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Abstract. This paper describes an algorithm for grayscale image compression based on 

non-uniform quantizers designed for discrete input samples. Non-uniform quantization is 

performed in two steps for unit variance, whereas design is done by introducing a discrete 

variance. The best theoretical and experimental results are obtained for those discrete 

values of variance which provide the operating range of quantizer located in the vicinity 

of maximal signal value that can appear on the entrance. The experiment is performed by 

applying proposed quantizers for compression of standard test grayscale images as a 

classic example of discrete input source. The proposed fixed non-uniform quantizers, 

designed for discrete input samples, provide up to 4.93 [dB] higher PSQNR compared to 

the fixed piecewise uniform quantizers designed for discrete input samples. 

Key words: Discrete input samples, grayscale image processing, non-uniform 

quantization, optimal input range. 

1. INTRODUCTION 

The interest in methods of digital image processing comes from two basic ideas. First 

of all, rapidly growing information systems aim at reducing the amount of data required 

for data processing in order to use narrower bandwidth, as well as to save available storage. 

Next, visual interpretation has to be improved since digital images are widely used in a 

number of applications [1]. Generally, all compression algorithms may be classified in two 

groups – „lossless‟ compression algorithms if there is no loss of information, and „lossy‟ 

methods if some information is lost irreversibly [1], [2]. Even though there is a variety of 

compression algorithms for different purposes [3], research areas are still expanding. In 

recent years, schemes which incorporate compressive sensing became very important and 
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some restoration as well as image reconstruction schemes made an impact in the image 

processing field [4]-[5]. Besides schemes developed for software applications, some effort is 

also paid to FPGA based solutions [6]. This paper deals with a type of improved BTC 

(Block Truncation Coding) algorithm that is a kind of a „lossy‟ method, used for compression 

of grayscale images [7]. Although the basic algorithm has been well-known for years, some 

upgrades proposed in recent years have found application in modern systems [8]. Moreover, 

an improved block truncation coding algorithm based on optimized dot diffusion was 

proposed by Guo et. al [9], whereas an effective image retrieval system was presented a year 

later [10]. Also, a data hiding scheme based on BTC algorithm, designed to embed a huge 

amount of watermarks was presented in the paper [11], so it can be concluded that the core 

algorithm can be still improved and implemented in modern systems. Despite the core 

algorithm and its modifications usually can not improve the coding gain comparing to the 

modern state-of-the-art techniques such as jpeg and jpeg2000, the computational complexity 

of those schemes is much lower compared to the aforementioned state-of-the-art solutions, 

which makes it very suitable for image retrieval purposes [10]. 

The difference in designing of fixed uniform quantizers for continual and discrete 

input was observed in papers [12], [13]. Further research in this direction included 

designing of fixed piecewise uniform quantizers described in [14]. This paper is a logical 

continuation of the research. We expect that the gain due to different non-uniform quantizer 

designing for discrete and continual input is higher than the maximal difference of PSQNR 

(Peak Signal-to-Quantization-Noise Ratio) between fixed piecewise uniform (L=16) and 

optimal non-uniform quantizer that is equal to 0.7 [dB] (for continual input signal)[14], 

[15]. The proposed design is fixed, it was tested for a set of standard test grayscale images and 

optimal parameters are found. However, non-uniform quantizer can be designed by using 

Lloyd-Max algorithm which represents a very powerful iterative solution [16]. Moreover, high-

quality performance can be achieved by introducing variance adaptation which would provide 

better quality of reconstructed image [17]. On the other hand, the proposed design is less 

complex and it requires less processing time, as it represents a kind of fixed scalar quantization. 

The paper is organized as follows. In Section 2 basic modelling of discrete input source is 

shown, improved by introducing non-uniform quantization. Section 3 describes an algorithm 

for grayscale image compression that is used for experimental analysis. Finally, the obtained 

theoretical and experimental results as well as the obtained gain in comparison to other models 

are presented in Section 4. 

2. SYSTEM MODEL 

The considered system consists of two stages − the purpose of uniform quantizer Q0 

exploited in the first stage is to convert analog input signal to discrete samples, whereas 

the proposed quantizer Q, designed for discrete input, is exploited in the second stage in 

order to perform additional data compression. 

In the first step, samples with a continual amplitude have to be quantized with a fixed 

uniform quantizer Q0 which is described with N0 output levels, X={x1,x2,…, xN0
}, and the 

maximal amplitude xmax, which depends on the input signal range [14], [17]. Considered 

pixel values of standard grayscale images are described with 8 bits and they can take 

values from 0 to 255, so xN0
 = 255. Furthermore, quantization process in BTC algorithm is 
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based on quantization of distinction between the original and mean pixel value of all 

pixels in a block. Therefore, the number of output levels N0 is equal to 512. On the other 

hand, samples with continuous amplitude can be described only as random variables, since 

the input information is unknown. In probability theory, random variables are described by 

using probability density function (PDF) which provides the relative likelihood for the 

observed random variable to take on a given value. So far, it is shown in literature that 

Laplacian source ensures good matching between a BTC model and reality [1], [7]. 

Consequently, in the rest of the paper we will suppose that the information source is Laplacian 

with a memoryless property and mean value equal to zero. It is defined with: 
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where  represents a standard deviation of the random variable x. 

The second step of quantization process involves quantization of discrete output 

samples from the quantizer Q0 using N quantization levels, where N < N0. Probabilities of 

these discrete input levels for Laplacian distribution are: 
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where i = 0, … , N0 1. 

The main goal of this phase is additional data compression. In the rest of the paper the 

quantizer from the second step is denoted with Q. This paper deals with designing and 

optimization of quantizer Q. So far in literature, the application of both uniform and 

piecewise uniform quantizers was described, and in this paper we propose application of a 

non-uniform quantizer since it provides better quality of reconstructed signal for the equal 

number of quantization levels [1].  

The design of the non-uniform quantizer Q is done as follows. Firstly, we design the 

optimal compandor with N quantization levels for the unit standard deviation (σ = 1). Its 

compressor function maps the range (-, ) to (-1, 1). The compressor function formed in 

this way can be defined with: 
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Decision thresholds obtained in this way can be calculated as [15]: 
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Furthermore, representational levels are determined with [15]: 
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In all previous equations log(x) represents natural logarithm of x. The range of 

quantizer designed in this way is (tN, tN). Since the obtained range is not adjusted to the 

theoretical range of pixel values, denormalization is required.  

Due to the fact that for a low number of quantization levels  tN < xN0
 [15] is always 

valid, denormalization is performed by introducing a discrete variance d̂ . It is obtained 

by multiplying decision thresholds ti and representational levels i with discrete variance 

d̂ that is used for quantizer designing. Finally, decision thresholds and representational 

levels of quantizer Q are determined with: 

 ,0,ˆ Nitx dii    (8) 

 .1,ˆ Niy dii   (9) 

The maximal support xN can be defined in different ways [15], and in this paper we 

have decided to choose a simplest form in order to place the last represent at the half of 

the decision range. However, in the case if xN < xN0
, the overload distortion will exist. On 

the other hand, if xN > xN0
, the range [xN0

, xN] will be unused. As a result, higher granular 

distortion would exist.  

If the system conditions require designing of fixed quantizer with the unused range 

(case xN > xN0
), we propose additional modification by introducing another denormalization 

parameter . Its function is to adapt the range [xN, xN] formed in the previous step, to the 

range [xr, xr], where the desired maximal value of the range is denoted with xr. 

Consequently, we define parameter   with: 

                                                                  Nr xx / . (10) 

Finally, decision thresholds and representational levels of quantizer Q in the case xN > xN0
 

are equal to: 

 ,0,' Nixx ii   (11) 

 .1,' Niyy ii   (12) 

As this is a kind of a „lossy‟ compression method, some information will be lost 

irreversibly during the quantization process. As a standard measure of a reconstructed signal 

quality we estimate distortion (D) which consists of both granular (Dg) and overload (Do) 

distortion that can be calculated with [8], [9]: 



 Design and Implementation of Non-uniform Quantizers for Discrete Input Samples 421 

 ,)()(2
2/

1 1

2
 
 


N

i

k

j
ijiijg

i

xPyxD  (13) 

 .)()(2
1

2
2/0 




s

j
jNj xPyxD  (14) 

In Eq. (13) parameter ki denotes the number or input levels mapped with yi whereas xij  X. 

Moreover, in Eq. (14) xj  X, parameter s denotes the total number of pixel values from the 

theoretical range, which are not placed within the designed range. This parameter can be 

calculated as: 

 .
0 NN xxs   (15) 

Finally, the total distortion is equal to: 

 .ogt DDD   (16) 

3. ALGORITHM FOR IMAGE PROCESSING  

The proposed design of second-stage quantizer Q from Section 2 is tested by 

analyzing its application to the image processing algorithm, defined as follows.  

1. The image is divided into M  non-overlapping blocks of dimensions m  m.  

2. Each block is processed separately by sending data and reconstructing information 

at the receiver side. The algorithm processes pixels from left to right and from top to 

bottom.  

3. The mean value of all pixels in the block (xav) is calculated and then quantized 

( avx̂ ) with a fixed uniform quantizer. In order to minimize the error in the reconstruction 

process, coding process uses values which are available to the decoder.  

4. The difference blocks of m  m pixels are formed. Elements of a block are denoted 

with di,j and obtained as: 

 avjiji xxd ˆ,,  ,    (17) 

where xi, j is original pixel value and i = 1,…, m; j = 1,…, m. Elements of a difference 

block have Laplacian distribution [1], and they can take integer values [xN0
, x N0

].  

5. Elements of difference blocks are quantized by using proposed fixed non-uniform 

quantizers from Section 2. These elements are denoted with jid ,
ˆ , coded with log(N) bits 

and transmitted to the receiver. 

6. In the receiver, pixel reconstruction is done as: 

 avjiji xdx ˆˆˆ ,,  . (18) 

During quantization process there was made distortion of original image in step 5. It can 

be experimentally measured as [9]: 
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The flow chart of this algorithm is shown in Fig. 1. 

 
Fig. 1 Flow chart of the proposed grayscale image compression method 

4. NUMERICAL RESULTS 

To demonstrate the performance of the proposed algorithm for image compression, we 

will show a comparison of theoretical with experimental results obtained for a set of standard 

test grayscale images as well as a comparison with the results available in literature for 

piecewise uniform quantization model [14]. All theoretical calculations and experimental 

results are done for a set of three standard test grayscale images (Lena, Street and Boat). 

We estimate system performance using average bit-rate Rb and PSQNR which 

represent standard measures. Since we discuss fixed non-uniform quantizers, average bit-

rate depends on the number of quantization levels N and the number of bits required for 

transmitting the mean value avx̂ . On the other hand, PSQNR is defined with [13], [14], [17]: 
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For measuring experimental PSQNRex we use Eq.(20), whereas D is defined with 

Eq. (19). However, theoretical results have to include weighting function, since input 

samples do not occur with the same probabilities [14].  The weighting function in linear 

domain for tested images is shown in Fig. 2. 

 
Fig. 2 The weighting function 

In Fig. 2, i represents standard deviation of the difference between pixels and the 

mean value of the block that pixel belongs to.  

Taking previous consideration into account, including weighting averaging for the 

observed test grayscale images and considering that total distortion is defined with Eq.(16), 

theoretical results are denoted with PSQNRwav. This measure is defined with [14]: 
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Table 1 shows obtained experimental results of applying the proposed algorithm for 

grayscale image compression as well as corresponding theoretical results. It can be seen 

that experimental results very well follow changes of theoretical values, whereas relative 

difference between theoretical and experimental values occurs due to non-ideal modelling 

with Laplacian source as well as because of averaging for a set of images [18]. From 

Table 1, it can be clearly seen that the best theoretical and experimental results are 

obtained for those values of discrete variances ( 17ˆ d  for N = 32 and 15ˆ d  for 

N = 64) which ensures input range of quantizer Q as close as possible to the range (152, 

152) [14], [17]. Consequently, this means that parameter xr = 152. 
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Table 1 Comparison of experimental and theoretical results for the proposed model 

N d̂  PSQNRwav[dB] PSQNRex
.
[dB] Nx  Rb [bpp] 

32 

15 46.82 47.57 132 

        5.375 17 46.43 46.94 149 

29 44.59 44.51 255 

64 

15 49.38 51.57 154 

        6.375 24 49.00 50.85 247 

29 48.01 48.50 298 

Moreover, it can be noticed that for the case N = 64 and 29ˆ d , overload distortion 

does not exists since the range  (-298, 298) is wider of the theoretical range (255, 255) 

and the support region is not adapted to the theoretical one. In this case, decision 

thresholds and representational levels could be calculated using Eqs.(10)-(12). However, 

this modification involves additional hardware requirements and processing time as well 

as information about xr for specific systems regarded to the nature of the input signal. In 

Fig. 3 we have shown original test grayscale images of resolution 512512 pixels, while 

in Fig. 4 we have presented corresponding images from Fig. 3, after processing with the 

proposed algorithm for N=32 quantization levels and .15ˆ d  

   
                           (a)                                      (b)                                        (c) 

Fig. 3 Standard test grayscale images: (a) Lena, (b) Boat and (c) Street 

   
                            (a)                                     (b)                                        (c) 

Fig. 4 Standard test grayscale images from Fig. 3, after compression  

with the proposed algorithm (N=32): (a) Lena, (b) Boat and (c) Street 
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In order to compare the obtained results with models available in the literature, we 

perform comparison of both experimental and theoretical results with system performance of 

the model based on fixed piecewise uniform quantizers designed for discrete input, as it 

represents the model with similar complexity. The experimental comparison is measured as 

experimental gain of the proposed method and it represents the difference of PSQNR 

between the proposed and equivalent results from Savic et al. [14], i.e. Gain [dB] = 

PSQNRex
.
[dB] - PSQNReq(N)

inf
 [dB], where equivalent results are provided  for N=32 and 

N=64 quantization levels. In  [14], obtained experimental results as close as to the non-

uniform quantization are achieved for N = 32 and L =16 (PSQNRex(32)
inf

 = 42.64 [dB], 

Rb = 5.375 [bpp]), whereas corresponding theoretical performance is PSQNRth(32)
inf

=42.29 

[dB]. Since the paper [14] did not deal with systems that use N = 64 levels, comparison for 

these results is done considering the rule that PSQNR values increase/decrease for 5.5 [dB] 

by changing the bit-rate for 1 bit [13], [14]. Respecting that bit-rate difference between 

quantizers that are designed for N = 32 and N = 64 quantization levels is 1 [bpp], 

corresponding result for N = 64, which is used for comparison, is PSQNReq(64)
inf

 = 

42.640+1*5.5 = 48.14 [dB]. Comparing the obtained results from Table 1 with corresponding 

results (PSQNRex(32)
inf

 and PSQNReq(64)
inf

) from [14], the obtained experimental gain is shown in 

Table 2 for the same number of quantization levels. 

Table 2 Experimental gain of the prposed model in  

comparission to the piecewise uniform quantization model. 

N d̂  GAIN[DB] 

32 

15 4.93 

17 4.30 

29 1.87 

64 

15 3.43 

24 2.71 

29 0.36 

By observing Table 2, it can be concluded that fixed non-uniform quantizers designed 

for discrete input samples for N = 32 and N = 64 quantization levels gives from 0.35605 

to 4.93 [dB] higher PSQNR compared to the fixed piecewise uniform quantizers designed 

for discrete input samples  

In addition, comparing theoretical results from Table 1 with PSQNRth(32)
inf

, it can be 

concluded that beside experimental gain, the proposed improved theoretical model that 

uses discrete variance predicts gain up to 4.52 [dB] compared to the same similar system, 

confirming experimental results. 

5. CONCLUSION 

In this paper we described a novel method for non-uniform quantizer design for discrete 

input samples and we tested the proposed quantizer for grayscale image coding. Considering 

that quantizers designed for continuous and discrete signals have different nature, we have 

introduced discrete designing variance as an additional and effective parameter in the 
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process of quantizer designing, for discrete input samples. System performance was 

discussed using weighting averaging of PSQNR for a set of three standard test grayscale 

images. The experimental results demonstrate that the performance of the proposed method 

outperforms other similar models - obtained gain of the proposed discrete solution is much 

higher for the most of discussed cases than the maximal difference of PSQNR between 

piecewise uniform (L=16) and optimal non-uniform quantizer that is equal to 0.7 [dB] (for 

continual input signal), which proves the introduction of the proposed quantizer design. 

Furthermore, additional system modification was proposed to adjust quantizer design in the 

special cases. However, this modification requires additional computing time as well as 

information about a set of input images. To generalize this approach, future work will 

include testing of specific images in order to find optimal values of input range support as 

well as implementation for different types of discrete input source. 
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