FACTA UNIVERSITATIS
Series: Electronics and Energetics Vol. 31, N° 2, June 2018, pp. 169 - 187
https://doi.org/10.2298/FUEE1802169S

GENETIC ALGORITHM FOR BINARY AND
FUNCTIONAL DECISION DIAGRAMS
OPTIMIZATION®

Suzana Stojkovi¢', Darkoe Veli¢kovi¢', Claudio Moraga’

'Faculty of Electronic Engineering, University of Nis, Ni§, Serbia
2Department of Computer Science, TU Dortmund, Germany University, Dortmund, Germany

Abstract. Decision diagrams (DD) are a widely used data structure for discrete functions
representation. The major problem in DD-based applicationsis the DD size minimization
(reduction of the number of nodes), because their size is dependent on the variables order.
Genetic algorithms are often used in different optimization problems including the DD
size optimization. In this paper, we apply the genetic algorithm to minimize the size of
both Binary Decision Diagrams (BDDs) and Functional Decision Diagrams (FDDs). In
both cases, in the proposed algorithm, a Bottom-Up Partially Matched Crossover (BU-
PMX) is used as the crossover operator. In the case of BDDs, mutation is done in the
standard way by variables exchanging. In the case of FDDs, the mutation by changing
the polarity of variables is additionally used. Experimental results of optimization of the
BDDs and FDDis of the set of benchmark functions are also presented.

Key words: Binary Decision Diagrams, Functional Decision Diagrams, Decision
Diagrams oprimization, Genetic algorithm.

1 INTRODUCTION

Decision diagrams (DDs) are a compact data structures for discrete functions
representation. Bryant showed their canonicity in 1986 in [1] and after that
they have been applied in many areas in which discrete functions are used:
hardware design, hardware testing, signal processing, etc. Complexities of
the designed hardware or of the computations that are done by decision
diagrams are directly proportional to the size of the diagram. A main disad-
vantage of the decision diagrams is that their size is dependent on the order
of the variables that are used in the diagram.

Received October 21, 2017; received in revised form January 30, 2018

Corresponding author: Suzana Stojkovic

Faculty of Electronic Engineering, University of Ni§, Medevedeva 14, 18000 Nis, Serbia

(E-mail: suzana.stojkovic@elfak.ni.ac.rs)

* An earlier version of this paper was presented as an invited address at the Reed-Muller 2017 Workshop, Novi Sad,
Serbia, May 24-25, 2017

170 S. STOJKOVIC, D. VELICKOVIC, C. MORAGA

Optimization of the DD size is a very often solved problem. Algorithms
for DD optimization can be classified into two categories: exact algorithms
and heuristic algorithms. The basic exact algorithm is a brute-force algo-
rithm creating the diagrams for all possible orders of variables and choosing
the best. A slightly improved exact algorithm is presented in [2]. But, all
exact algorithms are very slow and inapplicable for functions with a large
number of variables.

The most widely used heuristic algorithm for DD optimization is Rudells
sifting algorithm that was proposed in [3]. The main idea in that algorithm
is the sifting of each variable through all levels in the diagram and choose
the optimal position.

A genetic algorithm is a heuristic algorithm that can be applied in solving
different optimization problems. Using genetic algorithm in DD optimization
was first discussed in [4]. After that, genetic algorithms for DD optimization
were improved in many papers ([5—13]). Some of them optimize the DD size
([4-11]). In [12] the 1-paths number is optimized, and in [13] a method for
these two optimization is proposed.

In this paper, we present a genetic algorithm for optimization of BDDs
and FDDs. Our main goal was minimization of FDD size because we use
FDD in reversible synthesis (see for example [14], [15]). For comparison
we also include results on the minimization of the size of the BDDs. In
the applications for FDD-based reversible synthesis, the complexity of the
generated network is directly dependent of the FDD size. Additional problem
in FDD usage is that the size is dependent of the decomposition rules that
are used in the nodes. In FDD in each a node positive or negative Davio
decomposition can be used. Usually, the same decomposition is used in all
nodes from the same level. It follows that for one variable order, 2™ different
FDDs can be created. An exact algorithm in that case should check 2" - n!
cases, which is impossible for large number of variables. Another group
of minimization algorithms, sifting algorithms, analyze only variables order.
Because of that we choose a side to try by applying the genetic algorithm. In
the presented algorithm, for both BDD and FDD, a modified PMX crossover
operator (BU-PMX Bottom-Up Partially Matched Crossover) and mutation
by variable exchange are used. In the case of FDD optimization, mutation
by polarity change is additionally used.

The paper is organized in the following way: Section 2 contains most
important definitions related to the decision diagrams. Section 3 presents
the general idea of genetic algorithms and their specifications in the case of
applying in DD optimization. Section 4 describes the algorithm for BDD and

Genetic Algorithm for BDD and FDD Optimization 171

FDD optimization and the genetic operations that are used in it. Section 5
discuses experimental results and in Section 6 some concluding remarks are
given.

2 DECISION DIAGRAMS

Definition 1 (Binary Decision Tree) A Binary Decision Tree (BDT) rep-
resenting a Boolean function f is the binary tree created by the recursive
application of the Shannon decomposition rule:

f=% flar =0) D xg- flap =1) (1)

Definition 2 (Terminal and Nonterminal nodes) A BDT contains two
types of nodes: nonterminal and terminal. A nonterminal node represents
one decomposition and it has a joint decision variable. A terminal node
contains the value of the function.

Definition 3 (Level in BDT) A level in the BDT is a set of nonterminal
nodes with the same decision variable, or the set of terminal nodes.

Definition 4 (Functional Decision Tree) A Functional Decision Tree (FDT)
representing a Boolean function f is the binary tree created by the recursive
application of the positive (2) or negative (3) Davio decomposition rule:

f=flar=0)@xp- (fzr =0) & fzp = 1)) (2)
f=7 (flzr=0)® f(zr = 1)) ® f(zp = 1) (3)

Definition 5 (Fixed Polarity Functional Decision Tree) A Functional
Decision Tree in which the same decomposition is used in each node from the
same level is called a Fized Polarity Functional Decision Tree (FPFDT).

Definition 6 (Polarity-vector) The polarity-vector of the FPFDT is a
bit vector which defines the types of the decompositions that are used in the
levels. 0 denotes that the positive Davio decomposition is used, 1 denotes the
negative.

172 S. STOJKOVIC, D. VELICKOVIC, C. MORAGA

Definition 7 (Positive-polarity FDT) A FDT in which positive Davio
decomposition is used at all levels is a positive-polarity FDT.

Definition 8 (Binary Decision Diagram) A BDT is transformed into a
Binary Decision Diagram (BDD) by using the following reduction rules:

1. Share the isomorphic sub-trees: if there are two terminal nodes with the
same value, or two non-terminal nodes with isomorphic sub-trees, one of
them is deleted. Its incoming edges are directed to the remaining node.

2. Eliminate the redundant nodes: if both outgoing edges from a non-terminal
node point to the same sub-tree, this node is redundant and it is deleted.
Its incoming edges are directed to the common sub-tree.

Definition 9 (Functional Decision Diagram) An FDT is transformed
into an FDD by using the reduction rule 1 above and the following 0-suppress
reduction rules:

2.1 If the right outgoing edge from a positive Davio node points to the 0, the
node is deleted. The edges pointing to the deleted node are directed to
its left sub-tree.

2.2 If the left outgoing edge from a negative Davio node points to the 0, the
node s deleted. The edges pointing to the deleted node are directed to
its Tight sub-tree.

Example 1 Figure 2 shows the BDD (a) and the positive-polarity FDD (b)
of the function f(x1,x9,x3,24) = T1 - Tg + o1 - T2 + T3 + T4.

Definition 10 (DD size) DD size is equal to the number of the nontermi-
nal nodes.

Example 2 Figure 1 shows the BDDs of the function f(x1,...,26) =
r122 + 2324 + w56 for variables orders (a) (z1,x2,x3, 74,25, 26) and (b)
(z1,24,22,%5,23,26). The size of the first BDD is 6, but the size of the
second is 14.

Genetic Algorithm for BDD and FDD Optimization 173

@ ®)
Fig. 1: BDD (a) and FDD (b) of the function from Example 1.

In the general case, for the function of 2n variables f(x1,xa, ... Top_1,To) =
x1To+ -+ Top_1Ton, the size of the BDD with variables order (x1,xa, ..., Tapn—1,T2n)
is 2n, and with variables order (x1,Tpi1, ..., Ty, T2y) it is O(2771).

Besides the variable order, the size of fixed polarity FDDs is dependent
also on the polarities for the variables.

Example 3 Figure 3 shows the FDDs of the function in Example 1 for
polarity vectors (a) F =[1111]T and (b) F =[010 1]T. The size of the
diagram if the first case is 4, and in the second case is 6.

3 GENETIC ALGORITHM

A genetic algorithm is a method for solving different optimization problems
based on an analogy to the natural selection process. In this algorithm, the
solution of a problem is presented as an array that is named chromosome.
An element of the chromosome is a gene.

In general, the initial set of chromosomes are generated randomly, and
then, the new generation is created by using two genetic operations: crossover
and mutation. The crossover operator defines the way for creating the child
chromosomes by combination of the genes from parent chromosomes. In
practice, one point crossover (fig. 4(a)) and two-point crossover (fig. 4(b))

174 S. STOJKOVIC, D. VELICKOVIC, C. MORAGA

(a) (b)

Fig. 2: BDDs of the function from Example 2 for two different variable or-
ders.

are usually chosen. The mutation is often realized by changing the value of
the gene at a selected position.

The measure of the quality of a solution (chromosome) is named fit-
ness score. Fitness scores are used to compute the possibilities for selecting
the chromosomes for parents for the next generation, and for selecting the
chromosomes that will die after an iteration.

To define the genetic algorithm for a concrete optimization problem
means to define: the type of genes, the fitness function and the genetic
operations.

3.1 Genetic algorithm for BDD size optimization

One chromosome in a BDD optimization problem is one order of input vari-
ables, i.e. one permutation of the integer numbers from interval [1,n]. It
follows that standard genetic operators cannot be used. Because of that, for
a BDD optimization, special genetic operators are defined. Crossover oper-

Genetic Algorithm for BDD and FDD Optimization

(a)

(b)

175

Fig. 3: FDDs of the function from Example 1 for two different polarity vec-

tors.

Cross point

e LTTTTTTTTT]

Cross Cross
point1 point2

T TTTTTTT

» ENENEEENEN - EEEENEEEEN
i 1

cl: ... cl:l I I -.. I I I

< HHEEN S | | EEN || ||

(a)

Fig. 4: One-point (a) and two-point (b) crossover operators.

(b)

ators that will be discussed in this section are: Order Crossover ([10], [11]),
Cyclic Crossover ([10], [11]), Partially Matched Crossover ([4], [10], [11])

and Alternating Crossover ([7]).

Algorithm 1 (Cyclic Crossover Operator - CX) :

Step 1. Create a cycle of the genes defined by corresponding positions in
the parent chromosomes starting from first unused gene in the first

parent.

Step 2. Copy the genes from the cycle from one parent in the first child and
from other parent in the second child.

176 S. STOJKOVIC, D. VELICKOVIC, C. MORAGA

Step 3. Repeat steps 1 and 2 by alternating change the target child in which
the genes from one parent is copied.

Example 4 Let we see the following parents:
p1=[12345678910]

P2 =[54692837110]

The first cycle of the genes is created starting from the gene 1 from the
first parent. On the corresponding position in the second parent is the gene
5. Then, we find the gene 5 in the first parent and in the corresponding
position in the second parent is the gene 2. Process is continued until the
cycle is closed. The created cycle is 1 -5 — 2 — 4 — 9 — 1. The child
chromosomes after putting first cycle are:

c=[12_45___9]

c;=1[p4-92___1]

Second cycle is created starting from the gene 3: 3 -6 -8 -7 — 3

Child chromosomes after putting second cycle in the child chromosomes
are:
c1=[126458379]

c2=[543926781]

The last cycle contains only gene 10, and, finally, child chromosomes
are:
c1=[12645837910]

c2=1054392678110]
Algorithm 2 (Order Crossover Operator - OX) :

Step 1. Randomly select two crossover points.

Step 2. Copy in the child chromosome the genes from the first parent between
crossover points.

Step 3. Delete from second parent the genes which are already in the child.

Step 4. Place the genes from the second parent into unfilled positions in child
chromosome from left to right.

Genetic Algorithm for BDD and FDD Optimization 177
Example 5 Let the parent variable orders be given by arrays:
p1=11231456|78910]
p2=16742310951 8]

The crossover points are marked in the first parent. After step one, the
child chromosome is:
c=[_ 456]

After deleting corresponding genes, second parent is:

pr=[674231095 18]

Finally, after putting the genes from second parent, the generated child
18:
c=1[7231456]1091 8]

Algorithm 3 (Partially Matched Crossover Operator - PMX)

Step 1. Perform a two-point crossover.

Step 2. Create the mapping table of the genes from the central part of one
parent that do not appear in the central part of the second parent.
The mapping pair of a gene from position i of the first parent (p1[i])
is the gene at the same position in the other parent (p2[i]) if the gene
p2li] is not in the central part of the first parent, otherwise, if the
poli] = p1[j] the mapping pair of p1[i] is equal to the mapping pair
of the gene p1[j].

Step 8. Eliminate duplicated genes in child chromosomes so that the central
part of the chromosomes remains unchanged. If some gene from the
central part appears again in other parts, replace it by the corre-
sponding mapping pair.

Example 6 Let the parent variable orders be given by arrays:
p1=19841527|136 10]
pe=1[871]2310(954 6]

Let the two-point crossover operator be performed with the crossover
points 3 and 6. The resulting child chromosomes are:

¢ =1984(2310 (136 10]

178 S. STOJKOVIC, D. VELICKOVIC, C. MORAGA
c’2:[871]527\9546]

Let us create a mapping table:

p2[4] = 2 exists in the central part of p1, and it is not mapped.
p2[5] =3 — 2 — 5. Pair (3,5) is added into the mapping table.
p2[6] = 10 — 7. Pair (10,7) is added into the mapping table.

Resulting child chromosomes after duplicate elimination are:

1 =1[984[23101567
c;=1[8101]5279346]

Algorithm 4 (Alternating Crossover Operator - AX) Create the child
chromosome by taking alternatively the genes from the first and the second
parent. Before storing the gene into a child chromosome check whether it
already exists there.

Example 7 Let the alternating crossover be performed over the same par-
ents as in the previous example. The resulting child chromosome is:

c=1[98741523106]

Mutation cannot be realized as it is shown in the previous section, too.
In the literature, three ways for the mutation operation are suggested:

Algorithm 5 (Mutation by one variables exchange) Randomly select
two positions in a chromosome and exchange the variables from the selected
positions.

Algorithm 6 (Mutation by two variables exchanges) Apply two-times
mutation defined in the Algorithm 5.

Algorithm 7 (Mutation by neighbor exchange) Randomly select one
position 1. Exchange the variables from positions i and 1 + 1.

The fitness function in a BDD optimization problem is the size of the
BDD.

Genetic Algorithm for BDD and FDD Optimization 179
4 GENETIC ALGORITHM FOR BDD AND FDD SIZE OPTIMIZATION

In the original PMX algorithm, the central part of the chromosome is trans-
ferred into the child chromosome unchanged. But, the possibility of deleting
a DD node in the reduction phase is greater if the node is at the bottom
levels. It follows that good properties of the parents will be inherited if the
order of the variables on the last levels is not changed. Because of that,we
used a modified PMX algorithm in which the right part of the genes from
parent chromosomes are directly transferred to the child chromosomes. This
operator is named as the Bottom-up PMX, because the genes are written
into the child chromosome from the right to the left, i.e. from the bottom
levels up. The second reason why the part of the unchanged genes is shifted
to the end of the chromosome is that in that case the DD corresponding to
the child chromosome contains an identical set of nodes in the last levels as
the DD corresponding to the parent chromosome and calculation time of the
fitness function is shortened.

Algorithm 8 (Bottom-up PMX Operator - BU-PMX) :

Step 1. Perform an one-point crossover.
Step 2. Create the PMX mapping table for the right part of chromosomes.

Step 3. Eliminate duplicate genes from the left part of child chromosomes by
using the PMX mapping table.

Example 8 Let the Bottom-up PMX operator be performed over parents:
p1=[123456|78910]

pr=[741256193810]

After performing one-point crossover the generated children are:
¢, =1[741256|789 10]
¢hb=[123456193810]

The mapping table contains only the pair (7, 3). After duplicates elimi-
nation, the resulting child chromosomes are:

c1=1[341256(78910]

c2=[127456193810]

180 S. STOJKOVIC, D. VELICKOVIC, C. MORAGA

s L7

1 Xk Xy 1

fo HOfi @A N
(a) (b)

Fig. 5: Positive (a) and negative (b) Davio nodes.

As it was shown in Example 3, the FDD size is dependent on the po-
larity vector. Because of that, in FDD optimization an additional mutation
producing a polarity change is used. To specify the transformation that is
done on the FDD when this mutation is performed, the positive Davio and
negative Davio nodes are shown in Figure 5 ((a) and (b), respectively). In
this figure fo = f(xp = 0) and f1 = f(xx = 1). Let f; and f, be the left
and right successors of the node. If the polarity is changed from positive to
negative, the transformation that is done is:

fl,new = fr,old

4
f’r,new = fl,old b fr,old ()

If the reverse polarity change is done, the applied transformation is:

fr,new = fl,old

)
fl,new = fl,old D fr,old ()

Algorithm 9 (Mutation by polarity change) Randomly select a vari-
able. Change the expansion rule in all nodes at the level corresponding to
the selected variable.

The complete genetic algorithm that is used for BDD and FDD opti-
mization is shown in the Algorithm 10.

Algorithm 10 (Genetic algorithm for DD optimization) :

Step 1. Create initial population of chromosomes and compute the fitness
score for each of them.

Step 2. Select pairs of parents for reproduction.

Genetic Algorithm for BDD and FDD Optimization 181

Number of iterations

40
35
30
25
20
15
10

3 7 13 15

Percents of mutated child chromosomes

Fig. 6: Number of iterations needed to reach the minimum BDD size for the
bw benchmark function as a function of a percents of the mutated child
chromosomes.

Step 3. Create child chromosomes by BU-PMX.
Step 4. Mutate child chromosomes (by mutation probability).

Step 5. Do Darwins process - remove from population the worst chromosome
or more bad chromosomes if the population is full.

Step 6. Repeat steps 2-5 until the goal is reached or the computing time is
exhausted.

5 EXPERIMENTAL RESULTS

5.1 Results of BDD size optimization

At first, we tested how the mutation probability influences the convergence
of the algorithm. Figure 6 shows the number of iterations that is needed
to reach the minimum BDD size for the function bw for different percents
of mutated chromosomes. Each experiment was repeated 100 times and in
the figure the average values are shown. The number of needed iterations
decreases when the percents of the mutated chromosomes increases. For
percents greater than 15 the decreasing is very slow and 0.15 is chosen as an
optimal mutation probability.

Then, we tested the convergence of the proposed algorithm on the set of
a small benchmark functions for which we know the optimal size. We tested
the number of iterations that is needed to reach the minimum BDD size. We
compared these results with results obtained by using the Order Corossover
(OX), Cyclic Crossover (CX), original PMX and Alternating Crossover (AX)

182

Table 1: Number of iterations needed to reach minimum BDD size by using

S. STOJKOVIC, D. VELICKOVIC, C. MORAGA

different crossover operators

Function | In/Out | OX | CX | PMX | AX | BU-PMX
bw 5/25 5.5 7.4 5.9 7.9 5.2
5xpl 7/10 56.1 | 46.6 47.5 72.8 32.1
conl 7/2 97.9 | 76.8 87.2 86.7 71
misex1 8/7 152.5 93 67.7 84.2 107.8
sqrt8 8/4 135.4 | 159.3 | 116.8 | 371.1 113.7
clip 9/5 72.9 75 59.4 | 1944 49.7
operators. The experiments were repeated 10 times and in Table 1 the

average values are shown. Table 1 shows that for 5 out of 6 functions the
smallest BDD size was obtained with the smallest number of iterations when
the BU-PMX operator is used. In these 5 cases, alternating crossover was
the worst. Only for the function misex1 the minimal BDD size was obtained
with less number of iterations when PMX operator is used.

Finally, we optimized the BDD size for benchmark functions of a larger
number of variables. Table 2 compares the sizes of the BDDs with initial
order of variables and with optimal order generated by the genetic algo-
rithm. In each experiment, the initial population contains 2n chromosomes
(permutations) and maximum population size is 10n, where n is the number
of input variables. The table shows that the proposed algorithms reduced
the size of the BDD, on the average, by 46.375%.

5.2 Comparison BDD optimization by proposed genetic algo-
rithm and by other heuristic algorithms

The paper [11] compares the sizes of BDDs optimized by different heuristic
algorithms and with genetic algorithm with 3 types of crossover operators
(OX, CX and PMX). The paper shows that results that were produced by
genetic algorithms are better than results of the other heuristic algorithms.
Table 3 compares the sizes of DDs generated by the genetic algorithm pre-
sented in the paper [11] and by the genetic algorithm that is proposed in this
paper. Table 3 shows that, for the functions with small number of variables,
all algorithms found absolute minimum. For the functions with large num-
ber of variables algorithms that used PMX or BU-PMX operator produced
better results. The algorithm that is proposed in this paper produced the
smallest BDD for 13 out of 15 functions.

Genetic Algorithm for BDD and FDD Optimization 183

Table 2: BDD size for initial variable order and for optimal order generated
by the proposed genetic algorithm

Function | In/Out | INIT | OPTIMAL | Iterations | Red. ratio [%]
alud 14/8 1352 701 300 48
cu 14/11 | 65 37 300 13

misex3 14/14 | 1301 544 300 58
misex3c 14/14 810 443 300 45
table3 14/14 941 752 300 20
b12 15/9 91 60 300 34
tableb 17/15 873 683 300 22
cc 21/20 105 49 400 53
dike2 22/29 976 373 400 62
il 25/16 o8 43 500 26
misex2 25/18 140 86 500 39
vg2 25/8 1059 84 200 92
fregl 28/3 203 89 600 26
c8 28/18 145 93 600 36
in4 32/20 1109 410 600 63
unreg 36/16 146 81 600 45
Average 46.375

5.3 Results of FDD size optimization

As was shown above, the FDD size is dependent on the variable order and
the polarity. To determine the mutation that should be used in FDD opti-
mization, a genetic algorithm with different mutation operators is performed
on the set of function of a small number of variables (less than 10). Table
4 shows sizes of FDDs when:

e the initial order of variables and positive-polarity is used (INIT),

e the genetic algorithm with mutation by variables exchange is used
(GAVE),

e the genetic algorithm with mutation by polarity change is used (GA,
PC), and

e the genetic algorithm with both mutation operators (with probabilities
0.5) are used (GA,VE+PC).

184

Table 3: Comparision of sizes of BDDs produced by the proposed algorithm
and by the existing genetic algorithm with OX, CX and PMX

S. STOJKOVIC, D. VELICKOVIC, C. MORAGA

crossover operators

Function | In/Out | OX | CX | PMX | BU-PMX
squarb 5/8 37 | 37 37 37
bw 5/28 106 | 106 106 106
5xpl 7/10 | 68 | 69 | 68 68
conl 772 | 16 | 15 | 15 15
e 779 | 72 | 72 | 72 72
misex1 8/7 36 | 36 36 36
sqrt8 8/4 33 | 33 33 33
clip 9/5 102 | 109 93 93
sao2 10/4 92 | 90 85 85
alud 14/8 891 | 939 734 701
b12 15/9 70 68 50 60
t481 16/1 85 78 30 38
duke2 22/9 506 | 512 390 373
misex2 25/18 100 | 102 87 86
vg2 25/8 339 | 301 148 84

It can be seen from the table that the FDDs with minimal sizes are
generated when both mutations are used in the genetic algorithm. Because of
that, in the experiments for optimization of FDDs of the functions of a larger
number of variables (greater than 10), the approach with both mutation
operators is used. Results of these experiments are shown in Table 5. As
it can be seen from this table, FDDs are reduced by the proposed genetic
algorithm, on the average, by 48.875%.

These experiments are done with the functions up to 25 variables. It
is applicable on the functions with large number of variables, because the
number of cases that are checked in the algorithm is determined by three
parameters:

e number of crossover operations that is done in one iteration (C'X),
e possibility of applying of mutation operator (p,,), and

e maximal number of iterations (IT).

Total number of created DDs is:

Genetic Algorithm for BDD and FDD Optimization 185

Table 4: Initial FDDs sizes and sizes of FDDs generated by genetic algo-
rithms with different mutation operators

Function | In/Out | (INIT) | (GA,VE) | (GA,PC) | (GA, VE+PC)
add?2 4/3 8 7 7 7
squarb 5/8 32 30 29 29
bw 5/28 144 97 93 93
inc 779 121 79 78 73
Blm 8/8 10 34 27 20
sqrt8 8/4 48 25 26 24

Table 5: FDD size for initial variable order and positive-polarity and for
order and polarity generated by the proposed genetic algorithm

Function | In/Out | INIT | OPTIMAL | Iterations | Red. ratio [%]
alud 14/8 840 541 300 36
cu 14/11 74 37 300 50
misex3 14/14 | 1024 764 300 25
misex3c 14/14 759 635 300 16
b12 15/9 116 62 300 47
cC 21/20 78 40 400 49
misex?2 25/18 149 37 500 75
vg2 25/8 942 68 500 93
Average 48.875

N=CX-(1+pn)-IT

If we need smaller DD, the number of C'X and IT should be greater.
If the execution time is critical, CX and IT should be smaller. In our
experiments:

CX =2-n,
Pm = 0.15,
IT = [n/5] - 100.
N =2-n-1.15-[n/5] - 100 ~ 46 - n?.

It is much smaller than when the brut-force exact algorithm in which
N =2".nl

186 S. STOJKOVIC, D. VELICKOVIC, C. MORAGA

6 CONCLUSION

In this paper, a genetic algorithm for BDD and FDD optimization is pre-
sented. In the algorithm a modification of the PMX operator is proposed:
in the initial phase, instead of two-point crossover, one-point crossover is
used. It follows that in the generated DD based on child permutation, part
of the DD in the last levels is equal to the corresponding part of DD gener-
ated by the parent chromosome. In this way, the child chromosome inherits
good properties of parent chromosome. In the case of FDD optimization,
the proposed algorithm introduced mutation of polarity. Experiments show
that when this mutation is used in combination with variable exchange, the
genetic algorithm gives the best results. In the presented algorithm, sifting
is not used as an additional method to improve the generated diagrams.
Our goal was to show the performances of the genetic algorithm. In a real
application of the algorithm, sifting can be included, too.

REFERENCES

[1] R. E. Bryant, “Graph-based algorithms for boolean function manipulation,”
IEEFE Transactions on Computers, vol. C-35, no. 8, pp. 677-691, 1986.

[2] S. J. Friedman and K. J. Supowit, “Finding the optimal variable ordering
methods for binary decision diagrams,” IEEE Transactions on Computers,
vol. 39, no. 5, pp. 710-713, 1990.

[3] R. Rudell, “Dynamic variable ordering for ordered binary decision diagrams,”
in Proceedings of International Conference on CAD, 1993, pp. 42-47.

[4] R. Drechsler, B. Becker, and N. Gockel, “A genetic algorithm for variable
ordering of ob-dds,” in IEE Proceedings Computers and Digital Techniques,
vol. 143, no. 6, 1996, p. 363368.

[5] R. Drechsler and N. Gockel, “Minimization of bdds by evolutionary algo-
rithms,” in International Workshop on Logic Synthesis (IWLS), 1997.

[6] R. Drechsler, B. Becker, and N. Gockel, “Learning heuristics for obdd mini-
mization by evolutionary algorithms,” in Proceedings Parallel Problem Solving
from Nature (PPSN), Lecture Notes in Computer Science, vol. 1141, 1996, pp.
730-739.

[7] W. Lenders and C. Baier, “Genetic algorithms for the variable ordering prob-
lem of binary decision diagrams,” Lecture Notes in Computer Science, vol.
3469, pp. 1-20, 2005.

[8] I. Furdu and B. Patrut, “Genetic algorithm for ordered decision diagrams
optimization,” in Proceedings of ICMI 45, 2006, pp. 437-444.

[9]

Genetic Algorithm for BDD and FDD Optimization 187

I. Furdu and T. Socaciu, “Genetic algorithm for variable ordering of ordered
binary decision diagrams,” in Proceedings of CNMI, 2007, pp. 67-78.

R. Kaur and M. Bansal, “Bdd ordering and minimization using vari-
ouscrossover operators in genetic algorithm,” Inernational Journal of Inno-
vative Research in Electrical, Electronics, Instrumentation and Control Engi-
neering, vol. 2, no. 3, pp. 1247-1250, 2014.

S. Jindal and M. Bansal, “A novel and efficient variable ordering and min-
imization algorithm based on evolutionary computation,” Indian Journal of
Science and Technology, vol. 8, no. 48, pp. 1-10, 2016.

M. Hilgemeier, N. Drechsler, and R. Drechsler, “Minimizing the number of
one-paths in bdds by an evolutionary algorithm,” 2003.

S. Shirinzadeh, M. Soeken, and R. Drechsler, “Multi-objective bdd optimiza-
tion with evolutionary algorithms,” 2015, pp. 751-758.

S. Stojkovié, M. Stankovié¢, and C. Moraga, “Complexity reducton of toffoli
networks besed on fdd,” Facta Universitatis, Ser. Electronics and Energetics,
vol. 28, no. 2, pp. 251-262, 2015.

S. Stojkovié, M. Stankovi¢, C. Moraga, and R. Stankovi¢, “Procedure for fdd-
based reversible synthesis by levels,” 2016, pp. 1-6.

