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Abstract. We present a study of exact analytic solutions for electric and magnetic fields 

in continuously graded flat lenses designed utilizing transformation optics. The lenses 

typically consist of a number of layers of graded index dielectrics in both the radial and 

longitudinal directions, where the central layer in the longitudinal direction primarily 

contributes to a bulk of the phase transformation, while other layers act as matching 

layers and reduce the reflections at the interfaces of the middle layer. Such lenses can 

be modeled as compact composites with continuous permittivity (and if needed) 

permeability functions which asymptotically approach unity at the boundaries of the 

composite cylinder. We illustrate the proposed procedures by obtaining the exact 

analytic solutions for the electric and magnetic fields for one simple special class of 

composite designs with radially graded parameters. To this purpose we utilize the 

equivalence between the Helmholtz equation of our graded flat lens and the quantum-

mechanical radial Schrödinger equation with Coulomb potential, furnishing the results 

in the form of Kummer confluent hypergeometric functions. Our approach allows for a 

better physical insight into the operation of our transformation optics-based graded 

lenses and opens a path toward novel designs and approaches. 

Key words: Flat lenses, Graded permittivity and permeability models, Transformation 
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1. INTRODUCTION 

Flat lenses designs based on Transformation Optics (TO) and using left-handed 

(negative refractive index) metamaterials have been discussed in a number of recent 

publications ([1], [2]). Basically, using the electromagnetic design, one is able to design a 

lens with the full functionality of a conventional lens, but compressed in space and 

possibly having additional functionalities. It is possible to do this in a wide range of 

operating frequencies, including microwave, terahertz and optical. However, the 

metamaterial composites proposed for such designs may be difficult to manufacture, 
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especially when the required values of relative magnetic permeability and relative 

dielectric permittivity are less than unity, as argued in [3]. In order to avoid problems 

with fabrication of metamaterials with suitable values of magnetic permeabilities, it is 

possible to set the value of      and to vary    only to create the desired refractive 

index of   √    , but at the cost of decreasing the efficiency ofthe composite lenses 

[4]. In [4] a plano-concave lens has been designed with metamaterials to obtain a gain 

above 13 dB in the frequency band between 10 and 12 GHz. Such a lens has a narrow 

bandwidth typical for a majority of designs using metamaterials. The conventional flat 

lens designs, using Ray Optics (RO) approach, avoid the abovementioned difficulties 

with TO designs, but they do not have the same flexibility to control the phase and 

amplitude of the fields within the lens structure. An approach to remedy the drawbacks of 

both TO and RO designs is the Field Manipulation (FM) method, described in [3]. 

The studies of the flat-lenses design approaches mentioned above, however, generally 

require a direct numerical approach in solving the field equations. In the present paper, 

we use an alternative approach and investigate the possibilities to identify and study some 

special designs that allow for the exact solutions of the field equations analogous to those 

obtained in studying various planar and cylindrical metamaterial structures [5] - [11]. The 

main motive for pursuing analytical solutions of the problems involving flat lenses is that 

the detailed knowledge of analytical structure of the field solutions may provide 

additional insights leading to improved or even entirely new designs. We apply our 

approach to a specific case of a gradient-index (GRIN) flat lens. 

2. PROBLEM FORMULATION AND FIELD EQUATIONS 

The Graded Index (GRIN) approach to the design of a flat lens is based on the 

concept of field transformation, similar to that proposed by Luneburg for the design of 

spherical lenses [12]. Similarly to Luneburg's approach, a desired field distribution in the 

output port (the exit aperture) is specified and the medium parameters of the intervening 

medium are determined such that the given field distribution in the input port (input 

aperture) is transformed to the desired field distribution in the exit plane. In many 

practical cases, this can be performed by tracing rays through a designed inhomogeneous 

medium. The design parameters of the lens include center frequency, focal length, 

thickness, and gain. The physical size (diameter D) of the lens will depend on the gain 

and the radial model function (e.g. radial dependence of the permittivity). One typical 

design layout is shown in Fig. 1. The design goal is to maximize the performance of the 

lens, and for that purpose we want to realize the desired phases on the face B of the lens 

while simultaneously maximizing the transmission coefficient over a broad frequency 

band. The problem is typically solved using a multi-layer structure, with the desired 

phase at the center frequency and a transmission coefficient as close to one as possible 

over abroad frequency band for each of the ten rings shown in Fig. 1.  

In Fig. 1 the following symbols are used: 

t – thickness of the lens 

F – focal length of the lens 

i – phase of the plane wave incident from the left on the face A 

A, B – the notation for the two faces (A and B) of the lens    
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Fig. 1 Flat GRIN lens. Left: Cross section (side view) of the lens  

showing layers; right: top view of the lens 

The middle layer perform a majority of the phase transformation, while the other 

layers act as matching layers to maximize the transmission of the waves incident from 

either side (graded antireflection structure). In the present approach we model the discrete 

structure shown in Fig. 1 by a cylindrical composite structure with the electric permittivity 

and permeability being continuous spatial functions 

     ( )     (   ),     ( )     (   ) (1) 

where (     ) is the set of cylindrical coordinates and the structure is centered around 

the z-axis. We consider a case of TE-wave propagation through the structure, so that the 

electric and magnetic field are 

    (   )  ,     (   )     (   )   (2) 

Here we note that the choice of TE-waves is by no means a restriction, and writing an 

analogous procedure for TM-waves is straightforward. In the case of TE-waves as 

described by (2), Maxwell equations for the scalar field components become 
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Substituting equations (3) into (4), we obtain Helmholtz equation for the electric field 
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where          . The equation (5), or (6), is quite general. After choosing suitable model 

functions  (   )    ( )  ( )and  (   )    ( )  ( ), if we can determine the analytic 

solution for the electric field    (   ), then using (3) we can readily obtain the magnetic 

field components      (   ) and      (   )  as well. The challenge is therefore to 

find suitable model functions  (   )    ( )  ( ) and  (   )    ( )  ( ) that provide 
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a reasonable resemblance of actual design structures like the one described in Table 1 and Fig. 

2 of [3]. 

3. ANALYTICS OF A SIMPLE MODEL OF COMPOSITE DESIGNS 

At this stage, we need to restrict the form of the functions (1) to allow for a suitable 

analytical solution. Let us here consider a simple model where 

  (   )   ( )      ( )     (  ( )       )  ,     (   )    (7) 

In (7) we require that at large distances (   ) the composite permittivity  ( ) becomes 

unity, which describes the gradual transition to the free space outside the structure. This is 

simultaneously the condition for the antireflective behavior of the lens surface and thus the 

maximum input electromagnetic flux. Utilizing (7) and separating variables using the ansatz 

(   )     (   )   ( ) ( ), the equation (6) gives rise to two ordinary differential 

equations for the two functions,  ( ) and  ( ), as follows 
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As indicated in (8), the solutions for  ( ) are simple plane waves propagating in the 

z-direction, and we only need to solve equation (9). Introducing ( )  √   ( ), the 

equation (9) becomes 
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Let us now introduce two constants    
       

  ,        , whereby the equation (10) 

becomes the well-known radial Schrödinger equation 
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where we notice the following analogy between the parameters of the electromagnetic 

equation (11) and the parameters of the usual quantum-mechanical radial Schrödinger 

equation  
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Since we require that   ( )     when      , the simplest model that we can adopt is the 

Coulomb potential  

  ( )  
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where α is a constant that must be chosen to provide the best fit to the presented graded 

model. Such a choice of    ( )  introduces an unphysical singularity of the permittivity 

function for    , but with a proper choice of boundary conditions it can provide a 

sufficiently accurate model of the realistic graded permittivity structures. Substituting   

  ( ) from (13) into (11) we obtain 
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The equation (14) has an exact analytical solution  
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where  (     )      ( ) and  (     )   ( )  are Whittaker functions that can be 

expanded in terms ofKummer confluent hypergeometric functions F1 and U. Based on the 

asymptotic behavior of the Whittaker functions for    and    , and the physical 

requirements on the behavior of the electric field functions  (   ), we see that we must 

choose C2 = 0, such that for       , we have 

  ( )   √   ( )    √   ( 
     

   
         ) (16) 

and for waves propagating in the positive z-direction, we can write 

  (   )   
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It is here convenient to express the result (17) in terms of Kummer confluent 

hypergeometric functions, in order to further clarify the mathematical properties of the 

electric field intensity function. Thus, we finally obtain    

  (   )        
  (           )  (
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The result (18) for the electric field intensity function  (   ) refers to the φ-

component of the electric field due to the assumed TE-wave as defined in (2). It should 

however be noted that the assumption of the TE-wave is by no means limiting the 

generality of the results obtained in the present paper. The case of the TM-wave is fully 

analogous to the case of the TE-wave, and the only difference is that the result (18) is 

then valid for the magnetic field intensity function  (   ) which refers to the φ-

component of the magnetic field. The electric field components      (   ) and 

     (   ) are then readily obtained using the TM-wave analogues of the equations 

(3). The choice of the TE-wave in the present paper was made for illustration purposes. 

Following the approach in [3], the relative permittivities are here assumed to be real 

functions and no dielectric losses are taken into account. It should however be noted that 

there is nothing in the present theory that limits the values of the relative permittivities to 

be real. It is fully feasible to use the present model with complex relative permittivities as 

well. This will be the subject of our future studies. 

4. STUDY OF A SPECIFIC NUMERICAL CASE  

Let us now turn to the specific case of a GRIN lens studied in [3], where we have a 

structure with radially graded permittivities for the middle layer, as listed in Table 1. 

Table 1 Radially graded permittivities of the middle layer of a GRIN lens. 

Layer 1 2 3 4 5 6 7 8 9 10 
 ̅ (  ) 1.5875 4.7625 7.9375 11.1125 14.2875 17.4625 20.6375 23.8125 26.9875 30.1625 
 ( ̅) 25.5 24.5 22.3 18.5 14.55 10.5 7.65 5.5 3.5 1.65 
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Using the model function (7) with (13), we obtain the fitting graph as shown in Fig. 2, 

where we have chosen the parameter α to be equal to 0.36. 

 

Fig. 2 Fitting of GRIN lens relative permittivity data  

using Coulomb function with           . 

The cross section of the solution (18) for a constant z is shown in Fig. 3. 

 

Fig. 3 Cross section of the electric field function E(r, z) for given constant z (z = 0),  

with C1 = 1, f = 30 GHz, k = 2π f/c and kz = 0.8 k. 
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Finally, a three dimensional plot of the solution (18) is shown in Fig. 4.  

 

Fig. 4 Electric field function E(r, z). 

From Fig. 4 we readily see how the wave is radially focused while moving along the z-

direction, as expected. The size of the wave amplitudes is not normalized with respect to 

any starting position, and does not reflect any specific initial electric field strength. Even 

though the Coulomb function is far from the optimum fit for the GRIN lens data, the 

obtained results can be used to describe simply and sufficiently accurately the chosen lens.  

It should be noted here that our choice of the model function (Coulomb function) has 

been made based on the well known analytical solutions for that function. There is a 

number of other functions that also allow the exact analytic solutions of the problem at 

hand, in particular if the model is extended to allow the graded permeability of the lens 

layers. The studies of other models involving such more accurate model functions will be 

the subject of our coming papers.  
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5. CONCLUSIONS 

The possibility to find exact analytic solutions for the electric and magnetic fields in 

continuously graded flat lenses has been studied. The flat lenses are modeled as compact 

composites with continuous permittivity and permeability functions which asymptotically 

approach unity at the boundaries of the composite cylinder. In order to illustrate the 

present approach, we obtain an exact analytic solution for the electric field intensity for 

an FM composite lens with constant magnetic permeability  (   z)     and radially 

dependent dielectric permittivity. In our coming research efforts, we see the need to look 

for the possible models with exact analytical (or at least perturbational and/or WKB) 

solutions for graded profiles of some more complex flat-lens designs studied in literature. 
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