtained with great accuracy as analytically integrated AEF representation of the measured 

derivative.  

Multi-peaked lightning current derivatives are characteristic for lightning discharges 

to tall towers and high structures at elevated terrain, but also for subsequent lightning 

strokes and lightning current channels with discontinuities and branching. Further work 

should be aimed at including such current and its derivative function into lightning stroke 

models in order to obtain measured lightning electromagnetic field at certain distances. 
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