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Abstract. Modern Very Large Scale Integration (VLSI) designs require a tradeoff 

between cost efficiency and performance (circuit speed). Furthermore, the Design 

Space Exploration (DSE) of the cost-performance tradeoffs for the multi objective VLSI 

designs should also be fast and efficient in nature. This paper presents a novel 

accelerated DSE approach for the exploration of cost-performance tradeoffs of 

modular multi (trio parametric. viz. cost, execution time and power consumption) 

objective VLSI hardware accelerators using hierarchical criterion analysis. The 

selection of the final design point is made after the tradeoffs are explored using the 

proposed approach.  Results of the proposed approach when applied to various 

benchmarks yielded significant acceleration in the exploration process compared to 

current existing approaches with multi parametric objective. 
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1. INTRODUCTION  

The design space exploration process generally takes into account two conflicting 

situations such as a) accurately searching the optimal design point from the huge design 

space b) time taken (or number of architectures analyzed) to evaluate the architecture 

design space in order to select the optimal design point. The second situation is more 

significant for modern multi-objective heterogeneous VLSI systems because exhaustive 

exploration of the architecture space is prohibitive due to the massive size of the design 

space. The architecture exploration process is therefore a battle between the optimal 

architecture determination and the speed of the exploration process. Furthermore, since 

present generation VLSI systems are multi-objective in nature, they demand efficient 

exploration approaches that can satisfy the multi-objective requisite by concurrently 

reducing the time spent in the architecture evaluation as well as maximizing the 

opportunity of automating the exploration methodology [1]-[7]. 
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2. RELATED WORKS 

Exploration has been a subject of research for almost two decades. Many approaches 

have been proposed in the recent past for fast and efficient evaluation of the design 

architecture space. The evaluation of the architecture design space has been performed by 

implementing an Architecture Configuration Graph (ACG) based on the hierarchical 

criterion factor [8], [9]. After the creation of the ACG, the Pareto optimal analysis is 

performed to find the optimal architecture. Although the approach seems promising, the 

major drawback of this approach is the excessive time taken for the framework to build 

the architecture design space in order to analyze the variants. On the other hand, authors 

in [10] use an evolutionary algorithm, such as Genetic Algorithm (GA), for efficiently 

searching the optimal solution. They propose a new encoding scheme to improve the 

efficiency of GA search for design space exploration. Using chromosome representation, 

the precedence relationships among the tasks in the input behavioral specification are 

encoded with a topological order-based representation to specify schedule priorities. 

Authors in [11] also use GA based on binary encoding of chromosome for efficient 

design space exploration. Additionally, authors in [12], [13] have developed a model that 

can assist designers at the system-level DSE stage to explore the utilization of the 

reconfigurable resources and evaluate the relative impact of certain design choices. All 

the above mentioned approaches mostly consider dual objective DSE (such as area and 

delay), but the proposed approach considers multi objective problems (such as cost, delay 

and power consumption).In addition to the above, a problem space genetic algorithm for 

design space exploration of data paths have been proposed in [14]. The authors have used 

the concept of heuristic/problem pair to convert a data flow graph into a valid schedule. 

The chromosome is encoded based on the „work remaining‟ value of each node. One of 

the problems with approach [14] is that the second special parent chromosome‟s built in 

correspondence with the minimum functional units (i.e. serial implementation) does not 

differ in the work remaining field of the first special chromosome. This may not always 

lead to the optimal solution. Furthermore, the cost function considers only latency and 

not total execution time. Authors in [15] describe an approach to solve the DSE problem 

which is based on GA and weighted sum particle swarm optimization (WSPSO). The 

authors use crossover between parent and local-best-solution, then parent and global-

best-solution to implement particle swarm optimization (PSO) behavior. The authors do 

not consider velocity to update the position. Moreover in WSPSO, the authors also do not 

consider user constraints for area and execution time in cost function. In [16], authors 

describe another approach for DSE in high level systems based on binary encoding of the 

chromosomes. However, they consider only traditional latency and not execution time 

constraint for data pipelining. Authors in [17] suggest that identification of a few superior 

design points from the Pareto set is enough for an excellent design process. The work 

shown in [18] discusses the optimization of area, delay and power in behavioral synthesis 

but does not consider execution time during data pipelining. The problem of design space 

exploration is also addressed in [19] by suggesting order of efficiency, which assists in 

deciding preferences amongst the different Pareto optimal points. Authors in [20] 

introduce a tool called SystemCoDesigner that offers rapid design space exploration with 

rapid prototyping of behavioral systemC models. In [21] evolutionary algorithms such as 

the Genetic Algorithm (GA) have been suggested to yield better results for the design 

space exploration process. An automated tool was developed by integrating behavioral 
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synthesis into their design flow, while authors in [22] describe current state-of-the-art 

high-level synthesis techniques for dynamically reconfigurable systems.  Additionally, 

authors in [23]-[25] also use a genetic algorithm for scheduling and resource allocation 

for data path synthesis. Another class of scheduling methods employed previously was 

probabilistic in nature. For example the simulated annealing (SA) and simulated 

evolution (SE) based scheduling techniques have been used for the high level synthesis 

problem. Authors in [26], [27] have proposed a simulated annealing scheduling method 

called „SALSA‟, which uses many probabilistic search operators to enhance the 

performance of the SA-based technique for high level synthesis problems. In addition, 

authors have also proposed an extended binding model for handling the scheduling 

problem in high level synthesis. Simulated evolution has been proposed by authors in 

[28] to solve the combined problem of scheduling and resource allocation in high level 

synthesis. Unfortunately, approaches [23]-[28] do not consider execution time, chaining 

and data pipelining. Authors in [20],[29] proposed alternate approaches based on integer 

linear programming (ILP).Although they are capable of providing good results, the 

computational complexity is massive and therefore require and extensive amount of time. 

Furthermore, the concept of data pipelining based on execution time was not shown 

during system trade-off. Work shown in [30] for DSE suggests an evolutionary algorithm 

for successful evaluation of the design for an application specific SoC. Other well known 

tools for HLS exist, such as GAUT [31]. GAUT inputs a C/C++ behaviour description for 

automatically generating a RTL structure based on compulsory constraint of throughput 

(or initiation interval) and clock period. In addition, authors in [32] propose an open-

source HLS tool called LegUp for FPGA-based processor/accelerator systems. LegUp is 

able to synthesize C language to hardware, thereby providing a nice platform for HLS. 

Different FPGA architectures are supported by this tool, which allows new scheduling 

algorithms and parallel accelerators. Moreover, ROCCC, proposed in [33], is an open-

source HLS tool for generating RTL structure from C. It was designed for kernels that 

perform computation intensive tasks, such as most DSP applications. Therefore, ROCCC 

applies to a specific class of applications (streaming-oriented applications) and is not a 

general C-to-hardware compiler, unlike LegUp [32]. 

3. THE PROPOSED FRAMEWORK BEHIND DESIGN SPACE EXPLORATION 

3.1 The proposed framework for cost model  

The model for the cost of the resources is proposed in this section and is an extension 

of the authors‟ previous work [3]-[5] on the area model.  

Let the area of the resources be given as „A‟. Ri denotes the resources available for 

system designing; where 1<=i<=n. „Rclk‟ refers to the clock oscillator used as a resource 

providing the necessary clock frequency to the system. The total area can be represented 

as the sum of all the resources used for designing the system, such as adder, multiplier, 

divider etc, and clock frequency oscillator. Total area is shown in Equation (1).  

 
( )A A Ri  (1) 

 
)()...( 2211 RclkAKNKNKNA RnRnRRRR 
 (2) 
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Where „NRi’ represents the number of resource „Ri‟,and „KRi‟ represent the area occupied 

per unit resource „Ri‟. Let the total cost of all resources in the system be „CR‟. Further, 

cost per area unit of the resource (such as adders, multipliers etc) is given as „CRi‟ and the 

cost per area unit of the clock oscillator is „CRclk‟. Therefore total cost of the resources is 

given as: 

 1 1 2 2( .. ) ( )R R R R R Rn Rn Ri RclkC N K N K N K C A Rclk C           (3) 

Applying partial derivative to Equation (3) NR1 ….NRn, NRM,and ARclkyields Equations 

(4) to (7) respectively as shown below: 
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According to the theory of approximation by differentials, the change in the total area can 

be approximated by the following equation: 
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Substituting Equations (4) to (6) into Equation (7) yields Equation (8): 

 

Equation (8) represents the change in total cost of resources with a change in the number 

of all resources and the clock period (clock frequency).  

The PF for cost of resources is defined as follows: 
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Equations (9) and (10) indicate the average deviation of cost with respect to change in 

resource R1,….Rn. Note: This average deviation of cost helps in finding the dominance 

The change of cost 
contributed by resource Rn 

The change of cost 
contributed by resource clock 
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effect of corresponding resource types on cost. Further, Equation (11) indicates the 

change of cost of the system with respect to change in resource „Rclk‟ (i.e. the dominance 

effect of Rclk). 

3.2 The framework used for execution time 

This section introduces a new mathematical PF model for clock oscillator resource, 

thus extending the authors‟ previous work [3]-[5] on PF model of functional resources. 

The Priority factor of the resources R1, …Rn (such as adders, multipliers etc) for the 

execution time is derived from [3]-[5].From [3]-[5], the priority factor for the resources 

R1,...Rn for execution time, is defined as: 

 

max( ) ( )Rn Rn
p

Rn

N T
PF Rn T

N

 
 

 (12) 

The PF model for the clock oscillator is defined as: 
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In Equation (13), ‘TRclk
Max

’ and ‘TRclk
Min

’are the maximum and minimum values of 

„execution time‟ and all the available resources have the maximum value. The PF defined 

in Equations (12) and (13) indicates the average change in execution time with a change 

in number of a particular resource. This average deviation of execution time depends on 

various resources to find the dominance effect of corresponding resource types on 

execution time. 

3.3 The framework used for power consumption 

PF for power consumption is defined as: 
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Similarly as explained above, the priority factors for power consumption defined in 

Equations (14), (15) and (16) indicate the average change in the total power consumption 

of the system with the change in number of resources at maximum clock frequency. 

Therefore, as discussed before, Equations (14),(15),(16) indicate the dominance effect of 

resource types Rn, RM and Rclk on power metric. 
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4. PROPOSED DEMONSTRATION 

4.1 System specifications 

The case study of a selected benchmark has been provided for demonstration of the 

proposed method based on multiple real system specifications (as shown in Table 1). The 

function of the selected second order digital IIR Chebyshev filter benchmark is given in 

(17). 

 ( ) 0.041 ( ) 0.082 ( 1) 0.041 ( 2) 0.6743 ( 2) 1.4418 ( 1)y n x n x n x n y n y n          (17) 

x(n), x(n-1) and x(n-2) are the input vector variables for the function. The previous 

outputs are given by y (n-1) and y(n-2), while the present output is y(n). 

Table 1 System specifications and constraints 

1) Maximum cost of resources: 1588 area units 

2) Maximum time of execution: 200µs (for D =1000 sets of data) 

3) Power consumption: Minimum  

4) Maximum resources available for the system design: 

a) 3 Adder/subtractor units. 

b) 3 Multiplier units 

c) 3 clock frequency oscillators: : 24 MHz, 100 MHz and 400 MHz 

5) No. of clock cycles needed for multiplier and adder/subtractor to finish each operation: 4 cc 

and 2cc 

6) Area occupied by each adder/subtractor and multiplier: 12 area units (a.u), and 65a.u on the 

chip (e.g. 12 CLBs on FPGA for adder/subtractor) 

7) Area occupied by the 24 MHz, 100 MHz and 400 MHz clock oscillator: 6 a.u., 10 a.u. and 14 a.u. 

8) Power consumed at 24MHz, 100MHz and 400 MHz: 10mW/a.u., 32 mW/a.u. and 100mW/a.u. 

respectively. 

9) Cost per area unit resource (CRi) = 10 units and Cost per area unit clock oscillator = 8 units 

4.2 Arrangement of the design space (consisting of resources) in increasing 

orders of magnitude in the form of Architecture tree for cost model 

This paper proposes the use of a hierarchical tree topology for arrangement of design 

points in sorted orders and exploration of the optimal design point. Unlike the authors‟ 

previous works [3]-[5] using vector design space, this approach uses a more convenient 

topology for exploration. The tree structure is easy to construct and does not require a 

special algorithm to order the design space in increasing/decreasing order. The PF of the 

different resources for cost model is given in equations below: 
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Based on the PF calculated for cost model, the architecture tree for cost can be 

constructed. The tree is constructed in such a way, so that the resource with the highest 

PF is assigned level (l1) in the tree, followed by level (L2) being assigned to the 

resources with next highest PF and finally the last level being assigned to the resource 

with the lowest PF. The resource with the highest PF influences the cost of the system the 

most compared to the resource with the least PF. After the assigning the levels, the 

architecture tree comprising of the design space is automatically arranged in increasing 

orders of magnitude for the cost model. The architecture tree for the cost model is shown 

in Fig. 1. After the design space is sorted in increasing order of magnitude, searching is 

applied on the design space. A mixed searching approach is proposed in this work by 

extracting the advantages of two different well known searching algorithms viz. 

interpolation search and binary search. Previous works [3]-[5] employed a mono binary 

searching procedure. However, as highlighted in Fig. 1, a mixed searching approach is 

proposed to further enhance the speed of the exploration process. Interpolation search is 

used with the cost model in order to search for the border variant for cost, while for the 

execution time model binary search is used to find the border variant. The interpolation 

search performs faster than binary search in cases of uniformly sorted models, such as 

design space for cost (cost is an increasingly linear function of the number of resources, 

i.e. cost of the system increases with increase in number of resources). On the other hand, 

binary search exploits the „divide and conquer‟ approach. Hence, it works faster on non-

uniformly linear sorted models, such as execution time (execution time being a non-

uniformly decreasing linear function of the number of resources i.e. increase in number of 

resources does not always decrease execution time, but remains same). Therefore 

applying interpolation search on the sorted design space for cost, shown in Fig.1 yields 

the border variant in just 2 comparisons (cost is calculated according to eqn.(3)). The 

border variant for cost is the last variant in the design space (in Fig.1) which satisfies the 

constraint for cost specified. The border variant obtained for cost is „V11‟. 

 

Fig. 1 Architecture tree representing the design space for cost arranged in increasing order  
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4.3 Arrangement of the design space in decreasing orders of magnitude  

in the form of Architecture tree for execution time model 

The PF of the different resources used in system design for execution time model is 

given below equations: 
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Similarly, as described in section II.B, the architecture tree for execution time is 

constructed based on the PF calculated for execution time. Thus, the architecture tree 

obtained after construction is now also automatically arranged (sorted) in decreasing 

orders of magnitude. After arrangement, binary searching is applied in order to find the 

border variant for execution time (execution time is calculated according to the model of 

execution time shown in [4]). The border variant for execution time is the first variant in 

the design space, which satisfies the constraint for cost specified. The border variant 

obtained is variant „V5‟. After the border variants for both cost and execution time are 

found, the Pareto optimal set is derived as explained in [3]-[5]. The architecture tree for 

power consumption is constructed similarly in increasing orders of magnitude for power 

consumption. Among the variants of the Pareto set, the one which appears first in the 

ascending ordered sorted design space (in the tree), is the one with the minimum power 

consumption. It concurrently satisfies the constraints for cost, execution time and power 

consumption (specified in Table1) for the design problem. Therefore the optimal variant 

obtained, which satisfies all the specified constraints, is Variant „V5‟ (marked bold red in 

Fig.1).  

5. ANALYSIS AND RESULTS 

The results of the proposed approach using PF and mixed searching scheme for rapid 

exploration of cost performance tradeoffs are verified for a number of benchmarks. 

Compared to the authors‟ previous works [3]-[5], the proposed approach is capable of 

further enhancing the speedup of the exploration process. 

The search of the border architecture in the case of execution time (using binary 

search) requires only log2 
n

i=1
vRi where „n‟ = number of type of resources and „vRi‟ is the 

number of variants of resource „Ri‟. The search of the border architecture (using interpolation 

search) for cost parameter requires log2 log2 log2 
n

i=1
vRi. In the design space exploration 

approach presented here, three objective parameters have been used; execution time and 

cost are the parametric constraints and power consumption is the optimization parameter. 

The total number of architecture evaluations performed during searching using the 

proposed method is given as: 



 Rapid Exploration of Cost-Performance Tradeoffs Using Dominance Effect during Design.... 325 

log2 log2 
n

i=1
vRi

 

+  log2 
n

i=1
vRi

 
When applied on various benchmarks, the proposed approach indicated massive 

acceleration in the speedup compared to the exhaustive approach. The proposed method 

was also compared with a current approach in [8], [9]. The acceleration obtained, 

compared to the [8], [9], for both small and large size benchmarks is shown in Tables2 

and 3 respectively. 

Moreover, the proposed approach has also been compared with a heuristic approach 

(WSPSO) [15]. As evident from Tables 4 and 5, the proposed approach performs lower 

architecture evaluations than [15] for both small and large benchmarks respectively. For 

example, in case of MPEG MMV (shown in Table 5) the proposed approach performs 

only 14 evaluations, while [15] perform 53 evaluations to search a final solution. 

Table 2 Experimental results of comparison between proposed DSE approach  

with the current approach [8], [9] for small benchmarks 

Benchmarks 

[2],[34],[35] 

Total 
possible 

architecture 

in the design 
space for 

one 

parameter 

Architecture evaluation using 
proposed approach 

(Number of variants analyzed) 

Architecture 
evaluation using 

approach [8],[9] 

(Number of 
variants analyzed) 

Percentage 
speed up using 

proposed 

approach 
compared to 

[8],[9] 

Average 
speedup 

using 

proposed 
approach 

compared 

to [8],[9] 

Cost Execution 
time 

Total 

IIR Chebyshev Filter 27 4 6 10 18 44.44 % 

41. 85 % 

Mesa Horner   36 5 6 11 19 42.10 % 

Elliptic Wave Filter  78 5 7 12 19 36.84 % 

Differential Equation 

Solver (HAL)  
90 5 7 12 19 47.82 % 

BPF   100 5 8 13 21 38.09 % 

Table 3 Experimental results of comparison between proposed DSE approach  

with the current approach [8], [9] for large benchmarks 

Benchmarks 

[2],[34],[35] 

Total 
possible 

architecture 

in the design 
space for 

two 

parameters 

Architecture evaluation using 
proposed approach 

(Number of variants analyzed) 

Architecture 
evaluation 

using approach 

[8],[9] 
(Number of 

variants 

analyzed) 

Percentage 
speed up 

using 

proposed 
approach 

compared to 

[8],[9] 

Average 
speedup 

using 

proposed 
approach 

compared 

to [8],[9] 

Cost Execution 
time 

Total 

Auto Regressive Filter 144 5 8 13 21 38.09 % 

37.56 % 
MPEG MMV 200 5 9 14 23 39.13 % 

Matrix multiplication 400 6 10 16 25 36 % 

JPEG_IDCT 900 6 11 17 27 37.03 % 
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Table 4 Experimental results of comparison between proposed DSE approach  

and the current approach [15] for small benchmarks 

Benchmarks 

[2],[34],[35] 

Total possible 

architecture 
in the design 

space for one 

parameter 

Architecture evaluation using 

proposed approach 
(Number of variants analyzed) 

Architecture 

evaluation 
using approach 

[15] 

(Number of 
variants 

analyzed) 

Percentage 

speed up using 
proposed 

approach 

compared to 
[15] 

Average 

speedup 
using 

proposed 

approach 
compared 

to [15] 

Cost Execution 

time 

Total 

IIR Chebyshev Filter 27 4 6 10 17 41% 

48.7% 

Mesa Horner   36 5 6 11 21 47% 

Elliptic Wave Filter  78 5 7 12 31 61% 

Differential Equation 

Solver (HAL)  
90 5 7 12 32 62.5% 

BPF   100 5 8 13 35 62% 

Table 5 Experimental results of comparison between proposed DSE approach  

and the current approach [15] for large benchmarks 

Benchmarks 

[2][34][35] 

Total possible 

architecture 
in the design 

space for two 

parameters 

Architecture evaluation using 

proposed approach 
(Number of variants 

analyzed) 

Architecture 

evaluation 
using approach 

[15] 

(Number of 
variants 

analyzed) 

Percentage 

speed up using 
proposed 

approach 

compared to 
[15] 

Average 

speedup 
using 

proposed 

approach 
compared 

to [15] 

Cost Execution 

time 

Total 

Auto Regressive Filter  144 5 8 13 52 75% 

75% 
MPEG MMV 200 5 9 14 53 73.5% 

Matrix multiplication 400 6 10 16 65 75.3% 

JPEG_IDCT 900 6 11 17 72 76.3% 

6. CONCLUSIONS 

This paper presented a novel framework for rapid exploration of the cost-performance 

tradeoffs for modular multi-objective hardware accelerators. Once the design space for 

the cost-performance is explored, the final design point with minimum power consumption 

is searched from the obtained small Pareto optimal set. The proposed DSE approach for 

different benchmarks yielded superior results in terms of acceleration obtained compared 

to the current existing approaches. 
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