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NOISES IN RANDOMLY SAMPLED SPARSE SIGNALS 

 

Ljubiša Stanković 

University of Montenegro, Podgorica, Montenegro 

Abstract. Sparse signals can be recovered from a reduced set of randomly positioned 

samples by using compressive sensing algorithms. Two main reconstruction directions 

are in the sparse transformation domain analysis of signals and the gradient based 

algorithms. In the transformation domain analysis, that will be considered here, the 

estimation of nonzero signal coefficients is based on the signal transform calculated 

using available samples only. The missing samples manifest themselves as a noise. This 

kind of noise is analyzed in the case of random sampling, when the sampling instants do 

not coincide with the sampling theorem instants. Analysis of the external noise influence 

to the results, with randomly sampled sparse signals, is done as well. Theory is illustrated 

and checked on statistical examples.  
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1. INTRODUCTION 

A signal can be transformed from one domain into another in various ways. Some 

signals that cover whole considered interval in one domain (dense in that domain) could 

be located within much smaller regions in another domain. We say that signals are sparse 

in a transformation domain if the number of nonzero coefficients is much fewer that the 

total number of signal samples. For example, a sum of discrete-time complex sinusoidal 

signals, with a number of components being much lower than the number of signal samples 

in the time domain, is a sparse signal in the discrete Fourier transform (DFT) domain. 

Sparse signals could be reconstructed from much fewer samples than the sampling theorem 

requires. Compressive sensing is a field dealing with the problem of signal recovery from a 

reduced set of samples [1]-[21]. This research area intensively develops in the last decade. 

It provides solutions that differ from the classical signal theory approach. Two main 

directions in the signal recovery are present. One is based on the signal transform analysis 

(orthogonal matching pursuit methods) and the other is based on the gradient methods. 

The samples could be missing due to a desire to represent a signal with the lowest possible 

number of samples or due their physical or measurement unavailability. In applications it 

could happen that some arbitrarily positioned samples of the signal are so heavily corrupted 

by disturbances that it is better to omit them and consider as unavailable in the analysis. 
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This is especially true for the impulsive noise [4], [23]. As a study case, in this paper we 

will consider signals that are sparse in the Fourier transform domain. Signal sparsity in 

the discrete Fourier domain imposes some restrictions on the signal. One of them is that 

the frequencies of the signal components are on the frequency grid. Otherwise even one 

component complex sinusoidal signal will not be sparse in the DFT domain. Reducing 

the number of samples in the analysis manifests as a noise, whose properties are studied 

in [13] and used in [24] to define a reconstruction algorithm. The input noise influence is 

also an important topic in this analysis since the reduced number of available samples 

could increase the sensitivity of the recovery results to this noise [8], [24].  

In this paper sparse signals with available samples at the random positions, that do not 

correspond to the sampling theorem defined positions, will be analyzed. It will be shown 

that the noise due to random sampling exists even in the case of large number of available 

samples. In the case on nonuniformly sampled signals a possibility to recalculate the 

signal samples values to the sampling theorem positions is exploited [25]. Efficiency of 

this recalculation in the signal recovery is studied for various numbers of available signal 

values. An analysis of the additive input noise is done as well. Theoretical results are 

statistically checked.  

2. RECONSTRUCTION ALGORITHM 

2.1. Definitions 

Consider a discrete-time signal x(n) obtained by sampling a continuous-time signal 

x(t). Since the DFT will be used in the analysis then we can assume that the continuous-

time signal is periodically extended with a period T. The period T is related to the number 

of samples N, the sampling interval t, and the maximal frequency m as m =  / t = 

N / T . The continuous-time signal can be written as an inverse Fourier series  
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with the Fourier series coefficients being related to the DFT as = ( ) = { ( )}kX N X k DFT x n  

and x(n) =x(nt). Frequency indices { ( 1) / 2,... 1,0,1,..., ( 1) / 2}k N N      corresponds 

to the frequencies 2 / ( 1)mk N   in the analog domain. This signal can be reconstructed 

from its samples taken according to the sampling theorem as  
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This relation holds for an odd N. Slightly corrected relation holds for an even N, [5], [25].  

The signal x(t) is sparse in the Fourier transform domain if the number of nonzero 

transform coefficients K is much lower than the number of the original signal samples N 

within T , K N , i.e., = 0kX  for 1{k k , 
2k , ..., }Kk . A signal 
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of sparsity K can be reconstructed from M samples, where M  N.  

2.2. Known frequency positions 

In the case of signal that is sparse in the Fourier domain there are K unknown values 

Xk1
, Xk2

,..., XkK 
. If the frequency positions {k1, k2, ..., kK} are known then the minimal 

number of equations to find the unknown coefficients (and to calculate (3) for any t) is K. 

The equations are written for at least K time instants ti, i = 1,2,...,M  K, where the signal 

should be available,  

 
2 /

=1

= ( ),   for   = 1,2,..., .
K

j k t T
m i

k i
m

m

X e x t i M K


  (4) 

In a matrix form this system is  

 
KAX = y , (5) 

where Xk is the vector of unknown nonzero coefficients and y is the vector of the available 

signal samples, defined as  
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The coefficients reconstruction condition can be easily formulated as the condition that 

the system (5) has a unique solution, i.e.,.that  

 det( ) 0A  

for the time instants ti where the signal is available and for the known frequency indices 

ki, i = 1,2,...,K, for M = K. In general, for M > K, the condition is that there are K 

independent equations,  

 rank( ) = .KA  

Special case 1: Consider a sparse signal with frequencies k1, k2, ..., kK. Assume that the 

available signal samples are a random subset of the full set of signal samples taken 

according to the sampling theorem ti = nit. The set {k1, k2, ..., kK} in the DFT analysis 

can be considered as a subset of all frequency coefficients {0,1,2,..., N1}, having in 

mind that frequency indices in the second half of the DFT correspond to the negative 

frequencies in the Fourier series. Then  
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This matrix is related to the IDFT matrix W  with N samples in such a way that the 

rows corresponding to the time instants where the signal is not available are removed. 

The columns corresponding to the signal frequencies {k1, k2, ..., kK} are kept, while the 

other IDFT columns are removed. Thus, the matrix A  of order M  K is obtained from 

the IDFT of order N  N by removing row for time instants of unavailable signal samples 

and columns where the signal transform is zero-valued. If signal samples are chosen 

randomly then the reconstruction condition rank (A) = K could be satisfied if at least 

M = K. However it can happen that some instants, for given frequencies, produce 

dependent observations and that the full recovery is not possible. Probability that we have 

sufficient number of independent equations is increased if the number of instants is 

increased. System (4) is used with K M N . 

Therefore, by assuming that the positions of the nonzero coefficients in transformation 

domain are known, a system of M linear equations AXK = y, (5), for available signal samples 

x(ti), i = 1,2,...,M, is solved for K unknowns Xk, k  {k1, k2, ..., kK}. Its solution, in the mean 

squared sense, follows from  

 =H H

KA AX A y  

 1( ) H

K

H
X = A A A y.  (9) 

If the DFT values X(k) are used in vector XK instead of the Fourier series coefficients 

Xk then, using the relations Xk N = X(k), the system of equations (5) reads  

1
.K

N
AX = y  

Special case 2 (Oversampled signal): Consider now a signal sampled with = / mt    

but whose maximal frequency is = /K m t   . Then, according to the sampling 

theorem, this is an oversampled signal. It is a special case of a sparse signal with ordered 

nonzero coefficients as  

1 2

1 1
= { , ,..., } = {0,1,..., , ,... 2, 1}.

2 2
K

K K
k k k N N N

 
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In order to recover this signal it is sufficient to have a reduced set of samples. If the 

samples are not taken randomly (as it is done in compressive sensing) but at the instants 

ti = itN / K, where N / K is an integer, then the sampling step is tN / K. This 

corresponds to the signal downsampling with factor / 1N K , since K N . Then 

with M = K and ni = iN / K we get a special form of (8), relating the DFT values and the 

discrete-time signal samples, as  
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This is an IDFT matrix with K samples. Since this is an IDFT matrix of order K it satisfies 

the condition det(A)  0. In practice, excluding the sampling theorem cases with oversampled 
signals, the positions of the frequencies in a sparse signal are rarely known. Two groups of the 
methods are derived to solve the problem. One is based on concentration measures [15] that 
are used to measure the signal sparsity. The problem is solved by minimizing the 
concentration measures subject to the condition that the signal values are known at some time 
instants. In this group the gradient based algorithms are commonly used, [7, 21]. The other 
group, that will be used here, is directly related to the presented theory of the system solution 
with known frequencies in the sparse signal. The first step in this class of methods is to 
estimate the positions of the signal frequencies and then in the next step to apply the presented 
simple approach to find the Fourier transform coefficients at {k1, k2, ..., kK}. By finding the 
nonzero Fourier transom coefficient values the signal recovery is achieved.  

3. FREQUENCY POSITIONS ESTIMATION 

3.1. Random subset of uniformly sampling signal 

Consider a sparse signal whose values are known at some of the possible sampling 

theorem defined positions tni
 = nit = niT /N  with ni  {n1, n2, ..., nM}. The first step is to 

estimate the DFT coefficients positions, using the available samples. It is done as 
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With K M N  the DFT, calculated with M samples, is a random variable. For a sparse 
signal of the form 
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while its variance is [13]  
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The variance is derived [13] in by using the condition that the sum (10) for =M N  is  
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with 2 ( ) = 0N k .  

Example: Consider a three component signal 

1 1 2 2 3 3( ) = exp( 2 / ) exp( 2 / ) exp( 2 / )x t A j k t N A j k t N A j k t N     (12) 
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with A1 = 1, A2 = 0.75, A3 = 0.25, , {k1, k2, k3} = {58,117,21}, within 0 256t  . With t = 1 

and N = 257 the signal is sparse in the Fourier domain. Random realizations of the initial DFT 

(10) are given in Fig.1, for several values of the number of available samples M. We can see 

that a low value of M does not provide possibility to estimate the signal component positions. 

All three components are visible for larger values of M. When signal frequencies are detected 

then the signal is recovered using (9) with known time instants ti  {t1, t2,..., tM} (or in 

discrete-time domain ni  {n1, n2,..., nM}) and detected frequencies {k1, k2,..., kK}. 

Obviously from a noisy observation of the DFT we can distinguish two cases: 1) 

When the number of available samples is large and all components are above a threshold 

that can be calculated based on (11). Then all signal frequencies will be distinguishable as 

peaks in the DFT. 2) If the number of available samples is low or there are components with 

much lower amplitudes then the iterative procedure should be used. The largest component is 

detected and estimated first. It is subtracted from the signal. The next one is detected and the 

signal is estimated using the frequency from this and the previous step(s). The estimated two 

components are subtracted from the original signal. The frequency of next components is 

detected, and the process with estimation and subtraction is continued until the energy is 

negligible. Both of these reconstruction cases are studied and described in [24].  

3.2. Random subset of randomly sampled signal 

Now consider the case when randomly positioned samples of a continuous-time signal 

within 0  t  T are available. The positions of the observations ti are not related to the 

sampling theorem positions in any way. An estimate of the initial DFT can be calculated 

using the available signal values, as  
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Fig. 1 DFT of a signal with various number of available samples M. Available M samples 

are a random subset of N samples taken according to the sampling theorem 

interval. Red dots represent the original signal DFT values, scaled with M / N to 

match the mean value of the DFT calculated using a reduced set of samples signal. 

The DFT values are presented as a function of the frequency index. 
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We will again assume that the signal is sparse with unknown number and positions of 

the frequencies {k1, k2, ..., kK}, K M N . For a frequency k = kp and the signal component 

exp( 2 / )p pA j k t T  all values in (13) will be  
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Therefore, the mean value of estimator (13) is  
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The variance of this estimator is different from the case when the available signal 

samples are at the sampling interval positions [13]. The condition that the value of the 

DFT coefficient is zero (with zero variance) if all N  samples are used, does not hold any 

more. The total variance is  
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For small M we have (N  M) / (N  1)  1. Then expressions (11) and (14) give 

similar result. Some of the random realizations of the initial DFT (13) are given in Fig. 2. 

In contrast to the previous case, the variance of the estimator (13) does not tend to zero as 

M approaches to N. However, we can see that the signal frequencies can be detected and 

used to recover the signal using (5) and (7) with known time instants ti  {t1, t2, ..., tM} and 

detected frequencies {k1, k2, ..., kK}. 

 

 

Fig. 2 DFT of a signal with various number of available samples M. Available M samples 

are taken at random positions within 0  ti   T. Red dots represent the original signal 

DFT values, scaled with M / N to match the mean value of the DFT calculated 

using a reduced set of samples signal. 
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3.3. Random subset of nonuniformly sampled signals 

Consider now a random set of possible sampling instants {t1, t2, ..., tN},  

 = ,i it i t    

where vi is a uniform random variable t / 2  vi  t/2. With  = 1 any position of the 

signal sample within it  t / 2  ti < it + t / 2  is equally probable. With   1 the 

sampling positions are random, but within one sampling interval only one signal sample 

can occur. This case will be referred to as nonuniform sampling. Assume that only M < N 

signal samples are available at ti  {t1, t2, ..., tM}. In the nonuniform sampling case the 

initial DFT estimate can be calculated using (13). This transform may be used to estimate 

the frequency positions. Note that as in the random sampling case, even if we use M = N 

the resulting signal will not be sparse. This fact will degrade the recovery performance. 

The problem with nonuniform sampling can be reformulated to produce a uniformly 

sampled signal. If the signal values at ti are known then (2) can be used to recover the 

signal samples at the sampling theorem adjusted instants. This relation reads  
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The transformation matrix relating samples taken at ti with the signal values at sampling 

theorem positions, is  
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An additional problem here is that we know just M  N of signal samples. The values 

at unavailable positions ti  {t1, t2, ..., tM} are assumed to be zero. Their positions are 

assumed at the sampling theorem instants, ti = it for ti  {t1, t2, ..., tM}, since they are not 

known anyway. The uniform (sampling interval) signal values are then  
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The matrix B
1

 is inverted only once for given signal sample positions. Note that there 

is a direct relation to calculate the values x(nt) based on randomly sampled values x(ti) 

as [25]  
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Here the inversion is not needed. However, in our calculation, this was not computationally 

more efficient approach. The results for several random realization and the nonuniform 

signal sampling, with recalculated signal values at the sampling theorem positions, are 

shown in Fig. 3. As the number of available samples approaches to the total number of 

samples N the reconstructed DFT is noise-free, Fig. 3. 

 

 
Fig. 3 DFT of a signal with various number of available samples M. Available M samples 

are a random subset of N nonuniform samples taken at random positions within the 

sampling theorem interval. Red dots represent the original signal DFT values, 

scaled with M / N to match the mean value of the DFT calculated using a reduced 

set of samples signal. 

 

For all previous reconstruction cases and the signal defined by (12) the variance is 

calculated in 100  random realizations of the sets of available samples. The results for the 

variance is presented in Fig. 4. The ratio of signal and noise energies is calculated as well 

and presented in Fig.5. Agreement of the theory and the statistical results is high. 

From Fig.4 we can conclude that the recalculation is not efficient for a small number 

of available samples, when M N . In that case even worse results are obtained than 

without recalculation, what could be expected. For a large number of available samples 

(in Fig.4 for M > 5N / 8) the recalculation produces better results, approaching to the 

sparse signal without any deviation, for N = M.  
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Fig. 4 Variance of the DFT for all previous methods of sampling and various number of 

available samples M. (1)-line with marks "x": Available samples are a subset of all 

samples taken at the sampling theorem grid (solid line-theory, marks "x"-statistics).  

(2)-line with marks "o": Randomly positioned M samples taken within 0  ti   T (solid 

line-theory, marks "o"-statistics). (3)-marks "+": Nonuniform randomly shifted samples 

from the sampling theorem grid. (4)-marks "*": Nonuniform randomly shifted 

available samples being recalculated on the sampling theorem grid.  

 

Fig. 5 Ratio of the signal and DFT noise energies for all previous methods of sampling and 

various number of available samples M. (1)-line with marks "x": Available samples are 

a subset of all samples taken at the sampling theorem grid (solid line-theory, marks 

"x"-statistics). (2)-line with marks "o": Randomly positioned M samples taken within 

0  ti   T (solid line-theory, marks "o"-statistics). (3)-marks "+": Nonuniform 

randomly shifted samples from the sampling theorem grid. (4)-marks "*": Nonuniform 

randomly shifted available samples being recalculated on the sampling theorem grid. 
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4. ADDITIVE NOISE INFLUENCE 

Next we will analyze the case when input noise exists in the sparse signal to be 

reconstructed. It has been shown that this kind of noise increases the variance caused by 

missing  samples.  A formula  how to  increase the number of  available samples in  order  

to compensate the influence of input noise is derived as well [24]. It is important to note 

that once the reconstruction conditions are meet and the reconstruction is achieved, the 

noise due to missing samples does not influence the results in a direct way. It influences 

the possibility to recover signal at all. The  accuracy of the recovery results is related to 

the input noise. The input noise is transformed by the recovery algorithm into a new noise 

depending on the signal sparsity and the number of available samples. A simple analysis 

of this form of noise will be presented next. Assume an additive noise  (t) in the input 

signal. The reconstruction equations (4) are  
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at the available instants ti, i = 1,2,...,M, for detected frequencies k = {k1, k2, ..., kK}. In a 

matrix form this system of M  linear equations with K  unknowns reads 
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is the noise influence to the reconstructed signal coefficients. The input signal-to-noise 

(SNR) ratio, if all signal samples were available, is 
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Assume the noise energy in M samples used in reconstruction is 
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Using (10) in calculation is the same as assuming that the values of unavailable 

samples is zero. This kind of calculation corresponds to the result that would be achieved 

for the signal transform if the norm-two, i.e., min
1 2

=0
( )

N

k
X k



 , is used in minimization, [21, 
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3, 6, 23]. The correct amplitude in the signal transform at the frequency kp, in the case if 

all signal samples were used, would be NAp. To compensate the resulting transform for 

the known bias in amplitude when only M available samples are used we should multiply 

the coefficient by N / M. It means that is a full recovery, a signal transform coefficient 

should correspond to the coefficient of the original signal with all signal samples being 

used. The noise in the transform coefficients will also be multiplied by the same factor. 

Therefore, its energy would be increased to EA N 
2
 / M 

2
. The signal-to-noise ratio in the 

recovered signal would be  
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If the distribution of noise in the samples used for reconstruction is the same as in 

other signal samples then 2 2
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Therefore, a signal reconstruction that would be based on the initial estimate (10) would 

worsen SNR, since N > M. An improvement can be expected only if we were able to 

remove the noisy samples in a selective manner so that the samples used in reconstruction 

are less noisy than the other samples, [23]. If such a criterion is used to selectively 

remove the noise samples then the reconstruction is improved if  
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Since only K out of N DFT coefficients are used in the reconstruction the energy of the 

reconstruction error is reduced for the factor of K / N as well. Therefore, the energy of 

noise in the reconstructed signal is  
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The final signal to noise ratio in the reconstructed signal is 
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If a criterion of selection the noisy samples is used then the variance in the remaining 

samples is lower than the average variance of all samples, i.e.,  
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where 0 1QC   is the criterion selection efficiency:  

 If there is no any criterion CQ = 1.  

 In an ideal case when the noise does not exists in the remaining samples (removed 

by a criterion or L-statistics as in [3]) then CQ = 0.  

With this factor the SNR is  

 = 10log .i Q

K
SNR SNR C

M

 
  

 
 (23) 

 

This simple theoretical result is tested on signal (12) with additive noise of variance 


2

 = 1. For a random set of M available samples the initial DFT is calculated using (10). 

Since a large number of available samples M is used in these simulations the signal 

components {k1, k2, k3} are easily detected in one step. The signal is reconstructed by (9) 

for the set of available signal samples y = [x(t1) x(t2) ... x(tM)]
T
 and the detected frequencies 

{k1, k2, k3}. For statistical check of the results, 100  random realizations of the available 

sample positions are used. The results are summarized in Table 1 for a different number 

of available sampels M, with CQ = 1. The theory agreement with statistics is very high. 

For smaller values of M the iterative procedure (described in the last paragraph of 

subsection 3.1) should be used since all components can not be detected in a single 

realization of (10). Similar results would be obtained as far the value of available sample 

is sufficient for signal recovery.   

Table 1 Signal to noise ratio: In the input signal (SNRi), obtained by theory (SNRT) and 

by statistics (SNRS) for various number of available samples M with N=257.   

SNR in [dB]   =128M    =160M    =192M    = 224M  

SNRi   2.6383   2.6215   2.5663   2.5811 

SNRT   18.8837   19.8519   20.6446   21.3140 

SNRS   18.8709   19.8528   20.6415   21.3887 

In order to test the change of ,K  the theory is illustrated on a four component signal 
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as well. The amplitudes in this case where A1 = 1, A2 = 0.75, A3 = 0.5, A4 = 0.67, and the 

frequency indices {k1, k2, k3 k4} = {58,117,21,45}. The results are presented in Table 2.  
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Table 2 Signal to noise ratio: In the input signal (SNRi), obtained by theory (SNRT) and 

by statistics (SNRS) for various number of available samples M with N=257.   

SNR in [dB]   =128M    =160M    =192M    = 224M  

SNRi   3.5360   3.5326   3.5788   3.5385 

SNRT   18.5953   19.5644   20.3562   21.0257 

SNRS   18.7203   19.5139   20.2869   21.7302 

The agreement of the numerical statistical results with this simple theory in analysis 

of noise influence to the reconstruction of sparse signals is high.  

5. CONCLUSION 

Analysis of random samples sparse signals is preformed. It has been shown that random 

sampling increases noise in the reconstructed caused by unavailable samples. For a 

relatively large number of available samples the signal recalculation of nonuniformly 

sampled signals to the sampling theorem grid can improve the results. The input noise 

can degrade the reconstruction limit. However as far as the reconstruction is possible the 

noise caused by missing samples manifests its influence to the results accuracy in simple 

and direct way trough the number of missing samples and signal sparsity. The accuracy 

of the final result is related to the input noise intensity, number of available samples and 

the signal sparsity. The theory is checked and illustrated on numerical examples. 
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