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Abstract. This paper presents two simple and cost effective indoor localisation methods. 

The first method uses ceiling-mounted wide-view angle webcam, computer vision and 

coloured circular markers, placed on the top of a robot. Main drawbacks of this method are 

lens distortion and sensitivity to lighting conditions. After solving these problems, a high 

localisation accuracy of ±1cm is achieved at about 5 Hz sampling rate. The second method is 

a version of trilateration, based on ultrasound time of flight distance measurement. An 

ultrasonic beacon is placed on a robot while wall detectors are strategically placed to avoid 

an excessive occlusion. The ZigBee network is used for inter-device synchronisation and for 

broadcasting measured data. Robot location is determined as a solution to the minimisation 

of measurement errors. Using Nelder-Mead algorithm and low-cost distance measuring 

devices, a solid sub 5 cm localisation accuracy is achieved at 10Hz. 
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1. INTRODUCTION 

The robot or objects indoor localisation is a vital research area, intrinsically important 

in expanding competences of future low-cost home robots. A comprehensive research 

overview is best gained by browsing applications in Microsoft’s Indoor Localisation 

Competition, held three years in a row [2], starting with 2014. The best scores are often 

achieved through engagement of expensive components such as LIDAR’s. However, 

when it comes to a low-cost mobile robot, it is demanded that localisation is both reliable 

and inexpensive. Consequently, a compromise is reduced to the ratio of positioning 

accuracy and the costs of producing and implementing localisation. This is not difficult to 
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achieve for service robots. For example, home cleaning robots do not require high precision 

localisation for wandering. However, if servicing an arbitrary point in workspace is required, 

a comprehensive research would be needed in order to stay below the price tag. 

Furthermore, the indoor localisation is especially challenging [3] due to a problem 

with weak or non-existing GPS signal, and due to occlusion problems as a result of 

variety of objects and their placement within a room. Thus, usage of any method that 

needs a straight line visibility between two parts would require a redundant solution. On 

the other hand, such increasing of complexity leads to the increase of the overall costs. 

Therefore, a careful consideration has to be made before choosing the right method.  

The localisation is based on a low-cost, ultrasonic, time-of-flight, distance measuring 

system. It is similar to Cricket [4, 5]. The robot emits an ultrasonic beacon signal, while 

fixed wall-mount devices measure Time-of-Flight. This kind of system is often inexpensive, 

so increasing redundancy by adding more of wall devices is not increasing the overall system 

cost considerably. 

Use of straightforward trilateration imposes few problems. The first one appears when, 

due to a measurement error, three or more spheres do not intersect at a single point. For 

smaller measurement errors this could be neglected and considered as a rounding error. 

Since our system had better than ± 10cm accuracy, this could not be the case. The other 

problem, a special case of the first one, is absence of intersection between spheres in case of 

negative errors. Mathematically speaking, a solution of trilateration is imaginary. Arguably, 

accuracy could be improved by calibrating each wall unit separately, and ensuring their 

precise coordinates. However, in cases of occlusion and reflections, these kinds of problems 

would reappear. Therefore, we seek a solution through a criterion-based optimisation to get 

as close as possible to the point that minimises the measurement error. 

Further improvement could be achieved by using a secondary, more accurate, 

localisation system. When these two systems run in parallel, the second system would be a 

good reference for the calibration of the initial one. For this purpose, localisation rate 

does not even need to be high. Therefore, we decided to base the secondary system on 

computer vision and recognition of passive markers. Low-cost requirement was priority as 

well, so overcoming typical drawbacks of such an image processing methods was important. 

Fisheye lens distortion was removed by using known geometry [6], and complexity of object 

recognition was avoided by simplification and colour coding of markers [7]. The rest of 

them will be presented in details in the following section. 

2. VISUAL FEEDBACK MAPPING FOR LOCALISATION 

2.1. Materials and method 

We have placed a fish-eye webcam on the ceiling in the middle of the test room. In 

order to make this system affordable, we based it on a full HD webcam, Genius F100, 

with 120° view angle lens, and moderate power PC of AMD Athlon II X3 455 3.30GHz, 

ATI Radeon HD 6450 and 4GB DDR3 RAM.  

The distance between the camera lens and the floor is 3.1 metres Therefore, the 

camera with 120° wide view angle lens can cover the area of 4×3 m. A grid of 0.5 × 0.5 m 

was drawn on the floor to ease calibration and provide a visual clue during the measuring. 

The grid is highly accurate, with only 5 mm distortion error over the diagonals of 5 m. 
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Rectification was crucial for this system because a wide-angle lens that is used has 

intrinsic distortion. Its removal is easy since the camera itself is stationary and marker 

height was supposed to be constant. Sampling images of the marker at different positions 

reveals levels of distortion. This data is then used to invert the effects. We gathered those 

samples at drawn greed points. As an aid we used a tripod, and as a marker we used an 

orange ball, as shown in Fig. 1. Height of this customized calibration tool was set to 1.1 m 

which reduced the distance between the camera lens and the markers to exactly 2 m. After 

relocating the tripod around the grid, and overlaying all images one on top of the other, 

we generated Fig. 1. The central part of the grid, which aligns with the middle of the camera, 

is free from the lens distortion. That is why we dropped out some middle points but left 

one on the edges and corners, where the distortion is at its largest. 

 

Fig. 1 Overlay of tripod with marker as calibration points in our test room. 

We found it fitting to divide the frame to 9 regions and linearize them independently. 

This keeps rectification simple and calibration easy. Number of pixels between sampled 

points was manually counted and converted to centimetres. Later on, calibration constants 

and offsets for each region were calculated, and embedded in the positioning algorithm. 

Distortional displacement within the camera image is not the same for close and distant 

objects. Obviously, an additional calibration is required if height of the marker is changed. 

However, there is no need for this if its placement is optimal. The best place for the marker 

is on the top of the tracked object, where chances for occlusion are negligible. We should 

note that markers placed higher do require more linearization sectors, as the difference 

between the real position of the object on the floor and the camera frame varies. 

An important part of the simplification of the marker recognition is its colour coding. 

This makes identification easy. In addition, extracted marker shape is more accurate, 

which enhances precision in marker centre calculation. We implemented this extraction 

through pixels classification. The classification of pixels generates a black and white 

image, where white pixels are originally in adjacent colour space of the marker. This new 

image contains slightly etched shapes of markers with some artefacts as well. Another 

layer of smoothing filter corrects this. We suggest Gaussian blur, as it produced quite 

useful results for us. Larger artefacts, if they happen to persist, are filtered out by shape 

and size classification. We opted for a circular marker design. 
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Marker colour distinction also enables multi object tracking, or orientation recognition 

by engaging two markers per object. In particular we used the larger, orange coloured, 

marker for tracking position, while the smaller one which was green, was an aid in tracking 

robot heading. This marker combination proved to be the most desirable with respect to the 

program execution time. 

After marker positions in pixels are extracted, in our case after the centre of the only 

remaining circle is calculated, its conversion to absolute position in centimetres comes in 

place, by using formula (1) and calibration constants. 

 1
2

calib

MP os
MPc os

C

 
  
 

 (1) 

MP is the marker position in pixels while os1 is the marker offset in pixels for the region 

it belongs to. Ccalib and os2 are linearity gain and offset in centimetres for the region. Their 

values, for all nine calibration regions, are given in Table 1. Finally, MPc is marker position 

in centimetres, in coordinate system which centre is placed at the bottom left calibration 

point of Fig. 1. 

Table 1 Calibration Constants and offsets for conversion into cm 

Marker osition os1 Ccalib os2 

X Y X Y X Y 

Upper left 285 28 3.44 3.64 0 0 

Centre left 285 28 3.44 3.43 0 0 

Lower left 285 900 3.36 3.23 0 250 

Upper middle 620 20 2.29 2.26 100 0 

Centre 620 200 3.5 3.5 100 50 

Lower middle 620 1319 3.6 3.6 50 0 

Upper right 1319 28 3.44 3.43 300 0 

Centre right 1319 28 3.44 3.43 300 0 

Lower right 285 900 3.36 3.23 0 250 

2.2. Implementation and results 

The program was done under Window 10 with Microsoft Visual Studio Community 

2015 with inclusion of OpenCV library version 3.0. At the start up of the program, camera 

parameters, such as brightness, contrast, saturation, hue, gamma, sharpness and exposure, 

are pre-set to suitable values. This parameters tweaking enhances proper pixel colour 

classification at given lighting conditions. We experimentally determined them for our Neon 

light test room, with west facing windows. Prior to the pixel classification, the image is 

converted from RGB intoHSV. After this, the inRange function is used, as classifier, to 

generate black and white image. As already stated, we used GaussianBlur for BW image 

smoothing and smaller artefacts removal. 

In the next step we calculate the marker position by data extraction. We used 

SimpleBlobDetector in this process. Parameters of this function are set to ignore everything 

but circles of particular size, thus filtering any larger artefacts. It is the middle point of a 

found blob, that is considered as the marker position, pixel-wise. 
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To speed up the program we decided to trim sampled frames only to Region-Of-Interests 

(ROI). This way, computationally intensive functions like SimpleBlobDetection shall 

execute faster. During the initialisation phase, the program searches the whole frame for 

marker, until it is found. Afterwards, the ROI is extracted from frames based on previous 

marker position and the maximum expected movement. 

This ROI trimming not only shortens calculation time but also filters out other objects 

of similar visual properties as the marker’s. Precaution that needs to be taken into account 

is that these kinds of objects are not present during the start of the program. In such cases 

it could happen that some other object is recognised for tracking, instead of the marker, 

and then the wrong ROI would be extracted. 

In the last step, marker position in pixels is converted into actual position in centimetres, 

in absolute coordinate frame attached to the floor. Approximately, one centimetre corresponds 

to 2.5 pixels. 

Initial verification of the system includes repetitive measurements with the marker, 

placed on a tripod, at an arbitrary point in workspace. This tests calibration accuracy and 

system repeatability. Upon consecutive large number of measurements, we can confirm that 

the system is reliable and repeatable at the acceptable level. The number of 1572 location 

samples of a still marker was acquired. On average, it required 235 ms to complete one 

localisation cycle. With 4.26 Hz localisation rate, such system is not suitable for localising 

high speed mobile platforms. Nevertheless, a robot that travels at comfortable speed of 0.3 

m/s would be localised at points 7 cm apart. This can be considered acceptable in 

applications such as fetching objects to the customer or telepresence, but not in precise 

object handling. Repeatability for all 1572 measurements was within one-centimetre range 

which corresponds to 2 to 3 pixels of the camera. Due to small variations in lighting and 

inherent camera noise, there exists a jitter in marker position, found by a simple blob 

detector. When position in pixels is converted into position in centimetres, and rounded, the 

jitter passes to marker position in centimetres. An improvement is possible with the increase 

of camera resolution, or perhaps with the increase of the number of linearization sections. 

However, we find this system static performance quite satisfactory for calibration and 

support of low-cost, ultrasound based, time-of-flight localisation system. 

For the dynamic testing of camera localisation system, we have decided to make several 

circular motions in the centre of the test room. There are two reasons for this. The first is 

simplicity of trajectory equations, which allows easier data analysis later on. The second is 

trajectory length that should provide sufficient time for acquisition of a sufficient amount of 

data. Since the test room was not large enough for straight line movements, the most logical 

trajectory then was circular. Also, it can be easily performed without the need for an 

expensive setup. For example, a simple remotely driven mobile platform, like more powerful 

homemade RC car, suffices. Another proposal is a motor driven rotating stand. At our 

disposal was a small, student grade, robotic platform. After attaching the marker to it, we 

have initiated the localisation and made 30 laps, with approximately constant speed of 20 

cm/s. The programme was set to log the marker positions with the time stamps of frame 

acquisitions. The time stamps are expressed in milliseconds and the local time is measured 

from the beginning of the test. Fig. 2. shows plotted positions of the marker. As it can be 

noted, the trajectory is circular but there exists some slight movement of the centre. 
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Fig. 2 Logged trajectory of circular motion of marker. Number of repetitive cycles is 30. 

In the next step, we have done a time stamp analysis of about 426 s long measurement 

streak. This was necessary for the later analysis of trajectory. The logged time seemed 

rather linear when plotted. An average time between processed frames is 236 ms, with 

standard deviation of 22.9 ms. Differences on the histogram of time between two 

successively grabbed frames are an interesting observation, which is shown in Fig. 3. 

 

Fig. 3 Histogram of time differences, dt, between two successively grabbed frames. 

Histogram peaks are at an equal distance of approx. 15 ms. Since the camera streams 

at about 30 fps, this 15 ms seems like a half of a frame time. An average period of 236 ms 

is then correlated to 7 frames. Considering a slight variance in stream frame rate and code 

execution, it could lead to a frame grabbing jitter. The jitter would be only one frame. Its 

effect would be increase in localisation uncertainty of one frame time multiplied by the 

speed of marker. If speed is low, uncertainty increase is only a few centimetres. In our 

case, for speed of just under 20cm/s, it is evaluated to 0.6cm. When time stamps are 
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converted to integer number of frames from the beginning of test, and time difference is 

recalculated, the histogram looks like in Fig. 4. Now it is much clearer that almost half of 

the samples are taken with 7 frame difference. From the remaining samples, about one 

third is with 6 frame difference and one third with 8 frame difference. In other words, 

standard deviation is 0.77 frames. To conclude, as far as the timing analysis is concerned, 

since no real time OS were used, a variance in processing frames and sampling does exist. 

However, it is not more than 10 frames or one third of a second. 

 

Fig 4 Histogram of time stamp differences,  

when time is converted to frames with 30fps rate. 

In parallel with the dynamic performance test we have done an additional timing 

analysis. We wondered whether this kind of localisation system could be integrated as 

small localisation device capable of broadcasting tracked object location via Wi-Fi. Thus, 

the image processing PC was set to send position via UDP packets to PC within the same 

wireless network. Comparing the time difference of localisation frame sampling time and 

time of the UDP arrival, we got 236 ms of time difference between location information. 

On the other hand, a standard deviation is now 133 ms, which is almost 6 times more than 

for the localisation alone. The main culprit is packet buffering, and wireless signal quality. 

Due to them, considerate number of packets was late. Note also that this differential analysis 

excludes fixed amount of latency from Wi-Fi, as it did with camera frame grabbing. Since 

we are using low-cost off the shelf components, it is not possible to determine accurately this 

kind of delays. At least not without the use of special setups. Conversely, we find sending 

location via UDP packets and Wi-Fi for control purposes plausible, however, control 

algorithms must either be rugged enough for variable time delays or take advantage of frame 

time stamp and perform small corrections of received location. 

In the following step, we have done trajectory analysis in two stages. Firstly, we have 

found trajectory radius r and centre (x0, y0), as well as speed of centre movement (vx, vy). 

This was achieved by finding the best fit for function (2). 
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0 0( , , ) ( ) ( )x yf x y t r x v t x y v t y        (2) 

Basically, function (2) represents difference in radius of acquired location and the 

estimated one. For any measured point it should be equal to zero. The best fit result gave 

r of 41.9 cm, (x0, y0) of (191.1, 149.6) cm, as well as (vx, vy) of (0.264, -0.096) mm/s. The 

best fit average error is 6E-16, while the standard deviation is 0.633cm. It is interesting to 

note that the standard deviation is on the level of mentioned frame jitter, for an object 

with speed of 20 cm/s. Nevertheless, we state that accuracy of this system for moderate 

speed of tracked marker is ±1.5cm, or ±2.25cm if absolute limits are applied. So 

performance of system for tracking a moving object does not go far off from the static 

measurements. 

Now, if we take into consideration that speed of the marker was constant, we can 

assume that coordinates (x, y) change as in (3), where ω is constant angular velocity and ϕ 

is initial angular offset. The formula (3) is our ideal mathematical model of real trajectory. 

 0 0( ( ), ( )) ( cos( ), sin( ))x yx t y t x v t r t y v t r t           (3) 

Difference of trajectory given with the formula (3) and measured data is given with 

function (4). Ideally, it equals zero. 

 2 2

0 0( , , ) ( cos( ) ) ( sin( ) )x yg x y t x v t r t x y v t r t y              (4) 

The best fit result gives angular velocity of -0.439 rad/s, which translates to 18.4 cm/s 

peripheral speed, and angular offset of 3.163 rad. Negative velocity comes from the 

clockwise direction of trajectory. Average fitting error is 2.8 cm and standard deviation is 

1.8 cm. Since this result seems much worse than the one from trajectory path analysis, we 

conclude that this method is accurate for localisation within a frame. However, when a 

tracked object is moving, due to unsynchronised frame grabbing, larger margin of error 

occurs. Indeed, when we calculated travelled distances between successive sampled 

frames, we got 4.4 cm in average and standard deviation of 0.5 cm. This seems like a great 

variance, considering the fact that marker speed was pretty constant. After calculating 

temporal velocities, we got the result that average speed is 18.6 cm/s and standard deviation 

is 0.6 cm/s. So generally, due to variance in precise image capturing, we get very rough 

velocity approximation based only on two samples. However, after filtering, this information 

seems quite right. 

3. TIME-OF-FLIGHT LOCALISATION METHOD 

3.1. Materials and method 

A simplified block diagram of time-of-flight distance measurement system is presented 

in Fig. 5. There is a beacon that emits ultrasound on the left and a wall mount device on the 

right. The minimum number of wall devices necessary for successful trilateration is three. 

Before the beacon fires a streak of waves, it notifies a wall device via radio module, and it 

starts the counter. When the wall device detects emitted sound, it stops the counter. 

Information about time of flight is then sent via radio. Distance is calculated after the time 
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of flight is multiplied by the speed of sound. Since the device is for indoor use only, speed 

changes due to temperature variations are neglected. Multiple ultrasonic transducers are 

used in both devices. Beacon covers 360 degrees horizontally and about 45 degrees 

vertically. The Wall device covers about 140 degrees horizontally and 45 degrees vertically. 

Therefore, a proper redundancy is needed for specific coverage. Currently we use 4 wall 

devices placed in corners of a rectangle, with an orientation toward common centre. We 

made sure to do the measurements only in areas covered with more than 3 wall units. 

Although devices are low-cost to make, this is only an initial accuracy testing and we find it 

irrelevant to have coverage of any preferred size or shape. 

 

Fig. 5 Simplified block diagram of system: ultrasound emitting beacon on the left  

and time-of-flight measuring wall mount device on the right. 

In order to overcome the problem of trilateration when using low-accuracy, but also 

low-cost, distance measuring system, we have based solution calculation through minimisation 

of the sum of squares of measurement errors. In the minimisation function 

 ,)(
1

2




n

i

iri dppF  (5) 

n represents number of wall devices that responded to ultrasonic beacon. Position vector 

of beacon pr and position vectors of wall devices pi are defined in 3D and in regard to 

some ground reference point. Again, vectors pi, where i is from 1 to n, are known, as they 

are measured during localisation system installation. The x and y axes are in the plane of the 

floor while the z axis is oriented toward the ceiling. Measured distances di are obtained short 

after the beacon signal is emitted. The function minimum is located around the beacon’s 

position. This function is equal to zero when no measuring error is present. Otherwise, a 

small precision uncertainty will occur in the case of measurement errors. When measured 

data noise is of random nature, there is no possibility to narrow down solution search area, at 

least not statically. 
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In order to test this method, we have created a Wolfram Mathematica script. It simulates 

a system of 3 or 4 wall devices and a beacon. Distance measuring error is randomly 

generated and added to the precise value. We set the x and y plane to correspond to the floor 

and the z axis to point to the ceiling. Although this method allows finding position of beacon 

in 3D, we are more interested in keeping its height constant. This would be most probable 

use-case in mobile robotics. Therefore the script visualises 2D plane of the z axes at the 

fixed height of beacon of 1.3 m, as in Fig. 6. Possible beacon positions in that plane are 

circles, designated with thick circular arcs in Fig. 6. Note that both positive and negative 

measurement errors were introduced. The dot represents calculated position, while the short 

lines, that connect it to the arcs, are estimated measurement errors. The squares represent 

projection of wall devices on the plane. They are also centres of the circles. The lower left 

part contains magnified detail around the dot. 

 

Fig. 6 A plane, where the z coordinate is constant 1.3 m, that contains calculated robot 

position which is shown with a dot. Possible beacon positions, for that plane, 

according to the measured data are circles, are shown partially with thick arcs. The 

short lines represent estimated measurement error. The squares represent 

projection of wall devices on the plane. They are also centres of the circles. The 

zoomed detail around solution point is presented at the bottom left. 

Visual checks were only used as an aid, for better understanding of behaviour of solution 

in response to errors and device placement. For example, actual and calculated positions are 

identical when there is no measurement error. Equal errors in all wall devices tend to cancel 

each other. Numeric evaluation is done as well. 

We used NMinimize function for minimization. Available minimisation methods are 

Nelder-Mead [8], Differential evolution [9], Simulated annealing [10] and Random search 

[11]. We used them all simultaneously in order to compare them with respect to efficiency 

and accuracy. Wall devices were placed in rectangular pattern with same height, as they 

might be used commonly. We generated random beacon positions, calculated accurate 

distances to wall devices, and then added a Gaussian error in range of ±10 cm. Beacon 
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location found by minimisation of function (5) was accurate enough, mostly bellow 5 cm 

error. However, in some cases, the error went up to extremes of almost 20 cm. That 

occurs in situation when two adjacent wall devices have maximal error of +10 cm while 

the opposite two have –10 cm of error. Probability for this is rather low and general 

conclusion is that this method works quite nicely. It shows robustness to both positive and 

negative measurement errors. Solution exists independently from the number of wall 

devices. Increasing their number to overcome temporary occlusion problems does not 

affect solution calculation, neither in complexity nor in time. 

Comparison of results of four minimisation methods showed no significant difference 

between them. Difference in accuracy was well below 1 cm. The same could be said 

about efficiency. So we chose the Nelder-Mead for practical implementation. 

3.2. Implementation and results 

After successful method of validation in Wolfram Mathematica, we have built C++ 

code. We have chosen to use Nelder-Mead solver from the Gnu Scientific Library. The 

program was used on the MinnowBoard computer with non-commercial Ubuntu OS. The 

MinnowBoard is an open-source, 64-bit Intel® Atom™ based mini/embedded PC. 

Initial tests were done with pre calculated examples, generated with Mathematica 

script. Execution time was about 1 ms, in average. Though sometimes it reached 3ms 

However, this was not the only program running. Nevertheless, we find this quite 

satisfactory. For service type robot speed, this introduces a localisation error less than one 

millimetre. Delays in distance measuring system are much greater and position sampling is 

below 10Hz. If by any chance execution time has to be reduced it could be done by lowering 

solver precision. We noticed that in most cases 10 to 20 iterations were enough to get the 

right position of centimetre resolution. 

As in the Visual Feedback Localisation in Section 2, we initially verified the system, 

through repetitive measurement with beacon fixed at arbitrary position in the workspace. 

This verification helps understanding repeatability in measurement and also gives reasonable 

confidence in usability for further implementation on a mobile robot. Upon consecutive 

large number of measurements, we can confirm that the system is reliable and repeatable at 

an acceptable level. The beacon firing rate was fixed, with the period of 150 ms, which is 

frequency of 6.67 Hz. Although we could set it up to 10Hz, we did not want to use it at its 

limits. A number of 1172 measurements at fixed position is presented as histogram in Fig. 7. 

The average point is (213cm, 169cm) and standard deviation is 0.62, or 0.38 for x axis data 

and 0.49 for y axis data. In general, only 0.26%, or 3 points, is outside of ± 1.5cm accuracy 

region. 

These data show a satisfactory initial accuracy of the method. Although it returns a bit 

more scattered location than the camera based method, it works faster.  

For dynamic testing of ultrasonic based localisation system, we have done the same test 

as with camera based localisation system. Furthermore, we decided to do both tests in 

parallel. This would make the comparative analysis easier. So the ultrasonic beacon was 

placed on the same platform as the marker. Since the platform, which was in the centre of the 

test room, was making circular motions, both the marker and the beacon had the same centre 

of rotation. Since the beacon must not occlude the marker it was placed as close as possible 

to it. Nevertheless, there still existed a slight difference of almost 3 cm, in their radiuses. The 
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initial trajectory analysis confirmed a slightly lower localisation accuracy of this system 

compared to the camera based one. Therefore, we decided to use the centre of rotation (x0, 

y0) calculated from the camera based system trajectory analysis, as well as speed values 

(vx, vy), and repeat fitting process with (2). The best result gave r of 44.8 cm, an average 

error of -3E-14, and a standard deviation of 7.44 cm. This result looks a lot higher than the 

one for the static test. This stems from the poor choice of RF modules for the system. These 

are low power ZigBee modules. Several studies indicate low performance of ZigBee 

communication in presence of Wi-Fi signals. This is nicely summarised in [12]. There it is 

clearly stated that Wi-Fi signal can corrupt ZigBee signal on bit level or cause drastic 

increase in retransmission. Since our setup room had one Wi-Fi router and there were plenty 

more distributed in nearby offices, we have noticed both effects. When we analysed time of 

arrival of packets from single wall device we discovered that latency between packets is 

quite drastic. Instead of having packets at regular beacon firing intervals of 150 ms, plus or 

minus time of flight of ultrasound up to 5 m, there were packet buffering where packets came 

with less than 30 ms difference. Since packets with distance information were not time stamped 

at transmitter side, it was impossible to determine whether the wall device failed to transmit 

after one beacon firing or the measured distance information came after the following beacon 

firing. In such cases mixing of data occurred. It could be otherwise interpreted like higher 

inaccuracy in distance measurement, which leads to higher localisation error. At some rare 

moments, packets from unknown wall unit address were received, which we interpret like 

obvious pollution of data. It is quite possible that lower performance of ZigBee modules is even 

due to its quality, since they were one of the cheapest on the market. 

 

Fig. 7 Histogram of 1172 measurements at single beacon pint.  

Most often measured position is (213, 169) cm. 
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Problems associated with ZigBee modules could perhaps be overcome by using better 

and more reliable modules, and by implementation of some better protocol for sending 

data over ZigBee as suggested in [12]. Another solution could be using modules that 

avoid overcrowded 2.4 GHz region at all. 

Since we had already identified the problematic latency in our system, we skipped the 

second part of trajectory accuracy analysis that we did with the camera based system. 

Simply, it would not add any value to the results. 

4. CONCLUSION 

We have implemented two methods for indoor localisation, and tested them against 

each other under identical conditions in our testing facility. After initial static testing and 

validation of systems accuracy, with laser range finder, we have determined that the first 

method, the camera-based one, has better accuracy. Although it has half of localisation 

speed than the time-of-flight method, we have decided to use it as referent system during 

dynamic testing. Since mobile service robots have moderate speeds, then the localisation 

rate of visually based system is quite adequate. Dynamic test showed that ultrasonic based 

localisation system has lower accuracy and success rate of measurement, due to ZigBee 

modules communication glitches that require additional attention and improvements. On the 

other hand, the first method has its own pitfalls. It is, foremost, sensitivity to changes in 

lighting condition. It also requires a comprehensive calibration which should be automated 

in order to make it an off-the-shelf localisation solution. The standard PC could be easily 

replaced with embedded type PC, for example, with any of newer Raspberry Pi series. 

Nevertheless, both systems showed simplicity in setting up and use. Their low implementation 

cost makes them affordable for use in education and some less demanding real life applications, 

such as service robots.  

In conclusion, camera-based system is better for laboratory conditions due to its high 

accuracy. The other system, although less accurate, is more suitable for a variety of other 

locations. 
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