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ENUMERATION AND CODING METHODS FOR A CLASS OF
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Abstract. We introduce a great variety of coding methods for boolean sparse invertible
matrices and we use these methods to create a variety of bijections on the permutation
group P(m) of the set {1,2,....m}. Also, we propose methods for coding, enumerating
and shuffling the set{0,....2m—1}, i.e. the set of all m-bit binary arrays. Moreover we
show that several well known reversible logic gates/circuits (on m-bit binary arrays)
can be coded by sparse matrices.
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1 INTRODUCTION

Let m > 2 be a natural number and P(m) be the group of permutations of
the set {1,...,m}. In this work we introduce a variety of shuffling methods.
More precisely, each shuffling method is a bijective map of a set onto itself,
i.e. different inputs yield different outputs and the number of inputs and
outputs are equal.

Our main theorem 2 in section 3 or its ”binary” version (see theorem 3
in section 4), states that any pair (p, s) of permutations in P(m) determines
a bijective map

Tpe:{0,1,...,2" —1} = {0,1,....,2" — 1}
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Since every non negative integer n € {0,1,....,2™ — 1} can be expressed
either as an m-bit binary array

e, = (e0(n),e1(n), ...,em—1(n)), €5 € {0,1},

or by its dyadic expansion

m

n= Zsj(n)2j_l,

j=1

the above map 7}, s can be considered as a reversible map on the set of all
m-bit binary arrays. In a different terminology, we can say that in theorem
3 we introduce reversible logic gates, i.e bijective maps on the set of m-bit
binary arrays, (see [1]). An example of a reversible gate is the NOT gate,
whereas the AND, OR, XOR gates are irreversible (not reversible), because
they map 4 = 22 input states into 2 = 2! output states, so information is
lost in the merging of paths.

A second target of this work is to enumerate and code permutations
in P(m) of large length (note that the cardinality of the set P(m) is m!).
Therefore, a reversible map 7}, ; associated with the pair (p,s) can be coded
either by the pair (p, s) or by an enumeration of P(m) x P(m) as in section 2.
This coding method is associated with a particular class of sparse boolean
invertible matrices introduced in [2] (see also [3-6]). Notice that sparse
matrices are very useful for fast processing/transmission of data and they
have been effectively used in [6] for detecting specific characteristics on finite
data.

The paper is organized in the following sections:

In section 2 we introduce our main tool, the invertible map P(m) — S(m)
(see (2) and (3)) and in Proposition 1, we see that this map induces the
lexicographic order of the enumeration of P(m). Moreover we consider the
cartesian product R(m) = P(1) x P(2) x ... x P(m) of permutations to show
in theorem 1 that each fixed element of R(m) provides an enumeration of
P(m).

In section 3 we define a class of sparse m x m boolean invertible matrices
Z,, identified by a pair (p, s) € P(m)x.S(m) and we use this class of matrices

to produce a class of non-linear bijection maps

TQ7P75 : {07 7qm - 1} - {07 7qm - 1}7

see our main theorem 2.
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In section 4 we show that any triple (p,s,7) of permutations in P(m)
provides a variety of maps from {0,...,2™ — 1} onto {0,...,2™ — 1} and we
see that several reversible logic gates can be determined by this triple.

Finally, in section 5 we apply theorems 1 and 2, to see with an example
that for any pair (p,s) € P(m) x S(m) and any fixed r € R(2") we shuffle
the elements of the set {0, ...,2™ —1} and we discus the random permutation
generation problem.

2 ENUMERATION METHODS FOR P(m)

Let m > 2 be a natural number. First we review the lexicographical order
of the set

S(m) ={s=(s1,...,sm) : si € {1,2,...;i}}. (1)

Obviously, the map

Si—l

(2)

m
. | . — |
U:8(m) —{0,..,ml =1} : U(s) =m!> g
i=1
is a bijection and the elements s; € {1,...,7} can be thought of digits of the
number U (s) with respect to the factorial number system. Inversely, for any
n € {0,...,m! — 1}, its digits s;(n), i = 1,...,m are computed by the formula

si(n) = Mod([n—ﬂ,l) +1
m!
describing the inverse map U~'. Here, [z] is the floor of x. From now
on we say that U provides the lexicographical order of S(m). Using the
lexicographical order of S(m) we may obtain an enumeration of the group
of permutations P(m) of the set {1,...,m} as well. In fact, let us define the
map

Q:P(m)— S(m):Q(p) =s=(S1,...,Sm)s (3)

where each element s; € S(m) is defined by using the following iteration
scheme:

For the above selection of m and the initial permutation p in (3), we
store the position of the biggest element in p, i.e. we define

S = p H(m)
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and at the same time we delete this element p(s,,) = m from p and so we
form a new permutation p(,,_1y € P(m — 1) by

N p(5) ifj <sm . .
P(m—1)(J)—{ p(41) G s ,j=1,..,m—1.

Then we follow the previous step for the permutation p(,,_1), i.e. we store
the position of its biggest element by defining

Sm—1 = p(_nll_l)(m -1)
and at the same time we delete the element m — 1 from p(,,_;) and we form

a new permutation p(,_s € P(m —2) by

N p(m—l)(]) if j < sm—1 =1 _9
p(m,z)(]) { p(m—l)(]"‘ 1) lfj > smo1 J y ey M .

We continue in the same spirit until S is completely determined.

Example 1 Letp = (2,3,4,1). In order to determine the set S = {s1, 2, s3, S4}
in (3) we are based on the above iteration scheme and so we proceed in the
following way:

(i) Define sy = p~*(4) = 3 and pz) = (2,3,1).
(ii) Define s3 = p@%(?)) =2 and pa) = (2,1).
(iii) Define sy = p(;;(z) =1 and p) = (1).

(iv) Define s = p(_ﬁ(l) =1 and py = 0.
Now we have the following;:

Proposition 1 [2] Let U and Q be two maps as in (2) and (3) respectively.
Then @Q is a bijection and so the composition map

UQ: P(m)—{0,..,m! —1}

provides an enumeration of P(m).
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Example 2 For m = 4, we demonstrate the enumeration of the elements
of P(4) derived from Proposition (1) and the lexicographical order of the
elements of S(4) derived from (2).

P4) = {(4,3,2,1),(3,4,2,1),(3,2,4,1),(3,2,1,4),

(4,2,3,1),(2,4,3,1),(2,3,4,1),(2,3,1,4),
(4,2,1,3),(2,4,1,3),(2,1,4,3),(2,1, 3,4),
(4,3,1,2),(3,4,1,2),(3,1,4,2),(3,1,2,4),
(4,1,3,2),(1,4,3,2),(1,3,4,2),(1,3,2,4),
(4,1,2,3),(1,4,2,3),(1,2,4,3),(1,2,3,4)}.

{(1,1,1,1),(1,1,1,2), (1,1,1,3),(1,1,1,4),
(1,1,2,1),(1,1,2,2),(1,1,2,3), (1,1,2,4),
(1,1,3,1),(1,1,3,2),(1,1,3,3),(1,1,3,4),
(1,2,1,1),(1,2,1,2),(1,2,1,3), (1,2, 1,4),
(1,2,2, 1),(1 2,2, 2),(1 2,2,3),(1,2,2,4),
(1,2,3,1),(1,2,3,2), (1 ), (1 )

,2,3,3),(1,2,3,4)}.

)

For instance, the permutation p = (4,3,2,1) is uniquely associated with the
set

Qlp)=(1,1,1,1)
(apply example 1) and then
UQ(p) =
by (2). In the same spirit, the permutation p = (3,4,2,1) is uniquely asso-
ctated with the set
Qlp) =(1,1,1,2)
(apply example 1) and then
UQ(p) =1

by (2).

Remark 1 The set S(m) in (1) seems to be similar with a Lehmer code [7],
but our approach seems to be more efficient for the purpose of obtaining a
great variety of enumerating methods for P(m), see theorem (1) below. We
notice that the Lehmer code of a permutation p = (p1,....pm) s a sequence
of natural numbers (L1, ..., Ly,) such that L; is the number of all elements
Pl - Pi—1 Which are less than p;, 1 =1,...,m.
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We may obtain various enumerations of the elements of S(m) (and hence
P(m) as well). Indeed, let us fix any element

r= (7“1,’!”2,...,7“m) S R(m) = P(l) X P(2) X ... X P(m), (4)
where
ri = (ri1,..1i) € P(i), i=1,..,m.

Then we have:

Theorem 1 Let S(m) be defined in (1) and r be a fized element of R(m)
as in (4). For any s € S(m) we define

Wﬁm(s) = (T1,81 y 2,505 05 Tm,sm)

Then the map W, ,, is onto S(m).

Proof: Let us fix an element r € R(m). Since r; 5, < i (due to the fact that
ri € P(i)), we deduce that W, ,,(s) € S(m). Also, the fact that r; ; < i for
any j = 1,...,¢ implies that W, ,, is onto S(m), because any element s; of
s = (81,.-,8m) can be written by s; = r; 4(;) for some index a(i) < i and so
by defining a = {a(i) : i =1,...,m} we have W,.,,,(a) = s.

Let U be as in (2) and W,,, be as in theorem 1. It is easy to see that
the map

UW,mU ™ {0, ...;m! — 1} — {0, ...,m! — 1}

provides a method for shuffling the set {0,...,m! — 1}. By altering the se-
lection of r € R(m) in (4) we obtain a different shuffling. Finally, it is clear
that the class of mappings

{QW,, U 17 € R(m)}

provides a great variety of enumeration/shuffling methods for the set of
permutations P(m).

Example 3 For m = 4 and r = {(1),(2,1),(2,1,3),(4,2,1,3)}, then by
using theorem 1, the lexicographical order of S(4) (see example 2) is shuffled
to:

{(1,2,2,4),(1,2,2,2),(1,2,2,1),(1,2,2,3),
(1,2,1,4),(1,2,1,2),(1,2,1,1), (1,2,1,3),
(1,2,3,4),(1,2,3,2),(1,2,3,1),(1,2,3,3),
(1,1,2,4),(1,1,2,2),(1,1,2,1),(1,1,2,3),
(1,1,1,4),( ) ( ) ( )
( ), ( ( ), ( )

Y ) )

1,1,1,2

Y ) )

1,1,1,1

Y ) )

(L1 1,3
1,1,3,4),(1,1,3,2),(1,1,3,1),(1,1,3,3

) )

}.
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If Q is defined in (3), then by using the composition map
QWU !
we obtain the following enumeration of the set P(4):

{(1,2,3,4),(1,4,2,3), (4,1,2,3), (1,2,4,3),

(2,3,1,4),(2,4,3,1),(4,2,3,1),(2,3,4,1),
(3,2,1,4),(3,4,2,1), (4,3,2,1), (3,2,4, 1),
(2,1,3,4),(2,4,1,3),(4,2,1,3), (2,1,4, 3),
(1,3,2,4),(1,4,3,2),(4,1,3,2), (1,3,4,2),
(3,1,2,4),(3,4,1,2),(4,3,1,2),(3,1,4,2)}.

3 A CLASS OF BOOLEAN MATRICES CODED BY PERMUTATIONS AND
A CLASS OF BIJECTION MAPS

Before we introduce a class of bijection maps on {0, 1, ...,¢™ — 1} for any pair
of natural numbers m,q > 2, we present as in [2] a class of sparse boolean
matrices and their properties.

Definition 1 For any natural number m > 2 we define by Z,, the class of
all m x m boolean matrices whose row vectors Z; satisfy

Z; ® Zj = Cij Zrnax{i,j} DG € {0, 1}, 1,7 =1,...,m,

where ® is the usual Hadamard product operation.

Then the following result is straightforward:

Lemma 1 [2] Let A be an m x m boolean matriz and let 1 < i < j < m.
Then A € Z, if and only if supp{A;} C supp{A;} or supp{A;}Nsupp{A;} =
(0. Here, supp{A;} denotes the set of all non zero entries of the row A;.

In [2] we proved the following:

Proposition 2 Let P(m) and S(m) be defined in section 2. Then every
matriz in the class Zy, is uniquely identified by a pair (p,s) € P(m) x S(m).

Using the above observations we may easily construct elements in the above
class of Z,, matrices. Indeed, let us fix a pair (p,s) € P(m) x S(m) which
determines a matrix Z € Z,, in a unique way. From the pair (p, s) we may
construct Z in the following manner:
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(i) First, we use p to permute the rows of the identity matrix I,,, and so
we construct an m X m permutation matrix, say Zi.

(ii) Starting with the above matrix Z;, we construct a sequence {Z;}",
of m x m matrices iteratively, by using s € S(m). In the i*" step of
this iteration, a matrix Z; is constructed from the matrix Z; 1 based
on the following rule:

(a) If S; = i, define Zz = Zi—l-
(a) If s; < i, define Z; by replacing only the s;-row of Z;_; with the

sum of the i-row and s;-row of Z;_.

(iii) Execute step (ii) for any ¢ = 2,...,m. Then Z = Z,, is a matrix in the
class Z,,.

Example 4 Let m =5, p = (4,1,2,5,3) and s = (1,1,3,1,3). Then the
element Z € Zs associated with the above pair (p, s) is the following

10 011
10 000
Z=1011 00
0 0001
00100

It is remarkable that any matrix Z in the class Z,, (which depends only on a
pair (p, s)) is invertible and the entries of inverse matrix Z ! are immediately
computed by the above pair (p, s):

) 1 i = p(j)
Zib =3 <1, i=p(s() and s() < j , ij=1em.  (5)
0 otherwise

Example 5 If Z € Z5 is as in example (4), then the inverse matrix of Z is
calculated directly from (5):

01 0 0 O
0 0 1 0 -1
Z7'=]10 0 0 0 1
1 -1 0 -1 0
00 0 1 0
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We consider now a matrix Z ! as above corresponding to a pair p = (p1, ..., pm) €
P(m)and s = (81, ..., 5,,) € S(m). We shall use Z~! to define a new shuffling
method. By elementary calculations, for any real row vector e = (eq, ..., €,,)

we obtain

(ez7h),=ep— (1= 6is)ep,, i=1,....m. (6)

Here, 0; ; denotes the usual Kronecker’s delta symbol. Inspired from (6) we
have:

Theorem 2 Let m,q > 2 be natural numbers, p = (p1, ..., pm) € P(m) and
s = (s1,...,5m) € S(m). We define the set

E;g) g {en = (677,717 ...,en’m) L n= 0’ 7qm - 1}’

where e, is the sequence of digits of n € {0,...,q™ — 1} with respect to its
q-adic expansion
m
n = Z em-ql_l.
i=1
Then the map

such that for any i =1,...,m

Ty.p.s (en)i = Mod(en”oi — (1 — (51'731.)6”7/)51_, q)
is a bijection.

Proof: For any natural numbers m, ¢ > 2 we fix a pair (p, s) € P(m) x.S(m)
and we consider the above operator T , ;. From now on we write

T'=Tgp,s

for simplicity. let T'(ex) and T'(e,) be two sequences for some pair (k,n) €
{0, ...,¢™ —1}2. Notice that the elements of e, and e, belong in {0, ...,q—1}
by definition. Assume that

T(er) =T(en) = T(er)i=T(en), Vi=1,...,m. (7)

If i = 1 in (7), then by recalling the definition of S(m) in (1) we have s; = 1,
SO
T(ex)1 =T(en)1 = Mod(ek,pl,q) = Mod(en,pl,q).
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Hence
€k,p1 = €n,p1-

If i = 2, then s9 € {0,1}. For so = 2 we immediately obtain
€k,ps = €n,py-

For so = 1 we have
T(ek)z = T(en)z
= MOd (€k7p2 - ek7P52 ’ q) = MOd (en»P2 - enszQ ’ q)

= ]\Jod(ek’p2 — empl,q) = ]\4061l(ew2 — enm,q),
where the last equality was derived from the fact that ey, = e, ,, as we
showed above. Hence, either
€k,p2 ~ En,p1 = €n,py T En,py = €kpy = Enypy
or
q— (ek7p2 - en,pl) =q— (en,m - en,ﬂl) = €k,ps = Cn,pa-

Therefore, in any case we obtain

€h,ps = Cnypy-
We proceed in the same manner for the remaining values ¢ = 3, ..., m obtain-
ing
hp; = €nyp;> Vi =1,...,m.
Since p is a permutation, necessarily
ki = €ni, Vi=1,...m

and the proof is complete.

It is clear that the above operator T} , s provides a code for shuffling the
elements of the set {0, ...,¢™ — 1}.

Example 6 Let g=3, p=(2,1), s=(1,2) and
B = {(0,0),(0,1), (0,2), (1,0, (1, 1), (1,2), (2,0),(2,1), (2,2)}.

Then by the above definition of T, , s we obtain
(0,0) = (0,0), (0,1) = (1,0), (0,2) — (2,0),
(1,0) = (0, 1), (1,1) = (1,1), (1,2) = (2,1)

%
— (2,
(2,0) = (0,2), (2,1) = (1,2) and (2,2) — (2,2)

9

or
Ty ps:{0,1,2,3,4,5,6,7,8} — {0,3,6,1,4,7,2,5,8}.
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4 (ON REVERSIBLE GATES

In this section we see that several of the well known reversible gates can be
obtained by the bijection maps of theorem 2. First, we modify theorem 2 as
follows:

Theorem 3 For any natural number m, let (p,s) € P(m) x S(m) be as in
theorem 2 and

E, ={e,:=(en1,..,enm): n={0,..,2" —1}}
be the set of all m-bit arrays. Then:

(i) The map
T,o: En— En

such that for any j =1, ..., m we have
Tps(en)j = }ennﬂj —(1- 5]',8(]'))6”:/%(]')‘
s a bijection.
(ii) For any permutation 7 € P(m) we denote by
L.(e,) = (en,7(1)7 ey enﬁ(m))

the element of E,, obtained from shuffling e, by the permutation T.
Then
L.T,;: Ey, — Ey

s a bijection too.

Proof: (i). It is a direct consequence of theorem 2 for ¢ = 2.
(ii) It is immediate.

Example 7 The Feynman Gate. It is a 2-bit reversible map such that
(0,0) — (0,0), (0,1) — (0,1),

(1,0) = (1,1) and (1,1) — (1,0).

According to theorem 3, this gate corresponds to the map T, 5, where

p=1(1,2) and o = (1,1).
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In a different notation this gate can be uniquely described by a matriz in the
class Zy associated with the above pair (p,s) € P(2) x S(2) (see definition 1

or example 4)
1 1
(31

Also, in a different notation this gate can be described by the following 4 x 4
matriz (by concatenating the corresponding inputs and outputs)

0000
01 01
1 011
1110

Example 8 The Double Feynman Gate. [t is a reversible map on the
3 bit binary arrays so that

(0,0,0) — (0,0,0), (1,0,0) — (1,1,1), (0,1,0) — (0,1,0),
(1,1,0) = (1,0,1), (0,0,1) = (0,0,1), (1,0,1) — (1,1,0),
(0,1,1) = (0,1,1) and (1,1,1) — (1,0,0).
According to theorem 3, this gate corresponds to the map T), ,, where
p=1(1,2,3) and o = (1,1,1).
In a different notation, this gate can be uniquely described by a matrixz in the
class Zs3 associated with the above pair (p,s) € P(3) x S(3) (see the above
definition 1 or example 4)
111
Zps=10 10
0 0 1

Also, in a different notation this gate can be described by the following 8 X 6
matriz (by concatenating the corresponding inputs and outputs)

000 00O
001001
010010
011011
1 001 11
1 01110
110101
111100
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Fig. 1: The set of points {(n,T5,s(n)) : n € Ig} for the selection of the pair
(p,s) as in example 9. Recall that the map 75 , 5 is a bijection on the
set Ig providing a shuffling method for Ig.

We mention here that the 2-bit Swap gate can be also implemented by
the map T}, s by selecting p = (2,1) and s = (1,2). However, the 3-bit Toffoli
and Fredkin gates cannot be implemented via T}, ;.

5 CODING PSEUDORANDOM PERMUTATIONS

We apply theorem 2 to give by an example a method to code a pseudo-
random permutation in P(2™). For any (p,s) € P(m) x S(m) and a fixed
random permutation 7 € R(2™) we shuffle the image of T5 , s by the compo-
sition map W,.2T% , s for some particular selection of 7 € R(2%) (see theorem
1) and we obtain a pseudo-random permutation coded by a triple (p, s, 7).

Example 9 Let p = (5,7,6,3,4,8,1,2) and s = (1,1,1,4,5,2,7,3). Figure
1 shows how the bijective map T5 , s of theorem 2 shuffles the elements of
the set Is = {0, ...,28 — 1}. In figure 2 we use a fived element r € R(2%) (see
theorem 1) and we shuffle the set Is by means of the composition operator
Wi 2T, 5. In this case, the graph appears to be more "randomly” distributed
than the graph of figure 1.

In conclusion, we demonstrated a variety of new enumeration/shuffling
methods for the group of permutations. We also proposed a class of bi-
jections for sets of natural numbers based on efficient coding methods for
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Fig. 2: The set of points {(n, Wy2T55(n)) : n € Ig} for some r € R(2®) and
(p,s) as in example 9.

sparse boolean matrices. We also discussed possible connections of the shuf-
fling problem with the random permutation generation problem. According
to [8,9], any permutation in P(m) can be almost uniformly randomly dis-
tributed using mlog(m)/2. This observation may be important for establish-
ing a connection between our shuffling method and the random permutation
generation problem in future.We believe that this direction is very promising.
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