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Abstract. Being a part of civil engineering, limit state analysis represents a structural 

analysis with a goal of developing efficient methods to directly estimate collapse load 

for a particular structural model. As a theoretical foundation, limit state analysis uses 

a set of bound (limit) theorems. Limit theorems are based on the law of conservation of 

energy and are used for a direct definition of the limit state function for failure by 

plastic collapse or by inadaptation. This study proposes an artificial neural network 

(ANN) model in order to approximate the residual bending moment, limit and the 

incremental failure force of continuous beams. The neural network structure applied 

here is a radial-Gaussian network architecture (RGIN) and complementary training 

procedure. This structure is intended to be used for civil engineering purposes and it is 

demonstrated on the example of the two-span continuous beam loaded in the middle of 

the span that the limit and the incremental failure force can be obtained using neural 

network approach with sufficient precision and is especially suitable in analysis when 

some of the model parameters are variable. 
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1. INTRODUCTION  

Artificial intelligence can be considered as a field of computer science often defined 

as “science and engineering of making intelligent machines, especially intelligent 

computer programs” [1]. After the 50 years of advancement, technology of artificial 

intelligence is applied in numerous fields: expert systems, knowledge based systems, 
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medical diagnosis, remote sensing, intelligent database system, civil engineering and natural 

language processing. Through years of extensive advancement, delimiting artificial 

intelligence to a narrower field of research has proven to be capable of offering many 

significant capabilities and applications [2]. As an example, expert systems are marked as 

“The Technology of Knowledge Management and Decision Making for the 21st Century” 

[2]. A broad applicability of artificial intelligence has influenced their usage in the field of 

civil engineering. It is not an unusual situation for civil engineering researchers to encounter 

problems influenced by many uncertainties. To resolve some of these problems, civil 

engineering researchers relay not only on mathematics and mechanics calculations, but also 

on their experience and practice. However, knowledge and experience do not guarantee that 

the problem will be solved using traditional procedures. This is the situation where artificial 

intelligence expresses its supremacy by solving complex problems to the levels of experts 

by means of imitating experts. This is one of the main reasons why artificial intelligence 

has a broad application prospects in the practice of civil engineering [3].  

In the practice of civil engineering, the broadest interest was shown to artificial neural 

networks (ANN) [4 - 8], mainly due to their ability to process external data and information 

based on past experiences. Artificial neural networks represent models of real world problems. 

ANNs are capable of mapping a set of given patterns to an associated set of a priori known 

values. They can be observed as non-linear operators that transform input patterns into another 

set of numerical data at its output. Output values are usually gathered through repeated 

observations of a particular phenomenon. The ANN is trained with the input data patterns to 

perform the transformation and to become the numerical model of the observed phenomenon.  

ANNs have the ability to learn from examples and to adapt to changing situation. Also, 

they are capable of bidirectional mappings, e.g. mapping from cause to effect for estimation 

and prediction and mapping from effect to possible cause [4, 9]. Neural networks can be 

thought of as models which try to imitate some of the learning activities of the human brain, 

although they are much simpler. While doing so, the internal structure of the neural operator 

ANN remains unaltered for a variety of problems. This facilitates the usage of ANN within 

different applications, including civil engineering applications, because it becomes enough 

for an application to have and suitably interpret ANN input-output data pairs in order to 

become able to use the ANN as the numerical model of the particular phenomenon. 

Limit state analysis of structures is an analytic procedure which determines the 

maximum load parameter of load increment parameter, which can be sustained by an 

elasto-plastic structure. If the structure is exposed to the action of gradually increasing 

load, at some point it can surpass a certain critical value, which causes the plastic failure 

of the structure, after which the structure is not capable of receiving any further increase 

of load. This critical state is called the limit state of structure, and the load that causes it is 

called the limit load. Determination of the bearing capacity of a structure is very valuable, 

not only as a simple control of beam bearing capacity, but also as a significant basis and 

factor in designing of structures. 

The beginning of the limit state analysis is related to Kazincy [10], who calculated failure 

load of the beam fixed at both ends, and confirmed the results through experiments. Even 

though the static theorem was first proposed by Kist [11], as an intuitive axiom, it is 

considered that the basic theorem of limit state analysis was first announced by Gvozdev 

[12]. The limit state analysis theorems were independently developed by Hill for the stiff 

perfectly plastic material [13], as well as Drucker, Prager and Greenberg [14], for elastic 
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perfectly plastic material. In the meantime, a formal proof of these theorems for beams and 

frames was derived by Horne [15], as well as Greenberg and Prager [16]. Application of 

limit theorems in designing of civil engineering structures was later applied by many authors 

among the following are prominent: Symonds and Neal [17]; Hodge [18]; Baker and 

Heyman [19]; Zyczkowski [20]; Save [21]. 

The loading on a structure may vary considerably during its lifetime. For example, 

apart from dead-loading, a building frame will experience snow loads on the roof and 

wind loads on each face. The magnitudes of these loads at any particular instant cannot be 

foreseen, although their characteristic values will be known, so that the sequence of 

loading is unpredictable. This type of loading is termed variable repeated loading [22]. 

Generally, the designer’s knowledge of the future loadings to which a particular 

structure will be exposed is usually as follows: 

 Types of loads such as live load, wind load, water pressure, snow weight, dead 

weight, etc. are clearly determined; 

 Limits of variations of load intensities of particular load types are also known as 

supplied by the design codes or they follow from some technological or service 

conditions; 

 Actual future history of the loads, however, is not given explicitly as it is impossible to 

predict it. 

If a structure is deformed elastically, then in the presence of variable loads its strength is 

determined by the fatigue properties of the material; fracture occurs after a large number of 

cycles. But if the body experiences elastic-plastic deformation, a load less than limiting can 

cause the attainment of a critical state with a comparatively small number of cycles [23]. 

The fact that the collapse loads calculated according to limit state analysis may fail to 

provide a proper measure of structural safety in the case of variable repeated loads, was 

pointed out for the first time by Grüning and Bleich in 1932. In 1936 Melan presented a 

general static shakedown theorem and later extended it to the general case of a continuum 

[24]. It was Koiter, who formulated a general kinematical shakedown theorem [25].  

In the recent years, the shakedown analysis of elasto-plastic structures has been 

increasingly applied in the analysis of engineering problems due to the increased demands 

of modern technologies. It is thus successfully applied for many engineering problems, 

such as designing of nuclear reactors, railways, in civil engineering designing and safety 

assessment of some building structures.  

The aim of this paper is to propose an ANN model aimed to be used for civil engineering 

purposes in order to approximate the residual bending moment, limit and the incremental 

failure force of continuous beams. The neural network structure used for these purposes is 

radial-Gaussian network architecture (RGIN). The rest of the paper will be organized as 

follows. In section 2 we will present an overview of ANN implementations in civil engineering 

along with basic postulates of limit and shakedown analysis. Section 3 will present an analysis 

of the bearing capacity of continuous beams depending on the load character and degree of 

static indeterminacy. Section 4 will describe the neural network approach used in this research 

along with detailed description of a neural network structure used for the approximation of the 

residual bending moment, limit and the incremental failure force of continuous beams. In 

section 5, we will present an analysis of ANN generated results. The conclusion is presented in 

section 6 with an outlook of future work and improvement of the research presented in this 

paper.  
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2. RELATED WORK 

2.1. Artificial neural networks in civil engineering  

It seems almost impossible to review all applications of the ANN in civil engineering. A 

vast amount of research papers presenting results in this science field was published since 

eighties of the twentieth century. Therefore, we will present a selected part of research 

results with due respect for all other research results not mentioned in this section. One of 

the earliest applications of ANN in mechanics was proposed by Ghaboussi, Garrett and Wu 

[26]. They have used ANN to investigate direct representation of constitutive behavior of 

concrete. Recently, Arangio and Beck have developed a strategy for the estimation of the 

integrity of a long-suspension bridge while being influenced by ambient vibrations [27]. 

Cachim demonstrated the usage of artificial neural networks for calculation of temperatures 

in timber under fire loading [28]. In this research, a multilayer feed forward network has 

been used to determine the temperature in the timber as the only output parameter of the 

neural network. Liu et al. have shown the possibility of using back propagation neural 

networks (BPNN) as models for predicting the compressive strength of concrete [29]. 

Evolutionary fuzzy hybrid neural network (EFHNN) was used to enhance the effectiveness 

of assessing subcontractor performance in the construction industry. This possible usage of 

EFHNN was demonstrated by Cheng et al., with purpose of to achieving optimal mapping of 

input factors and subcontractor performance output [30]. 

Wang et al. have shown a promising perspective of back-propagation neural network 

usage in cost estimate of construction engineering [31]. The model they presented is based 

on back-propagation ANN trained to perform estimations on the basis of the large number of 

past estimation materials. Their test results suggest that the developed model based on ANN 

successfully extract the relation between the project’s features and the estimation of 

fabrication cost. Gui et al. [32] presented a survey of structural optimization applications in 

civil engineering. Their aim was to combine different design and development techniques 

(ANN, expert systems, genetic algorithms) for the bridge project so that the structural design 

of the system can be optimized. Parhi and Dash have presented an analysis of the dynamic 

behavior of a beam structure. The analysis was performed upon a beam containing multiple 

transverse cracks [33]. For these purposes, neural network controller was used. Authors have 

calculated three natural frequencies and compared results of experimental, theoretical and 

finite element analysis. The results of the analysis were used to train feed-forward multi-

layered neural network controller. After the training process was performed, this controller 

was capable of predicting crack locations and depths and the results of its predictions were 

validated against an experimental set-up. Alacali, Akba, and Doran have presented an 

investigation of a confinement degree for confined concrete using neural network analysis 

[34]. They have established the neural network algorithm to validate the empirical equations 

proposed for the confinement coefficient. 

Rahman et al. presented the estimation of local scour depth around bridge piers [35]. 

The estimation was performed using the multi-layer perceptron ANN, ordinary kriging 

(OK), and inverse distance weighting (IDW) models. They have evaluated results from 

the sixth test case. The results indicate that the ANN model predicts local scour depth 

more accurately than the kriging and inverse distance weighting models. In [36], authors 

present Artificial Neural Network based Heat Convection (ANN-HC) algorithm. They 

have used an Earth-to-Air Heat Exchanger (ETAHE) component with aim to establish a 
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new thermal modeling method for cooling components. The case study they presented 

shows working principles of the algorithm they proposed and tested upon ETAHE and its 

environment. Narasimhan presented a direct adaptive control scheme for the active 

control of the nonlinear highway bridge benchmark [37]. As a model, author used 

nonlinearly parameterized neural network. Described ANN contains single hidden layer 

and is coupled with a proportional-derivative type controller to perform approximation of 

control force. In this particular case, ANN approximates nonlinear control law and it is 

not used to model the nonlinearities of the overall system. 

Lee, Lin and Lu performed an assessment of highway slope failure using neural network 

[38]. For these purposes, they have used back-propagation neural networks and 

demonstrated the effectiveness of ANN in the evaluation of slope failure potential based on 

five major factors, such as the slope gradient angle, the slope height, the cumulative 

precipitation, daily rainfall, and strength of materials. Laflamme and Connor used self-tuning 

Gaussian networks for control of civil structures equipped with magnetorheological dampers 

[39]. The neural network used for these purposes is an adaptive neural network composed of 

Gaussian radial functions. Their evaluation results indicate that the neural network is 

effective for controlling a structure equipped with a magnetorheological damper. 

Bilgil and Altun emphasize the importance of prediction of the friction coefficient in 

hydraulic engineering [40]. Therefore, they propose a method to estimate friction coefficient 

through means of ANN. Data used for ANN training was obtained experimentally and 

estimates friction factor in a smooth open channel. Results demonstrate ANN model shows 

higher efficiency compared to Manning approach in the given environment. 

As stated in [41], the civil engineering research community is still in demand for the 

next generation of applied ANNs that have to be based on sophisticated genetic coding 

mechanisms in order to develop the required higher-order network structures and utilize 

development mechanisms observed in nature. 

2.2. Basic postulates of limit and shakedown analysis 

In the area of elastic behavior of beams, the stresses and strains are proportionally 

dependant. Due to the increase of load, there is a gradual build-up of stress, until the value of 

the stress in the most loaded fiber reaches the value of yield stress. The further increase of 

load causes plastification of the entire cross section, and thus formation of plastic hinge [22]. 

It is known, that in statically determinate structures, the complete plastification of one 

cross-section of a beam and transition of the structure into the failure mechanism means 

loss of load bearing capacity. In statically indeterminate structures, formation of one plastic 

hinge does not lead to formation of failure mechanism, and the bearing capacity of one n 

times statically indeterminate structures is fully exhausted when in the structure an n+1 

plastic hinge is formed. 

If the structure is unloaded prior to formation of failure mechanism, certain residual 

strain occurs, which causes occurrence of residual bending moments. By applying the 

limit state analysis it is not possible to include the residual bending moments in the 

calculations. This is possible by applying the shakedown analysis. In the shakedown 

analysis all the assumptions of the limit state analysis are also valid, whereby this method 

makes possible the analysis of the behavior of the structure exposed to repeated load. 
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Fig. 1 Relation moment–curve in shakedown theory 

The shakedown theorem can be established for a material having the more general 

moment-curvature relationship of Fig. 1. The basic curve (OAB) is assumed to be the 

same whichever way the bending moment is applied, so that first yield occurs at a moment 

My in either sense, and the full plastic moment has value Mp, again in either sense. The 

linear elastic range thus extends for a total 2My. The assumption is made that this range of 

2My is not affected by any partially plastic deformation that might occur. Thus if a moment 

corresponding to the value at point B in Fig. 1 is applied to the cross-section, followed by 

unloading, then the behaviour will be linear for a total decrease of moment 2My [19]. 

If a structure, made of an elasto-plastic material, is exposed to variable loads, then, the 

following situations are possible [42]: 

 If the load intensities remain sufficiently low, the structural response is perfectly elastic; 

 If the load intensities become sufficiently high, the instantaneous load-carrying 

capacity of the structure becomes exhausted; plastic, unconstrained flow 

mechanism develops and the structures collapse; 

 If the plastic strain increments in each load cycle are of the same sign then, after a 

sufficient number of cycles, the total strains (and therefore displacements) become so 

large that the structure departs from its original form and becomes unserviceable. For 

sufficiently high load amplitude (although below the load-carrying capacity) the 

deflection grows in each cycle. This phenomenon is called incremental collapse; 

 If the strain increments change sign in every cycle, they tend to cancel each other 

out and the total deformation remains small (alternating plasticity). In this case, 

however, after a sufficient number of cycles, material at the most stressed points 

begins to break due to low-cycle fatigue; 

 It may also occur that, after some plastic deformation in the initial load cycles, the 

structural behavior becomes eventually elastic, for lower load amplitudes. Such 

stabilization of plastic deformations is called shakedown or adaptation. 

2.3. Theorems of limit state analysis 

The basic theorems of limit state analysis consist of: 

 static theorem or the theorem of the lower border of limit load and, 

 kinematic theorem or the theorem of the upper border of limit load. 
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Static theorem is based on the static equilibrium of the observed system. A large 

number of distributions of bending moments meeting the equilibrium conditions as a 

result of the given external load can be assumed for one statically indeterminate system. 

Greenberg and Prager [16] named such distribution statically admissible. If the bending 

moment has not exceeded the appropriate value it is claimed that it is also safe. 

The static theorem can be expressed in the following way: if there exists any distribution 

of bending moment throughout structure which is simultaneously safe and statically 

admissible under the load P, then the value  must be less or equal to the factor of failure 

load C, (C > ). The actual limit load (CP  Pp) can be equal or higher than the given one. 

The kinematic theorem relates to the possible failure mechanism. The failure mechanism 

comprises a kinematically unstable system which a beam becomes after the plastic hinges are 

formed in the cross sections where there are conditions for this [16]. The factor of failure 

load C, i.e. the limit load (CP), is determined the equalizing the work of external forces 

with the work absorbed in plastic hinges for each assumed failure mechanism. 

The kinematic theorem can be expressed in the following way: for the given static 

system, subjected to the set of loads P, the value of  which corresponds to any assumed 

failure mechanism must be higher or equal to the factor of failure load C, that is, C≥. 

2.4. Theorems of shakedown analysis 

As well as in the limit state analysis, in the shakedown analysis there are static and 

kinematic theorems, on whose basis it is possible to determine the safe limit load 

depending on the type of variable repeated load. 

The static shakedown or Melan's theorem is as follows: shakedown occurs if it is 

possible to find a field of fictitious residual stress ij , independent of time, such that for 

any variations of loads within the prescribed limits the sum of this field with the stress 

field 
*

ij in a perfectly elastic body is safe (sufficient condition). Shakedown cannot occur 

if there does not exist any time-independent field of residual stresses ij such that the sum 
*

ijij    is admissible (necessary condition) [43]. 

The kinematic shakedown or Koiter's theorem is as follows: shakedown does not 

occur if it is possible to find an admissible cycle of plastic strain rates and some 

programme of load variations between prescribed limits for which 
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p
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p

ijA 000)(    is the rate of work of the plastic strain on the admissible rates [43]. 

3. ANALYSIS OF THE BEARING CAPACITY OF CONTINUOUS BEAMS DEPENDING  

ON THE LOAD CHARACTER AND DEGREE OF STATIC INDETERMINACY 

Applying the adequate method based on upper and lower limit and shakedown analysis 

[44], and depending on the character of the load, an analysis of the limit load of continuous 

beam displayed on the Fig. 2 was conducted. The span of the beams affects the distribution of 

internal forces, and therefore on the relevant condition of failure, that is, the value of the failure 
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force. On the example of the continuous beam, a procedure of the failure force calculation has 

been previously conducted and presented in [44], depending on the change of beam span, 

which is defined by the coefficients α and β, as well as depending on moment of plasticity Mp. 

 

Fig. 2 Continuous two–span beam loaded by concentrated forces in the middle of the span 

The limit force of failure in one-parameter form, the incremental failure force and 

residual bending moment depending on the change of span length are shown in Fig. 3 and 

Fig. 4 respectively. 

 
a 

 

 
b 

Fig. 3 a) Change of the limit failure force depending on α and β  

b) Change of incremental failure force depending on α and β 



 A Neural Network Approach for the Analysis of Limit Bearing Capacity of Continuous Beams 123 

 

 

Fig. 4 Change of residual bending moment depending on α and β 

4. THE NEURAL NETWORK APPROACH 

The most obvious reason why ANN models are gaining popularity is their ability to 

adapt to changing situation and to learn from a predefined set of examples. These 

characteristics facilitate the development of a model of the observed phenomenon is situations 

where there is limited theory describing the cause-effect relationship between the beam 

configuration and its performances (such as failure force, the incremental failure forces and the 

residual bending moment). Also, neural networks are capable of performing fast processing 

which makes them particularly relevant to frame performance analysis because this type of 

analysis tends to be highly computationally intensive. 

In cases where a neural network will be applied to perform an analysis of a particular 

phenomenon, an issue that needs special attention is the determination of the neural network 

architecture and training method. There are other alternative approaches to choose from, 

such as ones described in [45 - 47]. For the analysis presented in this paper, we have adopted 

RGIN architecture  and complementary training procedure [47]. RGIN architecture was 

chosen mainly because of its performance characteristics. RGIN system is capable of 

produce very precise models of a function [45, 46]. It circumvents the issue of how many 

hidden nodes to incorporate in a network and provide the possibility to perform a rapid 

training process including the usage of large training sets (containing thousands of training 

data sets [48]). Finally, if the training set is validated (e.g. there is a confirmation that the 

training set does not contain ambiguous data), then there is a guarantee RGIN system will 

converge on a solution during training process. 

Radial-Gaussian networks represent a specialized form of the radial basis function 

(RBF) networks [49]. As illustrated in Figure 5, RGINs comprise three layers of neurons 

connected in a feed-forward manner. These networks perform mapping from a vector of 

inputs to a vector of outputs. Vector of inputs represents the observed phenomenon, e.g. 

the problem that should be solved, while a vector of outputs represents the solution of the 

problem provided by the neural network. In this study, the input vector would represent 

the frame configuration, while the output vector would be an estimate of the performance 

of the frame, such as its the limit failure force, the incremental failure forces and the 

residual bending moment. 
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The data is passed through RGIN network in single direction - forward only. As the 

data flows through the network forward, simple processing is applied upon it. Processing 

is applied both within the neurons and along the links connecting the neurons. The 

equation 2 summarizes the way of functioning of this type of network: 
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where the value of the ith element of the input vector is represented by Ii; oi,j represents an 

offset on the connection between the ith input neuron to the jth hidden neuron; αi is a 

normalizing term at the ith input neuron; ak,j is an amplitude term connecting the jth 

hidden neuron and kth output neuron; sj is a spread term coupled with the jth hidden 

neuron; and Ok is the output value from the kth neuron in the output layer. 

 

Fig. 5 RGIN neural network 

The process of training a RGIN network is used to configure a suitable set of values 

for network parameters so that the ANN may perform the required function. A more 

detailed description of RGIN networks and their method of training are provided in [50]. 

The training scheme used for RGINs training process is supervised. The network is 

provided with a data set of training sample problems and corresponding answers. This 

data set represents a mapping between input and output vectors. The network is expected 

to learn from these correspondences to within a predefined error tolerance. Once the 

training process is finished, the performance of the network should be tested against a 

data set comprising problem samples not used within the training process. Error is 

calculated by determining the sum of the absolute difference between the actual output 

given by ANN and the expected output, calculated over all training data examples. 
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While training a RGIN, hidden neurons are added (one at a time) to a middle layer in 

network. The ANN can be thought of as implementing an overall function and every 

hidden neuron adds a radial-Gaussian function to it. A correction term is generated by 

each radial-Gaussian function belonging to each of the hidden neurons in the middle layer. 

As training process progresses, each of the three radial-Gaussian function parameters, oj,i, ak,j, 

and sj, are adjusted. 

5. DISCUSSION OF THE RESULTS 

As previously stated, ANN used for the research presented in this paper a RGIN and 

complementary training procedure [47] was adopted. The input layer consists of 4 

neurons representing the structure of the two-span continuous beam loaded in the middle 

of the span that the residual bending moment, limit and the incremental failure force are 

obtained using the developed ANN. In particular, these 4 neurons represent the following 

beam configuration parameters: L, α, β and Mp. The input layer transmits information 

from the outside into the hidden layer and the process continues up to reach the output 

layer. The structure of the hidden layer is a result of the training process, as described in 

[47]. In our approach, it consists of 8 neurons. The output layer consists of 3 neurons 

representing the limit failure force, the incremental failure force and the residual bending 

moment. For the training and validation purposes, two sets with the same number of 

samples were generated (training set and validation set), each containing 233 samples. 

Both sets were populated with data calculated according to postulates of limit and 

shakedown analysis. As input values, in both sets parameter L is an integer ranging from 1 

to 10, parameter α is a floating-point number ranging from 1 to 10, parameter β is a 

floating-point number ranging from 1 to 10 and parameter Mp is a floating-point value 

ranging from 1.5 to 75. After the training process, ANN outputs were compared to the 

validation set (expected output calculated according to postulates of limit and shakedown 

analysis) and the results of the validation process for the incremental failure force, the 

residual bending moment and the limit failure force are displayed on Figs. 6, 7 and 8, 

respectively. On each figure, curves that describe the change of expected (theoretical) 

values are shown in blue while the output generated by ANN is shown in red. 

Fig. 6 visualizes a comparison between the expected (theoretical) values compared to 

the values obtained using the ANN in the case of incremental failure force. As shown in 

Fig. 6, developed ANN shows a high level of precision of the output results. For a 

majority of the samples that were subjected to validation (in particular, 68% of validation 

samples), the mean absolute percentage error was less than 8%. The largest discrepancy 

in the results was detected in the case of a training samples subset in which value of the 

input parameter α has a steep growth. In these cases, the precision of ANN is expected to 

be achieved by increasing the number of training samples within this subset of training 

samples which will be used for the additional ANN training. 
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Fig. 6 Comparison of theoretical and RGIN generated results – incremental failure force 

 

Fig. 7 Comparison of theoretical and RGIN generated results – residual bending moment 



 A Neural Network Approach for the Analysis of Limit Bearing Capacity of Continuous Beams 127 

 

In the case of residual bending moment values validation, the obtained results are 

shown in Figure 7. As shown in Fig. 7, in this case ANN outputs the highest percentage of 

discrepancy with the theoretical results. To adjust the network to be fully able to 

determine the residual bending moment, the training set should be expanded along with an 

increase of the number of training epochs. Despite the increased results discrepancy, for 

59% of the validation samples the mean absolute percentage error was less than 15%, 

which indicates a real opportunity to improve network quality through proposed changes. 

Figure 8 visualizes a comparison between the expected (theoretical) values compared 

to the values obtained using the ANN in the case of limit failure force. As shown in Fig. 

8, developed ANN shows a high level of precision of the output results. For a majority of 

the samples that were subjected to validation (in particular, 68% of validation samples), 

the mean absolute percentage error was less than 10%. The largest discrepancy in the 

results was detected in the case of a training samples subset in which value of the input 

parameter α has a steep growth. In these cases, the precision of ANN is expected to be 

achieved by adding additional training samples to ANN training sample set in order to 

cover better critical parts of the input space. . 

 

Fig. 8 Comparison of theoretical and RGIN generated results – limit failure force 
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6. CONCLUSION 

Modern technologies applied in civil engineering are in constant demand for new 

solutions during the analysis of different problems. One of the widely accepted 

approaches used in civil engineering is the ANN approach because of its ability to adapt 

to changing situation and to learn from example. Since the shakedown analysis of elasto-

plastic structures has been increasingly applied in the analysis of engineering problems, 

the potential usage of ANN approach in these analyses should be devoted significant 

attention. 

In this paper, we have proposed an ANNmodel in order to approximate the residual 

bending moment, limit and the incremental failure force of continuous beams. ANN model 

we have developed, trained and evaluated was designed as radial-Gaussian network 

architecture. Our analysis of the developed ANN model, on the example of the two-span 

continuous beam loaded in the middle of the span, indicates that the residual bending 

moment, limit and the incremental failure force can be obtained using the proposed neural 

network approach with sufficient precision. The proposed ANN model was trained with 233 

training samples calculated on the basis of theorems of limit and shakedown analysis. The 

testing process resulted with a mean absolute percentage error less than 15% which indicates 

that ANN used during the test is a feasible tool for an approximation of the residual bending 

moment, limit and the incremental failure force of continuous beams. 

The presented ANN model still exposes some weaknesses that could be eliminated 

with additional effort. In case of the approximation of residual bending moment, the 

accuracy of the ANN model output can be improved by introducing additional training 

samples in the critical zones that expose the highest mean absolute percentage error. The 

training set modification performed in this manner would positively affect all ANN 

aspects which will lead towards other ANN outputs becoming even more precise. Also, as 

a part of the future research and development, ANN structure will be modified in terms of 

increasing the number of neurons in the hidden layer. We expect this change to decrease 

mean absolute percentage errors across the whole validation set. Another possibility which 

will be considered in future is splitting existing ANN into three ANNs, one for each of the 

estimated forces (residual bending moment, limit and the incremental failure force). It is our 

aim to use different ANN structures for different forces to achieve better results. 
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