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Abstract. The possibility of computer modeling implementation of electrically controlled 

magnetoelectric (ME) microwave devices is considered. The computer modeling results of 

different structures of ME microwave devices based on layered ferrite-piezoelectric 

structure formed on the slot line, microstrip line and coplanar waveguide are offered. 

Results are reported as frequency dependencies of insertion losses of ME devices. 
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1. INTRODUCTION 

With the increasing significance of the microwave communication systems, radar and 

navigation in modern society are enhanced requirements for their reliability, mobility, 

power consumption. Telecommunication and mobile satellite radiotelephone systems, 

mobile navigation and radar stations, global and local computer networks are need of an 

electrically controllable and inexpensive devices. This requirement can be achieved by 

replacing complex circuits with active components to tunable microwave devices based 

on thin film materials with nonlinear physical properties such as ferroelectric and ferrites. 

One way to control the parameters of electronic components is based on the change in 

the dielectric constant of components under the influence of an external electric field. 

"Electric" method of control is characterized by high speed and low energy consumption, 

since the restructuring carried out without leakage currents through the control circuit. 

Control property under the influence of the electric field is maintained in some ferroelectrics 

in a wide frequency range - from the lowest to the highest frequencies. This feature is 

widely used in microwave devices for rapid regulation of the amplitude-frequency and 

phase-frequency characteristics. 

The disadvantages of ferroelectric control structures is a relatively narrow range of 

operating frequency regulation and a high level of voltage applied to the electrodes. These 

drawbacks can be overcome by design of new modifications of the transmission lines, as 

well as the use of layered structures containing not only the ferroelectric, but and ferromagnetic 
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films. Using of ferrite-ferroelectric layered structures can manage the performance by electric 

and magnetic field at the same time. In such devices, you can combine the advantages of an 

"electric" and "magnetic" management methods, i.e. the high speed and a wide range of 

operating frequency with the microwave device parameters. 

Analysis of the current state in the field of microwave devices controlled by electric 

and magnetic fields, indicates the existence of scientific and technical issues, including 

radio physical and physical-technological aspects. This issue determines the number of 

academic assignments, such as theoretical studies of electrodynamics characteristics and 

improving the design of microwave transmission lines, experimental investigations of 

wave processes, design and development of the controlled devices. 

Magnetoelectric (ME) materials [1-6], which simultaneously exhibit ferroelectricity 

and ferromagnetism, have recently stimulated a sharply increasing number of research 

activities for their scientific interest and significant technological promise in the novel 

multifunctional devices. The ME effect [7-9] in composite materials is known as a product 

tensor property, which results from the cross interaction between different orderings of the 

two phases in the composite. Neither the piezoelectric nor magnetic phase has the ME effect, 

but composites of these two phases have remarkable ME effect. Thus the ME effect is a 

result of the product of the magnetostrictive effect (magnetic/mechanical effect) in the 

magnetic phase and the piezoelectric effect (mechanical/electrical effect) in the piezoelectric. 

One of the promising directions of development of microwave technology currently is 

the development of ME microwave devices. Application of ME non-reciprocal devices 

eliminates the above drawbacks of ferrite devices. Electric field control allows to implement 

such devices integrally, i.e. reduces the cost of the devices; improves performance; reduces 

power consumption in the control circuit; eliminating the interference arising from the 

magnetic field control [10-11]. 

2. MODELING OF ME MICROWAVE DEVICES 

Magnetoelectric interactions in ferrite-ferroelectric composites have facilitated a new 

class of microwave signal processing devices. Such devices are based on either hybrid 

spin electromagnetic waves or mechanical force mediated magnetoelectric interactions. 

When a ferrite-piezoelectric bilayer is driven to ferromagnetic resonance (FMR) and an 

electric field E is applied across piezoelectric (ferroelectric), the ME effect results in a 

frequency or field shift of FMR. Thus devices based on FMR can be tuned with both electric 

field E and magnetic field H. Several dual tunable ME devices, including resonators, filters, 

attenuators, circulators, isolators and phase shifters have been demonstrated so far. 

Simulation of ME microwave devices by the modern computer program which 

calculate multimode S-parameters and the electromagnetic field in the three-dimensional 

passive structures greatly simplifies the selection of optimal parameters of such devices: 

the parameters of the transmission line (dimensions and relative substrate permittivity, the 

size of the conductors) and the resonator parameters (size, shape, material). 
As the industry turns to monolithic integrated/hybrid nonreciprocal microwave devices, 

planar geometries have to be used. This requires the development of planar elements, compatible 

with strip line and microstrip systems. As high-frequency systems are manufactured using 

Monolithic Microwave Integrated Circuit (MMIC) designs, the size of the ME resonator must be 

compatible with the MMIC chip technology. 
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The difference between the proposed ME non-reciprocal devices and ferrite devices is to 

replace the ferrite magnetic resonator and magnetic control systems to ferrite-piezoelectric 

resonator and a system of electrodes connected to the source of the control voltage. ME 

resonator (Fig. 1) is a layered composite in the form of a disk or plate. As a ferrite phase can 

be different type of spinels (NiFe2O4, CoFe2O4, Ni0.8Zn0.2Fe2O4, Co0.6Zn0.4Mn2O4 and other), 

yttrium iron garnet (YIG thick film or monocrystal); as piezoelectric phase we can use 

polycrystalline material lead zirconate titanate (PZT), or single-crystal materials as Lead 

Magnesium Niobate-Lead Titanate (PMN-PT), lead zinc niobate-lead titanate PZN-PT. 

 

Fig. 1 ME resonator: 1 is piezoelectric component, 2 is ferrite component, 3 is metal electrodes 

The basis for the design of ME microwave devices is a microwave transmission line 

on a dielectric substrate with a ME resonator placed in the transmission line. The operating 

principle of the ME non-reciprocal microwave devices is based on the ME microwave 

effect. The point of this effect is to shift the FMR line under the influence of an electric 

field. ME layered composite operate as a resonator in this case. Electric field control 

allows carrying out the tuning of the device characteristics in the frequency range. This is 

also the ability to control the FMR line using a magnetic field. Dual tunability of the devices 

control parameters open up new possibilities for the design of such devices. 

FMR is a powerful tool for studies of microwave ME interaction in ferrite-piezoelectric 

structures. An efficiency of the magnetoelectric interaction in the ferrite-piezoelectric 

bilayers is characterized by coefficient of magnetoelectric interaction A=δH/δE, where δH is 

variation of the internal magnetic field in the ferrite and δE is variation of the electric field 

applied to the piezoelectric. Magnitude of A depends mainly on magnetostriction constant of 

the ferrite and piezoelectric coefficient of the piezoelectric. An electric field E applied to the 

composite produces a mechanical deformation in piezoelectric that in turn is coupled to the 

ferrite and results in the shift δf in the resonance field. Information on the nature of high 

frequency ME coupling was therefore obtained from data on shift δf vs E. The shift is 

proportional to linear ME coupling coefficient. 

The design of ME microwave device assumes the presence of ME resonator, which is 

placed on the microstrip line or circuit-resonator, slot line or into waveguide using the 

circular polarization area of microwave field. The circular polarization of microwave field 

allows more effectively to use of composite component and allow increase the magnetic 

susceptibility. The working point is selected depending on the purpose of the device. For 

example, in case of attenuator or isolator the device is tuned in the resonance absorption. 

For the phase shifter selects the area near a resonance with the lowest absorption, but 

maximal depth control. 
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Computation, design and manufacturing technology of nonreciprocal microwave 

devices intended for application in receiving-transmitting modules of antenna array have a 

great interest in current time. Currently, a large development has program High Frequency 

System Simulator (HFSS) of company AnSoft, which is intended for the analysis of three-

dimensional microwave structures, including antennas and non-reciprocal devices containing 

ferrites and ferroelectrics. Electromagnetic simulation in HFSS is based on the use of the 

finite element method (Finite Element Method, FEM). 

Microstrip line [12], coplanar line and slot line are used in the microwave range. The 

microstrip lines are used most widely [13-14]. However, at designing the non-reciprocal 

devices using ferrites it requires the microwave field of circular polarization. In microstrip 

line this region is absent and the additional elements are needed, for example in the form 

of stubs to create an area of circular polarization. From this point of view, the slot and 

coplanar line are of interest. The structure of the microwave field in the slot line and 

coplanar waveguide is significantly different from the structure of the wave field in 

microstrip line. Coplanar waveguide (CPW) is a transmission line which consists of a center 

strip, two slots and a semi-infinite ground plane on either side of it [15]. This type of 

waveguide offers several advantages over conventional microstrip line, namely, it facilitates 

easy shunt as well as series mounting of active and passive devices; it eliminates the need for 

wraparound and the holes, and it has a low radiation loss. Another important advantage of 

CPW which has recently emerged is that CPW circuits render themselves to fast and 

inexpensive on-wafer characterization at frequencies as high as 50 GHz. Lastly, since the 

microwave magnetic fields in the CPW are elliptically polarized, nonreciprocal components 

such as ferrite circulators and isolators can be efficiently integrated with the feed network. 

Fig. 2 (a, b, c) shows the computer model of ME devices on a different type of 

transmission line. 

 
Fig. 2 a) Microstrip line 

The transmission line structure in Fig.2a) consisted of microstrip lines of nonresonant 

lengths with two stubs of lengths 1/8 and 3/8 wavelengths on a dielectric substrate with 

ground plane on bottom side. the stubs is required for creating of elliptically polarized 

microwave magnetic field. 
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Fig. 2 b) Slot Line 

The slot line transmission systems [16-17] has been shown to contain elliptically 

polarized H field regions which are required for producing nonreciprocal microwave 

devices. The development of such a device was dependent on being able to determine a 

ME composite - slot line configuration that would yield good interaction between the ME 

resonator and the propagating mode of the slot line with a minimum of concurrent 

insertion loss. The microstrip to slot line transition is used to convert input microwave 

signals from a TEM mode to the required slot line mode. The slot width on the transition 

is designed so as to match into the slot line etched on one of the ME resonator inserts in 

the slot of the device. The pertinent characteristics of this type of transmission system 

such as field configurations, propagation constants, and impedance as functions of 

dielectric material characteristics, dielectric thickness, and slot width were derived. The 

slot line contained an microwave magnetic field configuration which was suitable for 

generating nonreciprocal ME devices. There existed regions within the slot line that 

contained circularly or elliptically polarized microwave magnetic field. 

 

Fig. 2 c) Coplanar waveguide 
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The use of modern simulation software allows the fast design of various types of non-

reciprocal microwave devices. We conducted a simulation of various types of non-

reciprocal magnetoelectric devices based on slot and coplanar lines by using the HFSS. A 

comparison with similar devices based on the microstrip line was made. 

3. RESULTS AND DISCUSSION 

Simulation of the devices is made in the software environment of the HFSS program. 

S-parameters in the frequency range are optimized for investigated device. The amplitude 

characteristics were investigated. Computer simulation results for different designs of ME 

microwave devices realized on the strip transmission lines are shown in the figures. 

Figure 3 shows the frequency dependence of the microstrip line attenuation in the 

forward and reverse directions. 

 

Fig. 3 The microstrip transmission line. Dependence of attenuation vs. frequency. 

The resonators parameters is YIG disk: thickness is 0.1 mm on GGG substrate 

with thickness 0.44 mm and diameter of 3 mm; magnetizing field is 2700 Oe. 

 

Fig. 4 Slot transmission line. The dependence of the attenuation vs. frequency. resonator 

dimensions is 10 mm×1 mm×0.2 mm; slot line width is 0.62 mm, widening the gap 

to 1.2 mm; the relative permittivity of the substrate is 30, the substrate thickness is 

2 mm; magnetizing field is 2514 Oe. 
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Figure 4 shows the frequency dependence of the slot transmission line attenuation in 

the forward and reverse directions. 

Figure 5 shows the frequency dependence of the coplanar transmission line attenuation 

in the forward and reverse directions. 

 

Fig. 5 The coplanar transmission line. Dependence of attenuation vs. frequency. 

Resonator dimensions is 0.6×4×0.1 mm
3
; slot width is 0.4 mm; The center 

conductor width is 0.6 mm; ε of substrate is 40; substrate thickness is 1 mm; 

magnetizing field is 3125 Oe. 

Figure 6 shows the experimental frequency dependence of the coplanar transmission 

line attenuation in the forward and reverse directions. The experimental investigation of the 

ME microwave properties of the bilayer structures were based on the measurements of the 

resonators frequency responses for different values of external dc voltage and bias magnetic 

fields. Namely, reflection spectra S11 ( f ) = 10 log|Pref ( f ) / Pin( f )|, where Pin( f ) is an incident 

power, Pref( f ) is a reflected power, and f is the excitation frequency, were measured. The 

frequency responses were carried out with Agilent Network Analyzer. 

 

Fig. 6 For comparison. Coplanar waveguide, the experimental frequency dependence  

of attenuation. magnetizing field is 2780 Oe. 
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Computation, design and manufacturing technology of nonreciprocal microwave 

devices have a great interest in current time. The main directions for further research based 

on the use of modern computer design programs. The use of modern simulation software 

allows the fast design of various types of non-reciprocal microwave devices. 

That simulation allows to get the selection of substrate parameters and the shape of 

ME resonator. The ME resonator based on layered structure of YIG and PZT was used. 

To decrease the control voltage and the increase the valve ratio it is necessary to reduce the 

thickness of the piezoelectric, and hence the thickness of the ferrite. The use of computer 

simulation for ME structures in the non-reciprocal microwave devices opens promising 

opportunities for the creation of the new devices. 

3. CONCLUSION 

Magnetoelectric layered structures are ideal for studies on wideband magnetoelectric 

interactions between the magnetic and electric subsystems that are mediated by mechanical 

forces. Such structures show a variety of magnetoelectric phenomena including microwave ME 

effects. The phenomenon can be used for creating electrical tuning the microwave ME 

resonators and devices on their basis. 

The possibility of ME microwave devices realization on the strip transmission lines 

controlled by both electric and magnetic fields are shown. The results of computer 

simulation of various ME microwave devices designs with resonators based on ME layered 

structures placed into the transmission line are given. The simulated results are compared 

with the experimental results. 

Acknowledgement: The paper is a part of the research done within the project of Russian Science 

Foundation 16-12-10158. 

REFERENCES 

 [1] R. Heindl, H. Srikanth, S. Witanachchi, P. Mukherjee, T. Weller, A.S. Tatarenko and G. Srinivasan, 

"Structure, magnetism, and tunable microwave properties of pulsed laser deposition grown barium 

ferrite/barium strontium titanate bilayer films", J. Appl. Phys., vol. 101, p.09M503, 2007. 

 [2] G. Srinivasan, A.S. Tatarenko, Y. K. Fetisov, V. Gheevarughese, and M.I. Bichurin, "Microwave 

Magneto-Electric Interactions in Multiferroics", In Proc. of the Mater. Res. Soc. Symp, 2007, vol. 966, p.0966-

T14-01 

 [3] D. Seguin, M. Sunder, L. Krishna, A. Tatarenko, P.D. Moran, "Growth and characterization of epitaxial 

Fe0.8Ga0.2/0.69PMN-0.31PT heterostructures", Journal of Crystal Growth, vol. 311, no. 12, p.p.3235-

3238, 2009. 
 [4] G. Srinivasan, I.V. Zavislyak, A.S. Tatarenko, "Millimeter-wave magnetoelectric effects in bilayers of 

barium hexaferrite and lead zirconate titanate", Appl. Phys. Lett., vol. 89, p.152508, 2006. 

 [5] C.-W. Nan, M. I. Bichurin, S.X. Dong, D. Viehland, and G. Srinivasan, "Multiferroic magnetoelectric 

composites: Historical perspective, status, and future directions", J. Appl. Phys., vol. 103, p.031101, 

2008. 

 [6] A.S. Tatarenko, A.B. Ustinov, G. Srinivasan, V.M. Petrov, and M.I. Bichurin, "Microwave magnetoelectric 

effects in bilayers of piezoelectrics and ferrites with cubic magnetocrystalline anisotropy", J. Appl. Phys. vol. 

108, p.063923, 2010. 

http://www.sciencedirect.com/science/journal/00220248
http://www.sciencedirect.com/science?_ob=PublicationURL&_hubEid=1-s2.0-S0022024809X0014X&_cid=271622&_pubType=JL&view=c&_auth=y&_acct=C000228598&_version=1&_urlVersion=0&_userid=10&md5=8b251a8f35a97f64a9c7006684ddd5fe


 Modeling of Magnetoelectric Microwave Devices 293 

 [7] M.I. Bichurin, I.A. Kornev, V.M. Petrov, A.S. Tatarenko, Yu.V. Kiliba, G. Srinivasan, "Theory of 

magnetoelectric effects at microwave frequencies in a piezoelectric/magnetostrictive multilayer composite", 

Phys. Rev. B., vol. 64, p.094409, 2001. 

 [8] M.I. Bichurin, I.A. Kornev, V.M. Petrov, Yu.V. Kiliba, A.S. Tatarenko, N.A. Konstantinov, G. 

Srinivasan, "Resonance Magnetoelectric Effect in Multilayer Composites", Ferroelectrics, vol. 280, 

p.187-198, 2002. 

 [9] S. Shastry, G. Srinivasan, M.I. Bichurin, V.M. Petrov, A.S. Tatarenko, "Microwave magnetoelectric 

effects in single crystal bilayers of yttrium iron garnet and lead magnesium niobate – lead titanate", 

Phys. Rev. B., vol. 70, p.064416, 2004. 

 [10] A.S. Tatarenko and M.I. Bichurin, "Microwave Magnetoelectric Devices", Advances in Condensed 

Matter Physics, vol. 2012, p.10.  

 [11] A.S. Tatarenko, G. Srinivasan, M.I. Bichurin, "Magnetoelectric microwave phase shifter", Appl. Phys. 

Lett., vol. 88, p.183507, 2006. 

 [12] M. Perić, S. Ilić, S. Aleksić, N. Raičević, M. Bichurin, A. Tatarenko, R. Petrov,  "Covered microstrip line 

with ground planes of finite width", FACTA UNIVERSITATIS Series: Electronics and Energetics, vol. 27, no. 4, 

pp. 589 – 600, december 2014.  

 [13] M.I. Bichurin, V.M. Petrov, R.V. Petrov, G.N. Kapralov, F.I. Bukashev, A.Yu. Smirnov, A.S. Tatarenko 

"Magnetoelectric Microwave Devices", Ferroelectrics, vol. 280, pp.213-220, 2002. 

 [14] M.I. Bichurin, A.S. Tatarenko, D.V. Lavrenteva, S.R. Aleksić, "Magnetoelectric microwave devices", IN Proc. of 

the 11th International Conference on Applied Electromagnetics - ΠEC'2013, Niš, Serbia, September 01 – 04, 

2013, pp.77-78 

 [15] C.P. Wen, "Coplanar Waveguide: A Surface Strip Transmission Line Suitable for Nonreciprocal Gyromagnetic 

Device Applications," IEEE Transactions on Microwave Theory and Techniques, vol. MTT-17, no. 12, pp. 

1087-1090, December 1969. 

 [16] S. B. Cohn, "Slot Line - An Alternative Transmission Medium for Integrated Circuits", In Digest of the 1968 

IEEE G-MTT International Microwave Symposium, pp 104-109. 

 [17] Mariani, Heinzman, Agrios and Cohn, "Slot Line Characteristics", IEEE Transactions Microwave Theory and 

Techniques, vol. MTT-17, December 1969, pp 1091-1096. 


