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Abstract. This paper reviews the design and characterization of humidity and pH sensors 

manufactured in the printed circuit board (PCB), ink-jet, and screen printing 

technologies. The first one (PCB technology) provides robust sensors with PET film which 

can be exposed to harsh environment. The second (ink-jet technology) can manufacture 

sensors on flexible substrates (foils and papers). The third (screen printing technology) 

has been used to implement a thick-film sensor. In addition to this, a multi-sensor cloud-

based electronic system with autonomous power supply (solar panels) for air and water 

quality monitoring has been described. Finally, a flexible and modular hardware platform 

for remote and reliable sensing of environmental parameters has been presented. 
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1. INTRODUCTION 

Advanced applications require different types of sensors which can be manufactured 

in various technologies. The manufacturing method determines the performance and price 

of the sensors. This paper deals with the two types of sensors: humidity sensors and pH 

sensors. 

Humidity sensors play an important role in many measurement and control applications 

in meteorology, agriculture, environmental protection, industry, and medicine. In the past 

years, a lot of effort has been made to develop high-performance humidity sensors exhibiting 

the large sensitivity, fast response and recovery, and small hysteresis. Various transduction 

techniques, such as capacitive, resistive, acoustic, optical, and mechanical, have been 

adopted for the design of humidity sensors. Their cost depends on the accuracy requirements, 

response time, hysteresis, sensitivity, mechanical and chemical characteristics, power 
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consumption, etc. PET film as one of the most common substrates in industry is used as a 

sensitive layer for humidity measurements. PET film, compared to different thermoplastics, has 

equal or better water vapour transmission rate, dimensional stability, service temperature 

range, etc. Novel sensitive materials, such as graphene-oxide (GO), have recently been 

introduced in manufacturing process of humidity sensors [1-8]. For instance, the sensitivity 

of interdigitated capacitive (IDC) humidity sensors has been significantly improved by using 

the GO as a sensitive material [9]. 

The monitoring of water quality is an essential task having global impact. This 

requires determining the parameters such as pH, dissolved oxygen, content of ammonia, 

conductivity, turbidity, temperature, and dissolved metal ions [10]. Among these the pH is 

one of the most important as it measures the acidity or basicity of water and directly 

affects the health of individuals [11]. The pH measurement has wide range of applications 

including environmental monitoring, chemical processing [12], medical [13], food and 

beverage [14], biomedical applications such as blood analysis [15], and monitoring of pH 

fluctuations in the human brain [16]. These applications require highly reliable and 

accurate pH sensors with the reduced level of maintenance and long lifetime. A range of 

electrochemical and non-electrochemical methods have been explored for pH measurements 

[17-19]. Among these the glass electrode based pH sensor has been the most attractive and 

reliable [17-20]. However, the lack of applicability of the existing solutions in environments 

that are corrosion prone, or have high temperature and high pressure conditions is a 

limitation, which provides a strong motivation to develop new pH sensors. In this regard, the 

metal oxide based pH sensors are attractive as they offer a number of potential advantages 

over glass electrode pH sensors, including low-cost, smaller dimensions, and ease of 

manufacturing. Due to high chemical stability, the TiO2 based films are considered good for 

pH sensitive layers and a few studies concerning TiO2 as a pH sensitive layer have been 

reported as well [21, 22]. 

2. COST-EFFECTIVE SENSORS MANUFACTURED IN DIFFERENT TECHNOLOGIES 

Humidity sensor with PET lamination film 

PET film as a sensitive layer has been chosen since, compared to thermoplastics, it has 

equal or better water vapour transmission rate, dimensional stability, and service temperature 

range. This film (with and without 400 µm pores) has been laminated on copper electrodes. 

Three types of IDC structures have been designed and manufactured on the standard FR4 

dielectric substrate with a conductive copper layer. Geometrical parameters of the IDC 

structures have been optimized in order to obtain the targeted capacitance values (from 

25 pF to 45 pF). The layout of the IDC humidity sensor is shown in Figure 1a, while the 

representative samples of the manufactured sensors (with and without macro-porous 

cover) are presented in Figure 1b and Figure 1c, respectively. 
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(a) 

 
(b) 
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Fig. 1 a) Layout of IDC sensor, b) Porous PET sensor, c) Standard PET sensor 

 

The IDC structures have been measured with LCZ meter (HP 4277A). They have been 

milled with LPKF ProtoMat S100 machine. A porous PET film with 400-µm pore 

diameter has been used (Figure 2b). 

 

(a) 

 

(b) 

Fig. 2 Schematic structures of proposed humidity sensors: a) PET film laminated on the 

copper electrodes, b) Porous PET film laminated on the copper electrodes 

 

The change in the capacitance of presented humidity sensors is related to the three 

different processes [23]. The first is adsorption on the polymer surface (given rise of a 

new thin layer on the top of the polymer), second is absorption into the polymer phase 

(changing the dielectric constant of the polymer) and the third is swelling of the polymer 

layer. Sensor’s sensitivity can be increased by adding pores into PET laminated layer 

which significantly increase the water molecules adsorption inside this porous dielectric 

film. In order to investigate the humidity response, the sensors have been installed in a 

chamber with humidity and temperature control (Heraeus Vötsch VLK 08/450). The 

adjustable humidity range has been between 45% and 90%, while the temperatures were 

fixed at 30°C and 40°C. The measurements have been carried out with a LCZ meter (HP 

4277A), which was connected via Agilent 82357A USB/GPIB interface converter with a 

laptop. An in-house developed program (created using LabVIEW) has been used for data 

acquisition. Characteristics of the tested sensors have been determined by observing 

capacitance variations at 50 kHz. Capacitance values of the two sensor types (with standard 

PET film and porous PET film) have been measured. Capacitance responses of the sensors 

for a fixed environment temperature (30°C and 40°C) and relative humidity (45% RH – 90% 

RH) are presented in Figure 3 and Figure 4. The capacitance stability of the sensor has 

been observed for time of 30 seconds. Results show a very high stability of the sensor 

capacitance in time. 
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        (a)              (b) 

Fig. 3 Standard PET sensor capacitance stability as a function of relative humidity (RH): 

a) For temperature of 30°C, b) For temperature of 40°C 

 

      (a)              (b) 

Fig. 4 Porous PET sensor capacitance stability as a function of relative humidity (RH): 

a) For temperature of 30°C, b) For temperature of 40°C 

Comparison of the humidity sensor sensitivities is presented in Table I. Above 80% RH 

at 30°C, the porous sensor has a sensitivity of 48fF/%RH, while the sensitivity of the 

standard sensor is 17fF/%RH. Also, for humidity above 80%RH and temperature of 40°C, 

the sensitivity of the porous sensor is 106fF/%RH, while the sensitivity of the standard 

sensor is 30fF/%RH. 

Measurement results show that the sensitivity of sensors laminated with PET film 

(standard and porous) increases with increase of the temperature and RH. Similar results 

have been reported in [24]. Since the adhesive layer is placed between PET film and 

copper electrodes, the sensor sensitivity is reduced. This is because the adhesive layer, in 

some way, prevents the transfer of PET film dielectric constant change (due to the water 

adsorption) to IDC structure and its capacitance. 
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Table 1 Sensor sensitivity in a humidity range from 45% to 90% 

Temperature Sensor 45-60% 60-80% 80-90% 

30 °C 
PET sensor 8 fF/%RH 11 fF/%RH 17 fF/%RH 

Porous PET sensor 11 fF/%RH 20 fF/%RH 48 fF/%RH 

40 °C 
PET sensor 8 fF/%RH 12 fF/%RH 30 fF/%RH 

Porous PET sensor 17 fF/%RH 28 fF/%RH 106 fF/%RH 

Response time of the sensors is measured to 90% point of the final steady-state 

capacitance during the relative humidity change from 45% RH to 90% RH at 24°C. Also, 

the recovery time is measured as time in which the sensor capacitance changes with 

90%RH of its maximum value to the initial value while humidity content is reduced from 

90%RH to 45%RH. The response and recovery times of the standard PET sensor have 

been found to be 35 s and 57 s, respectively. Likewise, the response time of the porous 

PET sensor is 42 s, while the recovery time is 47 s. 

Humidity sensor based on graphene-oxide 

The sensors have been manufactured by an ink-jet printing process using the Dimatix 

deposition material printer (DMP-3000) and spin-coating. It has been widely acknowledged 

that the ink-jet manufacturing technology is cost-effective in the case of humidity sensors 

[25]. An interdigitated capacitor with 20 pairs of electrodes has been designed, as shown 

in Figure 5. It consists of a polyimide substrate, interdigitated Ag electrodes, and sensing 

GO material. 

 

 

        (a)              (b) 

Fig. 5 Capacitive humidity sensor based on GO:  a) Schematic of the sensor,  

b) Sensor’s electrodes before deposition of GO 

The second sensor layer has been manufactured by spin-coating 3 layers of the 

Graphenea GO ink on top of the electrodes. Measurements have been performed using an 

in-house measurement setup shown in Figure 6. It consists of a chamber (plastic box) and 

humidity source (aerosol). Capacitances and resistances of the manufactured sensors have 

been measured using the Agilent 4284A LCR meter. The Lascar EL-USB-2 humidity and 

temperature data logger has been used to measure the humidity level inside the chamber. 
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Fig. 6 Humidity sensing and measurement setup 

 

 

Fig. 7 Capacitance hysteresis curves of the GO-based sensor 

The capacitance hysteresis characteristic of GO sensor has been observed by 

increasing the relative humidity from 45% to 85% for water molecules absorption and 

then decreasing back to 45% for water molecules desorption. The measurement results are 

shown in Figure 7. The capacitance values range from 200 pF to 1100 pF, for the relative 

humidity in the range from 45% to 85%. This indicates that the proposed GO sensor has 

much higher sensitivity comparing to the others described in open literature. In order to 

compare the response speed of the analysed GO sensors, the behaviour in absorption and 

desorption phases has been observed. Figure 7 shows a significant hysteresis (lagging) of 

the sensor capacitance behind RH variations. This could be explained by different speeds 

at which the humidity within the chamber (plastic box in Figure 6) has been changed. 
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Namely, the humidity has been raised by introducing an aerosol device and, after some 

time, reduced back by self-drying in laboratory conditions. 

TiO2 thick-film pH sensor 

Interdigitated electrode (IDE) TiO2 thick-film based pH sensor has been designed, 

manufactured, and characterized [26]. A pH measurement system based on the integrated 

circuit AD5933 [27-29] (which can be used for sensor impedance characterization, as 

well as sensor readout electronics) has also been implemented. The manufacturing process 

of the conductimetric pH sensor is similar to that reported in [11, 30]. We have chosen 

alumina as a substrate to investigate the performance of pure metal-oxide and to avoid any 

reaction at the metal/metal-oxide interface. Initially, a planar IDE has been deposited on an 

alumina substrate by screen printing of Ag paste (Ag/Pd ESL 9695). The screen printing of 

metal paste is a faster way of manufacturing devices at low cost [31]. Illustration of the 

conductimetric pH sensor is shown in Figure 8a. The major advantages of the IDE pH sensor, 

compared to the other reported approaches, are: faster and low-cost manufacturing, lack of 

reference electrode, large surface area, and low energy consumption during measurements. In 

addition, the screen printing technology could open avenues for integrating the pH sensors 

with electronics on flexible substrates [31]. 

 

Fig. 8 a) Illustration of TiO2 pH sensor, b) Impedance measurement device  

connected to pH sensor, c) Experimental setup for pH sensor characterization 

The AD5933-based impedance measurement system reported earlier [27-29] has been 

used for sensor characterization. Figure 8c shows the experimental setup for spectroscopic 

analysis of the sensor impedance. The sample under test has been connected to the 

measurement device and placed into a beaker with a solution. The sensor can be employed 

in water pollution monitoring, with an expected operating pH range from 6 to 9, thus test 
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solutions with pH ranging from 4 to 10 have been prepared by adding 1 mol% of HCl or 

KOH to distilled water. A standard glass-electrode pH and conductivity meter (ELMEIRON, 

CPC-411) with temperature probe has been used to control the pH level of test solutions 

and measure the conductivity of each test solution. The sensor has been washed with 

deionized water and dried with a paper towel after each measurement to reduce the 

contamination of the electrode surface by solutions with different pH. All measurements 

have been done at room temperature with the liquid temperature close to 23°C. To 

measure the electrical parameters of TiO2 films at different pH values, the sensor has been 

dipped in the solution for 10 min prior to operating to ensure the steady-state. The 

impedance measurement has been done by performing frequency sweep in range of 5-20 

kHz with AC voltage of 200 mV. Fig. 9 illustrates the variation of impedance magnitude 

and phase angle as a function of frequency in the range 5-20 kHz for different pH values 

of test solution. The magnitude and phase of the sensor impedance decrease with increase 

of the pH value of solution. For a constant pH, there is a decrease in magnitude and an 

increase in phase as the frequency increases. 

  

Fig. 9 Impedance magnitude and phase angle plots for TiO2 thick-film pH sensor 

for different pH values of solutions over a frequency range from 5 kHz to 20 kHz 

 

From Figure 9, it can be noted that the impedance is lower when the sensor is in a 

solution of a higher pH. Variations of the solution resistance with different pH values 

contribute to changes of the sensor impedance. The observed dependence is mainly 

caused by a lower resistance of the applied alkaline solutions as compared with the acidic 

solutions. The variation in impedance with frequency can be attributed to the effect of 

intercrystalline capacitance [32]. In the kHz-range, this value is sufficient for short-

circuiting the spaces between the grains, which reduces the resistance of sensor [32]. 

Obtained impedance data has been used for more detailed sensor characterization 

regarding sensor sensitivity. It is very important to determine impedance changes of the 

sensor compared to changes of the pH value of the analysed solutions. The developed 

impedance measurement device (used for the sensor characterization) can be used as 

readout electronics as well, if the measurement error is lower than the sensor sensitivity. 

Sensor sensitivity regarding the relative change of impedance magnitude (Z) with pH 

value change can be defined as 



 Cost-Effective Sensors and Sensor Nodes for Monitoring Environmental Parameters 19 

 

pH pH-1

pH-1

| |
(pH) 100%Z

Z Z
S

Z


 , 

for pH values between 4 and 10. Sensor sensitivity regarding relative change of impedance 

phase angle (ϕ) with pH value change can be defined as 
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In Figure 10, relative changes of the impedance magnitude and phase angle of the 

manufactured pH sensor are shown. The five frequencies (5 kHz, 8.8 kHz, 12.6 kHz, 16.4 

kHz, and 20.2 kHz) in the analysed frequency range are chosen to establish a linear 

frequency distribution. 

 

Fig. 10 Sensitivity of sensor impedance magnitude and phase angle 

 

As it can be seen from Figure 10, the relative change of the impedance magnitude is 

higher than 2% and it increases with frequency increase. Additionally, there is decrease in 

relative change of the impedance phase angle with increase of the pH value. Therefore, 

for pH values lower than 7, it is more convenient to measure the phase angle, while for 

pH values higher than 7, it is better to measure the impedance magnitude. Moreover, it 

can be concluded that the reported measurement error of 2% of developed AD5933-based 

device [27-29] is acceptable in typical applications. 

3. WIRELESS SENSOR NODES FOR ENVIRONMENTAL PARAMETER MEASUREMENTS 

A TiO2-based sensor has been used with commercial sensors in realization of a wireless 

sensor node for environmental parameters monitoring (pH, temperature, relative humidity, 

volatile organic compounds, etc.) [33]. It is a low-cost, portable, and low-power system 

powered by a solar-panel charger unit, thus providing automated in-situ measurements and 

data storage operations. Compared to the systems presented in literature, the design shown in 

Figure 11 offers the advantage of remote multi-parameter measurements in real-time [33]. 
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Fig. 11 Wireless sensor node with a pH sensor and additional commercial sensors 

 

Moreover, the developed system for remote measurement and acquisition of 

environmental parameters has been integrated in a more complex cloud-based system which 

ensures remote access to the measurement data in real-time. IBM IoT platform has been 

used for data presentation and Internet access of measurement results, as it is shown in 

Figure 12. 

 

Fig. 12 Browser view of the web IBM Watson IoT platform with sensor data 

IHPNode has been developed as a flexible and modular hardware platform for remote 

sensing in environmental and agricultural applications [34]. The node (Figure 13) is based 

on the Texas Instruments MSP430x low-power microcontroller and three RF transceivers, 

one working in the 868 MHz and two working in the 2.4 GHz frequency band. The two of 
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these (CC1101 and CC2500) support flexible proprietary network protocols, while the 

third (CC2520) provides a network coprocessor for ZigBee protocol integration. 

 

Fig. 13 IHPNode based on TI MSP430x microcontroller 

4. CONCLUSION 

Cost-effective humidity and pH sensors have been designed, manufactured, and 

characterised.  Two wireless sensor nodes for remote monitoring of environmental 

parameters have been developed using the aforementioned humidity and pH sensors. The 

future work should complete and integrate these nodes into a smart multi-sensor cloud-

based hardware/software platform for environmental and agricultural applications. 
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