
FACTA UNIVERSITATIS
Series: Electronics and Energetics Vol. 31, No 3, September 2018, pp. 461-485
https://doi.org/10.2298/FUEE1803461A

EFFICIENT IMAGE COMPRESSION AND DECOMPRESSION

ALGORITHMS FOR OCR SYSTEMS


Boban Arizanović, Vladan Vučković

Faculty of Electronic Engineering, Computer Department, Niš, Serbia

Abstract. This paper presents an efficient new image compression and decompression

methods for document images, intended for usage in the pre-processing stage of an

OCR system designed for needs of the “Nikola Tesla Museum” in Belgrade. Proposed

image compression methods exploit the Run-Length Encoding (RLE) algorithm and an

algorithm based on document character contour extraction, while an iterative scanline

fill algorithm is used for image decompression. Image compression and decompression

methods are compared with JBIG2 and JPEG2000 image compression standards.

Segmentation accuracy results for ground-truth documents are obtained in order to

evaluate the proposed methods. Results show that the proposed methods outperform

JBIG2 compression regarding the time complexity, providing up to 25 times lower

processing time at the expense of worse compression ratio results, as well as

JPEG2000 image compression standard, providing up to 4-fold improvement in

compression ratio. Finally, time complexity results show that the presented methods

are sufficiently fast for a real time character segmentation system.

Key words: Image processing, image compression, image decompression, OCR,

machine-typed documents, machine- printed documents

1. INTRODUCTION

Character segmentation still presents a considerable challenge in image processing

and other related computer science fields [1], and is a very important pre-processing stage

in Optical Character Recognition (OCR) systems [2-4]. Character segmentation and

character recognition [5-8] have been important subjects of research for many years [9].

Outside of the OCR systems scope, much recent work deals with extracting characters

from natural and other non-document images. Taking the recent work into consideration,

it is noticeable that the difficulty of character segmentation is usually underestimated

compared to the process of character recognition [10,11]. Related works may be

classified into those that analyze the character segmentation approach in natural images

[12-14], and others that deal with character segmentation in document images. The

Received December 22, 2017; received in revised form April 30, 2018
Corresponding author: Vladan Vuĉković

Faculty of Electronic Engineering, Computer Department, P.O. Box 73, 18000 Niš, Serbia

(E-mail: vladanvuckovic24@gmail.com)

462 B. ARIZANOVIĆ, V. VUĈKOVIĆ

second group includes machine-printed documents [10,15-18], where the document

structure and the shape of its elements are regular, and handwritten documents where

character segmentation is challenged due to irregular document structure [11,19-29]. Old

machine-typed documents are of particular significance because important historical

documents are often in this form [8,30-32].

Recent research includes all levels of character segmentation. Many approaches for

skew estimation, as a part of a skew correction process, are modifications of the Hough

transform [33-35], with some based on correlation functions or straight line fitting [36,37].

Analyses on document image binarization parameters showed that the Otsu method and

other Otsu-based methods give the best results on average [32]. A learning-based approach

for finding the best binarization parameters was presented in [38]. Document image

compression and decompression methods can also be exploited in the pre-processing stage

of the character segmentation system, in order to efficiently store the document images. A

survey of image compression algorithms used in wireless multimedia sensor networks

(WMSN) was presented in [39]. Compression of large Arabic textual images based on

pattern segmentation is achieved using the approach proposed in [40]. Genetic algorithm

based on discrete wavelet transformation information for fractal image compression was

presented in [41]. Combination of the lapped transform and Tucker decomposition, named

as hyperspectral image compression, was proposed in [42]. A lossy image compression

technique based on singular value decomposition (SVD) and wavelet difference reduction

(WDR) was proposed in [43]. Taking the character segmentation into account, many

methods have been proposed. A technique based on searching for connected regions in the

spatial domain performed on a binary image was proposed in [44]. A character

segmentation method based on Gaussian low-pass filter and innovational Laplace-like

transform was proposed in [45]. Segmentation process adapted for real time tasks is

proposed in [46] and is based on the Bayes theorem in order to exploit prior knowledge. A

novel approach was proposed in [47] based on the usage of contour curvature of letters for

identifying the writer of ancient inscriptions and Byzantine codices, without requiring

learning algorithms or a database. Diverse methods for segmentation of handwritten

documents are proposed [26]. Some techniques exploit clustering in the process of

segmentation [28,48]. Gabor filter for feature extraction and Fisher classifier for feature

classification were exploited in [49]. To solve the problem of touching characters in

handwritten documents, self-organizing maps, SVM classifiers, and Multi-Layer Perceptron

are used [21,27,50,51]. For natural images, tensor voting and the three-color bar code for

segmentation have been combined [14,52].

This paper presents further improvements of the authors‟ character segmentation

approach, which forms part of a real time OCR system for the needs of the “Nikola Tesla

Museum” in Belgrade [53-56]. This paper presents pre-processing methods for document

image compression and decompression, which take place after the image binarization.

The proposed compression algorithms are based on the RLE data compression algorithm

and document character contour extraction, while decompression algorithm exploits the

scanline fill algorithm. Together with skew estimation and correction [54], and the image

filtering stage, which concludes with image binarization process, this pre-processing is

executed independently before the actual segmentation stage. This offers the opportunity

to prepare document images for further processing later, to store document images in a

compressed form, to use the improved character segmentation and recognition software

independently from the pre-processing stage, and also to test independently the character

 Efficient Compression and Decompression Algorithms for OCR Systems 463

segmentation and recognition stages. The results show that the proposed image

compression and decompression methods perform up to 25 times faster than JBIG2

compression at the expense of much lower compression ratio, and are better than JPEG2000

image compression in its lossless mode, giving up to 4-fold improved compression ratio.

Compression quality proved to be unimportant with regards to character segmentation

accuracy. Additionally, the evaluated image compression and decompression methods

proved to be quite efficient and suitable for use in real time system.

This paper is organized as follows: Section 2 provides a description of the related works

which deal with image compression, as well as a description of the previously proposed

character segmentation approach. Section 3 offers a theoretical foundation for bi-level

image compression standards and JPEG/JPEG 2000 image compression standards used for

comparison with the proposed algorithms, as well as a description of the RLE algorithm

and a scanline fill algorithm used for the proposed methods. Section 4 provides the

complete description of the proposed image compression and decompression methods.

Pseudo-codes for the proposed image compression and decompression methods are given in

Section 5, including the suggestion for the optimal implementation. In Section 6, a large set

of experimental results for image compression methods, obtained on different PC machines

is provided. Image compression and decompression results from the aspect of compression

ratio and time complexity are analyzed in Section 6, including segmentation accuracy

results for compressed document images. Finally, discussion of the extended real time

character segmentation method, results, and future work are given in Section 7.

2. RELATED WORKS

This section gives more detailed descriptions of other image compression methods

and authors‟ existing character segmentation approach.

A novel universal algorithm for lossless chain code compression with a new chain

code binarization scheme was proposed in [57]. The compression method is based on the

RLE algorithm and the modified LZ77 algorithm. Compression consists of three modes:

RLE, LZ77, and COPY mode. The runs of the 0-bits are compressed using RLE, the

simplified LZ77 algorithm handles the repetitions within the bit stream, and COPY mode

is used if the aforementioned two methods are unsuccessful. On average, this method

achieves better compression results than state-of-the-art methods.

An image compression technique for video surveillance based on dictionary learning

was presented in [58]. The main concept exploits the camera‟s being stationary, giving

image samples a high level of similarity. The algorithm transforms images over sparsely

tailored, over-complete dictionaries previously learned directly from image samples, and

thus the image can be approximated with fewer coefficients. Results show that this

method outperforms JPEG and JPEG2000 in terms of both image compression quality

and compression ratio.

An image compression technique which combines the properties of predictive coding

and discrete wavelet coding was proposed in [59]. To reduce inter-pixel redundancy, the

image data values are pre-processed using predictive coding. The difference between the

predicted and the original values are transformed using discrete wavelet coding. A non-

linear neural network predictor is used in the predictive coding system. Results show that

this method performs as well as JPEG2000.

464 B. ARIZANOVIĆ, V. VUĈKOVIĆ

A multiplier-less efficient and low complexity 8-point approximate Discrete Cosine

Transform (DCT) for image compression was proposed in [60]. An efficient Graphics

Processing Unit (GPU) implementation for the presented DCT is provided. It is shown to

outperform other approximate DCT transforms in JPEG-like image compression.

The image compression and decompression methods proposed in this research are

intended for usage in the authors‟ existing character segmentation approach. Vuĉković

and Arizanović [53] proposed an efficient character segmentation method for machine-

typed documents and machine-printed documents based on the usage of projection profiles.

The method consists of pre-processing and segmentation logic. The pre-processing of the

character segmentation is focused on manual document skew correction [54], document

image grayscale conversion (to perform the document image binarization), and noise

reduction. This paper provides an extension of the pre-processing by adding the image

compression/decompression to enable the efficient and independent document image

storage before the segmentation stage. Segmentation logic is semi-automatic and consists

of line, word, and character segmentation. All segmentation levels use the modified

projection profiles technique. A new method for segmentation of words into characters

based on decision-making logic is the core of the segmentation logic. This method

gradually eliminates the possibility for big segmentation errors by determining the

number of characters in a word using word width and the assumed average character

width for a given document image. Computational efficiency is achieved using the linear

image representation, with further implementation optimization using pointer arithmetic

and highly-optimized low level machine code. The provided results have shown that this

novel method outperforms state-of-the-art techniques in terms of both time complexity

and segmentation accuracy.

3. THEORETICAL BACKGROUND

This section provides a theoretical foundation for the state-of-the-art image

compression standards used for comparison with the proposed algorithms, including the

description of the standard algorithms used in the proposed image compression and

decompression methods. The state-of-the-art theoretical background provided in this section

covers the compression standards for bi-level images, which are especially suitable for

document images, as well as a general JPEG and JPEG2000 image compression standards.

3.1. Compression standards for bi-level images

Bi-level images are represented using only 1 bit per each pixel. This bit denotes a

black or white color and has a value 0 or 1 depending on the color. For this reason, bi-

level images are also referred to as black and white images. Bi-level images usually

contain a few specific types of elements such as text, halftone images, and line-art which

includes graphs, equations, logos, and other similar features. First compression standards

have been designed for facsimile (fax) images. Fax standards include Group 3 (G3),

Group 4 (G4), and JBIG standard which is the basis of the later developed JBIG2

standard. G3 standard includes the modified Huffman (MH) coding which combines the

variable length codes of Huffman coding with standard RLE coding of the repetitive

sequences, and the modified relative element address designate (READ) coding, also

 Efficient Compression and Decompression Algorithms for OCR Systems 465

called the modified READ (MR) coding. G4 standard uses the modified MR (MMR)

coding, which similarly as G3 standard has MH as a basic coder.

The JBIG compression standard recommended by the Joint Bi-Level Image Experts

Group is a lossless compression standard used for binary images such as scanned text

images, computer-generated text, fax transmissions, etc. This standard can work in three

separate modes of operation: progressive, progressive-compatible sequential, and single-

progression sequential. Taking the coders into consideration, JBIG uses the arithmetic

coding, exploiting the QM coder variant. Context-based prediction is used in the encoding

process. In order to ensure a significantly higher compression ratio over the previously

described compression standards, the modified lossy version of JBIG has been proposed

and named JBIG2. Although the JBIG standard also supports a lossy compression, the lossy

compression quality it provides is very low. On the other side, JBIG2 provides both higher

compression ratio for lossless compression and lossy compression with a very high

compression ratio. JBIG2 supports three basic coding modes: generic, halftone, and text

coding mode. Generic coding mode uses either the MMR or MQ variant of arithmetic

coding. Halftone coding is used for halftone images. Coding part is based on generic coding

using a pattern, having a multi-level image as an output. The decoder obtains the halftone

image using the multi-level image and previously used pattern. Finally, dictionary-based

text coding is used for textual content. Each representative textual symbol is firstly encoded

using the generic coding and is stored in the dictionary together with its position. Decoding

is achieved in a straight-forward way, using the dictionary. Difference between the lossy

and lossless text compression is in pattern matching type. Lossy compression uses a hard

pattern matching and similar letters are coded with the same dictionary entry. Soft pattern

matching is used for lossless compression where refinement coding is exploited in order to

make a necessary difference between the already stored letter in the dictionary and the

current letter. Different modes are used for different document regions. Sometimes text

regions are classified as generic regions in order to obtain better results. In average JBIG2

gives 3-5 times higher compression ratio than G4 compression standard and 2-4 times

higher compression ratio compared with JBIG standard.

3.2. JPEG and JPEG 2000 image compression standards

JPEG and JPEG 2000 are well-known image compression standards used for comparison

with the proposed methods and evaluation of their performance [61]. JPEG, which stands for

Joint Photographic Experts Group, is a lossy image compression algorithm. The goal of the

JPEG compression algorithm is to eliminate a high frequency colors in the image which

cannot be observed by the human eye. This way original and compressed images would be

usually the same visually, but the compressed image would be smaller in size.

JPEG image compression algorithm consists of few steps:

1) Image partitioning - The whole image is divided into blocks, size of 8 × 8. The

choice of the block size is also an important part of this step. In case of blocks of

bigger size, it is possible to happen that there would exist blocks with big areas of

the similar color structure, but since blocks are observed as a whole, those

similarities cannot be exploited to obtain a better compression results. On the other

side, in case of smaller blocks the processing would be much slower because in the

next step a Discrete Cosine Transform (DCT) needs to be performed on each block.

For these reasons the blocks size of 8 × 8 are taken as an appropriate choice.

466 B. ARIZANOVIĆ, V. VUĈKOVIĆ

2) DCT - In this step, DCT is performed on each block matrix. DCT is a similar

transform as a Discrete Fourier Transform (DFT) since both transforms map a

function to frequency domain, except the fact that DCT uses only cosine function,

without dealing with imaginary parts. After derivation of the DCT term, it is

noticeable that values of DCT are half of DFT values:

 𝑓𝑚

= 2 ∑ 𝑓𝑗cos (
𝑚𝜋

2
(𝑗

𝑁−1

𝑗=0

+
1

2
)) (1)

where fm is the DFT coefficient. The values of DCT can be defined as:

 𝑔𝑚

= ∑ 𝑓𝑗cos (
𝑚𝜋

2
(𝑗

𝑁−1

𝑗=0

+
1

2
)) (2)

If DCT values are taken into consideration and represented as a matrix, values

with lower frequency will be grouped in the upper left side, while the higher

frequency values, which are not visible for the human eye, are in other parts of the

matrix. The goal of the next step is to eliminate these high frequency values.

3) Elimination of the high frequency values – For this task, it is necessary to multiply

the DCT matrix by the appropriate mask matrix. In case of 8 × 8 blocks, the mask

matrix that eliminates high frequency values would have the next form:

[

1 1 1 1 0 0 0 0
1 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0]

4) Inverse DCT - Finally, the last step in this process is to apply the inverse DCT on

each obtained block and use the obtained values to form the new image of the

same dimensions as the original image.

In order to describe the JPEG 2000 image compression standard and point out its

advantages over the JPEG compression standard, its comparison with JPEG standard

would be appropriate at this point:

1) Transformation type - While the previously described JPEG algorithm uses the 8

× 8 DCT, JPEG 2000 uses the wavelet transform with lifting implementation.

Using the wavelet transform, the better energy compaction and resolution

scalability is obtained.

 Efficient Compression and Decompression Algorithms for OCR Systems 467

2) Partitioning domain - While JPEG uses partitioning in the space domain by

dividing the image into blocks and applying transformations on each block, JPEG

2000 performs partitioning in the wavelet domain. This way the blocking artifacts

which appear during partitioning in the space domain, as a result of partial

application of DCT transform, would be eliminated.

3) Entropy coding - JPEG algorithm encodes the DCT coefficients one by one, while

JPEG 2000 encodes the wavelet coefficients bitplane by bitplane. In case of JPEG,

the resulting bitstream cannot be truncated, while in case of JPEG 2000 truncation

is allowed, which enables the bitstream scalability.

4) Rate control - Compression ratio and the amount of distortion when JPEG image

compression algorithm is used can be determined by the quantization module, while

JPEG 2000 uses the quantization module only for conversion of float wavelet

transform coefficients to integer coefficients, and the bitstream assembly module is

used to determine the compression ratio and the amount of distortion. This allows final

bitstreams of the certain compression ratio to be easily converted to bitstreams of

another compression ratio without repeating the entropy coding and transformation

process.

3.3. Run-length encoding (RLE) algorithm

RLE is a standard widely used lossless data compression algorithm. The logic of this

algorithm is to replace each repeating of some specific pattern with a symbol which

describes that pattern and a value which defines the number of consecutive repeats of that

pattern in the given sequence. In literature, the application of this algorithm to text

compression is usually explained. The simplest example of algorithm application is in case

that pattern is a single character. Suppose that the next sequence of characters is given:

𝑠𝑠𝑎𝑎𝑎𝑐𝑐𝑐𝑎𝑠𝑑𝑎𝑎𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑑𝑑𝑑𝑎𝑑𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑎

In this case, the compressed text will be the following:

2𝑠3𝑎3𝑐1𝑎1𝑠1𝑑2𝑎1𝑒7𝑎1𝑠3𝑑1𝑎5𝑑3𝑤1𝑎

The original text has 35 characters, while the compressed text has 30 characters. The gain

in this concrete example is not significant, but in practice algorithm can deal with a large

amount of binary values and can be very efficient. The larger runs of the same values

exist in sequence, the higher compression ratio will be achieved. In general case, the

pattern does not necessarily need to be a single character. It could be a word or even a

sentence. In such cases, it is also mandatory to use a delimiter between the compressed

information for each pattern run, since it is unknown how many characters each pattern

has and decompression would be impossible without having this information. The

pseudo-code for general RLE algorithm is shown in the following listing.

RUN-LENGTH-ENCODING

Input:

 sequence s.

Output:

 array Compressed.

 1: I := 0

 2: while I < LENGTH(s) do

468 B. ARIZANOVIĆ, V. VUĈKOVIĆ

 3: CurrentPattern := s[I]

 4: RunLength := 0

 5: while I < LENGTH(s) AND s[I] = CurrentPattern do

 6: RunLength := RunLength + 1

 7: I := I + 1

 8: end while

 9: Compressed  RunLength

10: Compressed  CurrentPattern

11: end while

12: return Compressed

The sign  is used to represent the assignment operator for array.

3.4. Scanline fill algorithm

Scanline fill algorithm belongs to the region filling algorithms. Instead of algorithms

with flooding approach which fill the contour by coloring the connected pixels of the

same color at pixel level, the scanline fill algorithm is defined at geometric level and fills

the contour in a horizontal or vertical direction, i.e. row by row or column by column.

Illustration of the scanline fill algorithm is shown in Fig. 1.

Fig. 1 Illustration of the scanline fill algorithm

 Efficient Compression and Decompression Algorithms for OCR Systems 469

As it is shown in Fig. 1, the algorithm starts from a seed pixel and searches for the last

pixel on the left side which color is the same as the seed pixel color. Once that pixel is

found, the pixel row is processed from left to right until the pixel which color is not the

same as the seed pixel color or the end of the pixel scanline is encountered. The color of

each pixel in the current pixel row is changed to the fill color if its color is the same as

the seed pixel color. Also, the pixels above and below the current pixel are checked and

they are pushed to stack if their color is the same as the seed pixel color. Once the pixels

above or below the current pixel are pushed to stack, the next pixels above and below are

not considered until the new sequence of pixels which color is the same as the seed pixel

color is not encountered. The next iteration starts when a new pixel is taken from the top

of the stack. In fact, instead of pushing to stack the coordinates of the all individual pixels

which need to be processed, this algorithm pushes the start coordinates of the line

segments. This ensures that each pixel is checked once and leads to better time

complexity results compared with flood fill algorithm, which is the main reason to use

this algorithm for image decompression.

4. PROPOSED ALGORITHMS

This section proposes new image compression and decompression methods used in the

pre-processing stage of the character segmentation system, in order to compress and

decompress document images before the segmentation stage. As it has already been

mentioned, previously presented character segmentation approach is extended by adding

the image compression/decompression part in the pre-processing stage. This step gives the

possibility to divide the character segmentation system into two independent parts. The first

part is a pre-processing part having the document image compression and decompression as

a final process, and the second part is a document image segmentation. The most evident

gain achieved here is the possibility to execute two independent system parts in different

moments. This is important due to several reasons. This way a document image

compression and document image segmentation can be done on different machines.

Additionally, the previously compressed/decompressed document images can be processed

using different versions of the segmentation engine. This is very important feature since it

also allows efficient testing of the segmentation engine. Finally, image compression allows

efficient storing of document images which can save a significant disc space.

In this section two image compression and decompression methods are proposed. The

first method is completely based on RLE algorithm and can be used for both machine-

typed documents and machine-printed documents. The second method uses document

character contour extraction in combination with scanline fill algorithm. The second

method works with machine-printed documents, but its application on machine-typed

documents is limited due to irregular structure of document image characters caused by

low quality of documents. These image compression and decompression methods are

presented in the following subsubsections.

4.1. Image compression and decompression using RLE

The first proposed image compression and decompression methods used in the pre-

processing stage of character segmentation system employ the RLE algorithm for data

470 B. ARIZANOVIĆ, V. VUĈKOVIĆ

compression. After the image binarization, the image consists of black and white pixels,

thus the RLE algorithm proved to be excellent choice. This approach is general and can

be used for all types of binarized images, but RLE algorithm gives better compression

results in case of document images than e.g. in case of natural images. The reason for this

lies in fact that RLE algorithm searches for runs of black and white pixels in each pixel

scanline. In natural images these runs are short, while in document images the

background has large runs of white pixels. Illustration of the RLE algorithm including the

coding format is given in Fig. 2.

Fig. 2 Document image compression using RLE algorithm: (a) Compression format for

white pixel runs, (b) Compression format for black pixel runs, (c) Example of

pixel scanline, (d) Compressed pixel scanline.

Fig. 2 shows an example of image compression using RLE algorithm. RLE algorithm

counts white and black pixels and stores the information about pixel runs in compressed

file. Storing is achieved using 3 bytes in overall for information about the white pixels and

2 bytes for information about the black pixels. In both cases the pixels are counted until the

maximal value is reached. Since 2 bytes are used for white pixels (WHITE_RUN), this

value is 216 = 65536, while in case of black pixels (BLACK_RUN) this value is 28 = 256.

When these values are reached, the WHITE_LOOPS or BLACK_LOOPS byte is

incremented and WHITE_RUN and BLACK_RUN values are set to 0. The whole process

of counting is then repeated. Since white pixels are a part of the background and are

dominating in document images, it is expected that 1 byte is not enough for storing the

information about the number of consecutive white pixels. On the other side, black pixel

runs are not expected to be too long since they represent document characters and some

spaces between characters are expected, thus only 1 byte is used for storing this information.

Document image decompression is straight forward. First byte is always multiplied by

256 or 65536 in case of black pixels or white pixels, respectively. After that, this value is

incremented by value of the next byte or 2 bytes. The obtained value represents the

number of consecutive pixels of the same color in the current run of pixels. This process

is repeated until the end of the compressed file.

 Efficient Compression and Decompression Algorithms for OCR Systems 471

4.2. Image compression and decompression using document character

contour extraction and scanline fill algorithm

The second proposed method for image compression and decompression employs the

combination of the algorithm based on document character contour extraction and

scanline fill algorithm. The compression algorithm uses the 2D processing of a document

image, since character contours need to be obtained from all four sides. Document image

is processed in horizontal and vertical direction and distances between the black pixels

which represent starting and ending pixels of the black runs are stored in the compressed

file. For this purpose, 2 bytes can be used to store the distance between two black pixels.

It should be mentioned that in both compression methods the number of bytes used for

storing the information about the white and black pixel runs is dependent primarily on the

image dimensions. Small images are expected to have short runs, while large images are

expected to have long runs of pixels of the same color. Therefore, 1 byte can be used for

both white and black pixels in case of small images, while in case of large images 2 bytes

are necessary. Another important factor is a structure of a document image. If textual

content is dominating in a document image, background areas are not huge and even in

large images 1 byte can be used for storing the information about pixel runs. On the other

side, if background area is dominating, even in medium images 2 bytes would not be

enough to store the information about pixel runs.

The process of image decompression is more specific. After obtaining the offsets of

black pixels which represent the contours of the characters, in the first step of

decompression method contours are drawn to the output image. The second step uses the

iterative scanline fill algorithm. The main idea here is to scan the whole output image and

fill the contours which represent the background with background color, while character

contours will be filled with black color. This is achieved by repeating execution of the

scanline fill algorithm. After that, a background color of a document image is replaced

with white color and the original binarized document image is obtained. The illustration

of image decompression is shown in Fig. 3.

It is assumed that the first pixel in a document image is a background pixel, thus the

scanline fill algorithm starts execution from the first pixel. The next step is filling of the

closed contours which are the document characters contours. In order to fill these

contours, the algorithm searches for the next white pixel. When the next white pixel is

found, the colors of the previous two or three pixels are checked. It is also assumed that

contour edge is not wider than two pixels, but generally this does not need to be a case. In

case that the previous two pixels have the black color and background color, or in case

that the previous three pixels have black color, black color, and background color, the

character contour is found and needs to be colored in black using scanline fill algorithm.

This procedure is repeated until the end of a document image. The final image will

contain only the background color and the black color. The final step is to change the

background color back to white color and binarized document image will be obtained.

472 B. ARIZANOVIĆ, V. VUĈKOVIĆ

a)

b)

c)

d)

e)

Fig. 3 Document image decompression using scanline fill algorithm: (a) Original image,

(b) Resulting image after character contours extraction, (c) Resulting image after

background filling, (d) Resulting image after character contours filling, (e) Final

binarized image.

5. IMPLEMENTATION

This section provides pseudocodes for the proposed image compression and

decompression methods. In order to achieve an efficient implementation, linear image

representation could be used. Linear image representation is obtained by storing the image

pixels linearly in a one-dimensional array. This representation is efficient since the memory

organization is also linear and image pixels will be stored in successive memory locations,

which will provide the fastest possible access to the image elements. The first presented

 Efficient Compression and Decompression Algorithms for OCR Systems 473

method for image compression and decompression uses the RLE data compression

algorithm. The pseudocode of the image compression algorithm is shown below.

RLE-IMAGE-COMPRESSION

Input:

 image f.

Output:

 array Compressed.

 1: CurrentColor := WHITE

 2: while not end of image f do

 3: RunsCount := CALCULATE-RUN-LENGTH(f, CurrentColor)

 4: Factor := RunsCount div MaxRun

 5: RunLength := RunsCount mod MaxRun

 6: Compressed  Factor

 7: if CurrentColor = BLACK then

 8: Compressed  RunLength

 9: else

10: Compressed  RunLength div 256

11: Compressed  RunLength mod 256

12: endif

13: REPLACE-MAX-RUN(MaxRun)

14: REPLACE-CURRENT-COLOR(CurrentColor)

15: end while

16: return Compressed

This pseudocode represents a general application of the RLE algorithm for compression

of binarized images. This algorithm provides lossless image compression and its application

is not limited on document images, but as will be shown in the experimental section, this

method provides better compression results when applied on document images. In order to

provide the optimal compression, 2 bytes are used for storing the information about black

pixel runs and 3 bytes are used for storing the information about white pixel runs. The

Image decompression method is straightforward. The following listing shows the pseudocode

of the decompression algorithm.

RLE-IMAGE-DECOMPRESSION

Input:

 image f, array Compressed.

 1: CurrentColor := WHITE

 2: while not end of Compressed do

 3: RunLength := 0

 4: Factor := Compressed[Current]

 5: if CurrentColor = BLACK then

 6: RunLength := Compressed[Current + 1]

 7: else

 8: RunLength := Compressed[Current + 1] * 256

 9: RunLength := RunLength + Compressed[Current + 2]

10: endif

11: FILL-RUN(f, RunLength, CurrentColor)

12: REPLACE-CURRENT-COLOR(CurrentColor)

13: end while

The image decompression algorithm reads the pixel runs information from the

compressed file and regenerates the original image. Since the compression is lossless, the

decompressed image will be the same as the original image, but results from the

474 B. ARIZANOVIĆ, V. VUĈKOVIĆ

experimental section will prove that image compression quality is actually unimportant for

segmentation accuracy. The pseudocode from the previous listing corresponds to the

pseudocode for image compression shown in the first listing, regarding the number of bytes

used for representing the pixel runs.

The second proposed method for document image compression and decompression uses

the character contour based document image representation and the scanline fill algorithm.

Contour image representation is used for image compression, while image decompression

uses the iterative scanline fill algorithm. The image compression algorithm performs the 2D

image processing to obtain the distances between the black pixels which form the character

contours in a document image. Depending on the document image dimensions, 1 byte or 2

bytes can be used to store the distance between two black pixels which represent edges of

document character contours. The following listing shows the pseudocode for the document

image compression algorithm based on character contour extraction.

CONTOUR-IMAGE-COMPRESSION

Input:

 image f.

Output:

 array Compressed.

 1: for each pixel row in image f do

 2: CurrentColor := WHITE

 3: while not end of current pixel row do

 4: RunsCount := CALCULATE-RUN-LENGTH(f, CurrentColor)

 5: Compressed  RunsCount div 256

 6: Compressed  RunsCount mod 256

 7: REPLACE-CURRENT-COLOR(CurrentColor)

 8: end while

 9: end for

10: for each pixel column in image f do

11: CurrentColor := WHITE

12: while not end of current pixel column do

13: RunsCount := CALCULATE-RUN-LENGTH(f, CurrentColor)

14: Compressed  RunsCount div 256

15: Compressed  RunsCount mod 256

16: REPLACE-CURRENT-COLOR(CurrentColor)

17: end while

18: end for

19: return Compressed

The previous pseudocode describes the algorithm for image compression which uses

the 2D image analysis to obtain the pixels which represent edges of the document

character contour. Generally, this algorithm can be used for all binarized images, but its

application on document images is more effective. The reason is that binarized document

images have less details compared with say, natural images. Also, document images have

large areas with background color which will ensure a good compression ratio. With

regards to compression quality, this algorithm gives worse results than other methods, but

it does not affect the segmentation accuracy. This fact justifies the usage of this

compression algorithm in the character segmentation system. The following listing shows

the pseudocode for document image decompression based on the scanline fill algorithm.

 Efficient Compression and Decompression Algorithms for OCR Systems 475

SCANLINE-FILL-IMAGE-DECOMPRESSION

Input:

 Image f, array Compressed.

 1: Offset := 0

 2: while not end of row compression bytes do

 3: RunLength := Compressed[Current] * 256

 4: RunLength := RunLength + Compressed[Current + 1]

 5: Offset := Offset + RunLength

 6: SET-PIXEL-COLOR(f, Offset, BLACK)

 7: end while

 8: Offset := 0

 9: while not end of column compression bytes do

10: RunLength := Compressed[Current] * 256

11: RunLength := RunLength + Compressed[Current + 1]

12: Offset := Offset + RunLength

13: SET-PIXEL-COLOR(f, Offset, BLACK)

14: end while

15: SCANLINE-FILL(0, BLUE_COLOR, WHITE_COLOR)

16: for each pixel in f do

17: if GET-PIXEL-COLOR(f, Current) = WHITE then

18: if GET-PIXEL-COLOR (f, Current – 1, Current - 2) = [BLACK, BLUE] OR

GETPIXEL-COLOR(f, Current – 1, Current – 2, Current - 3) = [BLACK,

BLACK, BLUE] then

19: SCANLINE-FILL (Current, BLACK, WHITE)

20: endif

21: endif

22: SCANLINE-FILL(0, WHITE, BLUE)

As aforementioned, the pseudocode for image decompression using the scanline fill

algorithm can be applied in the case of machine-printed documents. The efficiency of the
decompression algorithm is highly influenced by the efficiency of the scanline fill
algorithm implementation, since the scanline fill algorithm must be executed multiple
times. In the pseudocode presented in the previous listing, two and three previous pixels
of the current pixel are checked. In the general case, this conditional statement can be
changed since it is possible that character contour edges are wider than 1 or 2 pixels as it
is assumed here. Using the linear image representation, as suggested at the start of this
section, it is possible to achieve a real time implementation of the proposed methods,
which will make them suitable for use in the real time character segmentation system.

6. EXPERIMENTS

Proposed image compression and decompression methods, as a part of character
segmentation system, are tested on several PC machines. Results are analyzed from
different aspects in order to provide the complete insight into the extended character
segmentation approach and its capabilities. Image compression and decompression methods
are evaluated from the perspective of the image compression ratio and time complexity, to
the perspective of the segmentation accuracy when specific compression methods are used.
Evaluation of the image compression ratio is performed using the standard test set of
images. Test set consists of six black and white images: Baboon, Barbara, Cameraman,
Goldhill, Lena, and Peppers. Each pixel intensity value is represented using 3 bytes, one
byte for red, green, and blue pixel intensity value component. In order to obtain the
comparative results, JBIG2 and JPEG2000 image compression standards are used. For both
image compression standards, the performances of their lossless modes are evaluated.

476 B. ARIZANOVIĆ, V. VUĈKOVIĆ

The most important metric for evaluating the compression methods is compression

ratio. In case of images, compression ratio is a ratio between the original image file size and

compressed image file size. Higher values for compression ratio mean that compression

method is better regarding this metric. Comparison of the image compression ratio for

standard set of images and different compression methods is given in Table 1.

Table 1 Comparison of the compression ratio results for different compression methods

Image

(Image Dimensions)

Image File Size

(KB)

Compression Ratio

JPEG2000

(Lossless)
JBIG2 (Lossless) RLE

Baboon (512x512) 769 3.544 46.048 8.010

Barbara (512x512) 769 5.961 113.255 9.859

Cameraman (256x256) 193 3.642 82.833 12.867

Goldhill (512x512) 769 6.303 111.288 19.718

Lena (512x512) 769 7.539 156.939 21.971

Peppers (512x512) 769 8.640 201.837 30.76

As it is visible from Table 1, JBIG2 compression gives much better compression ratio

results than the proposed algorithm. This comes from the sophisticated nature of the JBIG2

algorithm, which is specialized for black and white images. Compression ratio and time

complexity are two most important measures for the quality of the compression algorithm.

Although the proposed algorithms fail to surpass the JBIG2 compression ratio results, the time

complexity results shown later will justify the usage of the proposed methods. Additionally,

Table 1 shows that RLE based image compression method presented in this paper provides a

higher compression ratio than JPEG2000 image compression standard in its lossless mode.

RLE based method is not limited to document images, therefore it can be used for non-

document images as it is a case with standard test images. It is clear that this method ensures

the possibility to store a huge amount of compressed document images efficiently without

occupying a lot of disc space. The second presented compression method is limited to specific

document images and performance of this method is analyzed later in this section.

Previous results represent the general analysis of the image compression methods.

Since the proposed image compression and decompression methods will be used in

character segmentation system, their performances on document images should be

analyzed. In order to perform this analysis, image compression methods are tested using

two document images. These document images are machine-printed documents since the

second method is limited on machine-printed documents which have the regular structure

and character contours can be extracted correctly. Compression ratio results for these

document images and different image compression methods are shown in Table 2.

Table 2 Comparison of the image compression ratio for machine-printed document

images for different image compression methods

Image

Dimensions

Image File

Size (KB)

Compression Ratio

JPEG2000

(Lossless)

JBIG2

(Lossless)
RLE

Contour

Extraction/Scanline Fill

719x328 692 14.417 640.741 67.184 46.443

1266x924 3429 9.741 357.933 27.878 19.373

 Efficient Compression and Decompression Algorithms for OCR Systems 477

As it is expected, the JBIG2 compression again achieves much better compression
ratio results. In this case the compression ratio is much higher than in case of standard
test set images because JBIG2 has a separate mode for compression of a textual content,
as it is explained in Section 3. Taking the proposed methods into account, they perform
very well on document images compared with JPEG2000 standard. In overall, RLE based
method gives the second best results, while the contour extraction method provides
worse, but still competitive results. It is important to mention that JPEG2000 image
compression standard performs worse than RLE algorithm because of its nature. The
color transformation stage of JPEG2000 algorithm generates two color channels which
are being compressed in this stage. The channel related to black and white image features
is not compressed the same way, thus the JPEG2000 compression gives worse results in
case of black and white images, i.e. gives better compression ratio results in case of full-
color images with many color and contrast transitions.

Contour extraction based compression in combination with scanline fill decompression

is a lossy compression, since it cannot reconstruct the original image perfectly. Although it

could imply that this method does not perform well enough, further analysis will deny this

fact. In order to justify the usage of the second proposed image compression method, the

segmentation results for document images previously compressed and decompressed using

different methods are given in Table 3.

Table 3 Comparison of the segmentation accuracy results for different image

compression methods used in the pre-processing stage

Segmentation Accuracy (%)

JBIG2/JPEG2000

(Lossless)
RLE

Contour Extraction/Scanline

Fill

Line Segmentation 81.54 81.54 80.32

Word Segmentation 78.28 78.28 78.14

Character Segmentation 87.08 87.08 86.92

These results are obtained using the chosen ground-truth machine-printed documents.

As expected, the results for JBIG2, JPEG2000, and RLE based compression are identical.

The most important conclusion here is that contour extraction based compression in

combination with scanline fill decompression gives slightly worse results than previous

compression methods. The reason for this lies in sensitivity of the evaluation metrics and

also in the specificity of the character segmentation technique. In general, this technique is

not sensitive on small changes in document image structure and therefore the segmentation

accuracy results are similar to those obtained using the lossless compression methods. Fig.

4 shows the comparison of the original binarized image and image obtained after

compression and decompression using the second proposed method.

478 B. ARIZANOVIĆ, V. VUĈKOVIĆ

a)

b)

c)

d)

Fig. 4 Comparison of the original images and images obtained after

compression/decompression using the second method:

(a) First original image, (b) First image after compression/decompression,

(c) Second original image, (d) Second image after compression/decompression

Visual results from Fig. 4 clearly show that compression quality is sometimes irrelevant.

Although the second method is the worst among all analyzed methods regarding the

compression quality and provides a lossy compression, differences between original and final

images are negligible in case of character segmentation. In order to clearly demonstrate this

conclusion, Fig. 5 shows the same images from Fig. 4 after being processed using the

character segmentation algorithm.

a)

b)

c)

d)

Fig. 5 Comparison of the original and compressed images after being processed

using the character segmentation algorithm: (a) First original processed image,

(b) First image processed after compression/decompression, (c) Second processed

original image, (d) Second image processed after compression/decompression

 Efficient Compression and Decompression Algorithms for OCR Systems 479

Finally, a very important aspect of the image compression methods is time complexity.

The image compression methods are intended for the usage in real-time character

segmentation system and their processing time should be appropriate for that. In order to

provide the reliable results, proposed image compression and decompression methods are

tested on several PC machines. Comparison of the processing time for JBIG2 compression

and compression/decompression performed using the proposed methods is given in Table 4.

Table 4 Comparison of the processing time for JBIG2 compression and RLE based

compression and decompression method (AMD Athlon™ X4 840 Quad Core

Processor 3.1 GHz)

Image
dimensions

(pixels)

White Pixels/
Black Pixels

(%)

Processing Time (ms)

JBIG2 Compression RLE Compression RLE Decompression

719x328 93.09:6.91 9.36832 10.12405 0.26639 0.30149 0.23231 0.27278
1266x924 83.51:16.49 44.64481 49.82263 2.04907 2.59600 1.94450 3.05122
2632x3575 98.06:1.94 353.74121 382.56647 10.61898 15.07239 13.35769 21.82402
2640x3612 98.69:1.31 372.48256 405.33698 10.79404 16.99354 13.31302 21.95595

Time complexity comparison justifies the usage of the proposed algorithms in the

authors‟ character segmentation system. Numerical results in Table 4 are obtained after

10000 executions of the analyzed algorithms implementations. Table 4 shows the best

(left) and average (right) processing time. RLE based compression algorithm provides up

to 25 times faster compression than the JBIG2 compression standard. The reason for this

lies in simplicity of the proposed compression method, as well as in the complexity of the

JBIG2 compression. This advantage of the proposed compression method comes to the

fore with a large number of documents that need to be processed in the “Nikola Tesla

Museum” in Belgrade. In order to provide a reliable time complexity results, processing

time are given for a set of different PC machines. These results are shown in Tables 5-14.

Table 5 Processing time for RLE based compression and decompression method

(AMD Athlon™ X4 840 Quad Core Processor 3.1 GHz)

Image
dimensions

(pixels)

White Pixels/
Black Pixels

(%)

Processing Time (ms)

RLE Compression RLE Decompression

719x328 93.09:6.91 0.26639 0.30149 0.23231 0.27278
1266x924 83.51:16.49 2.04907 2.59600 1.94450 3.05122

2632x3575 98.06:1.94 10.61898 15.07239 13.35769 21.82402
2640x3612 98.69:1.31 10.79404 16.99354 13.31302 21.95595

Table 6 Processing time for RLE based compression and decompression method

(AMD Athlon™ 64 X2 Dual Core Processor 5200+ 2.6 GHz)

Image
dimensions

(pixels)

White Pixels/
Black Pixels

(%)

Processing Time (ms)

RLE Compression RLE Decompression

719x328 93.09:6.91 0.59617 0.64098 0.45145 0.48502
1266x924 83.51:16.49 4.54918 4.98643 3.32389 3.93771

2632x3575 98.06:1.94 18.97615 22.70397 23.82398 27.92950
2640x3612 98.69:1.31 18.41798 35.85595 24.20699 42.99031

480 B. ARIZANOVIĆ, V. VUĈKOVIĆ

Table 7 Processing time for RLE based compression and decompression method

(Intel® Core™ i3-4150 CPU @ 3.50GHz)

Image

dimensions

(pixels)

White Pixels/

Black Pixels

(%)

Processing Time (ms)

RLE Compression RLE Decompression

719x328 93.09:6.91 0.22140 0.23022 0.14838 0.15094

1266x924 83.51:16.49 1.34219 1.39174 0.86508 0.90333

2632x3575 98.06:1.94 7.57190 7.81398 5.38810 5.69849

2640x3612 98.69:1.31 7.36194 7.66240 5.28898 5.67878

Table 8 Processing time for RLE based compression and decompression method

(Intel® Core™ i5-750 CPU @ 2.67GHz)

Image

dimensions

(pixels)

White Pixels/

Black Pixels

(%)

Processing Time (ms)

RLE Compression RLE Decompression

719x328 93.09:6.91 0.44596 0.45164 0.53324 0.53898

1266x924 83.51:16.49 2.92499 2.99345 2.82125 2.86606

2632x3575 98.06:1.94 15.47632 16.07258 21.01470 22.01499

2640x3612 98.69:1.31 15.18539 15.83180 21.34199 21.78855

Table 9 Processing time for RLE based compression and decompression method

(Intel® Core™ i7-920 CPU @ 2.67GHz)

Image

dimensions

(pixels)

White Pixels/

Black Pixels

(%)

Processing Time (ms)

RLE Compression RLE Decompression

719x328 93.09:6.91 0.42999 0.44189 0.31279 0.31529

1266x924 83.51:16.49 2.74480 2.84551 1.94092 1.95931

2632x3575 98.06:1.94 15.46358 15.60705 11.13561 11.33740

2640x3612 98.69:1.31 15.24224 15.38186 10.98920 11.21025

Table 10 Processing time for RLE based compression and decompression method

(Intel® Core™ i7-4700 MQ Processor 2.4 GHz)

Image

dimensions

(pixels)

White Pixels/

Black Pixels

(%)

Processing Time (ms)

RLE Compression RLE Decompression

719x328 93.09:6.91 0.32331 0.34429 0.21639 0.22497

1266x924 83.51:16.49 1.93728 2.05009 1.24961 1.31144

2632x3575 98.06:1.94 11.24646 11.64243 7.86414 8.18985

2640x3612 98.69:1.31 10.96036 11.31501 7.70805 8.34529

 Efficient Compression and Decompression Algorithms for OCR Systems 481

Table 11 Processing time for RLE based compression and decompression method

(Intel® Core™2 Quad Q9550 CPU @ 2.83GHz)

Image

dimensions

(pixels)

White Pixels/

Black Pixels

(%)

Processing Time (ms)

RLE Compression RLE Decompression

719x328 93.09:6.91 0.41861 0.42261 0.29742 0.29985

1266x924 83.51:16.49 2.61796 2.66822 1.86799 1.96971

2632x3575 98.06:1.94 14.93945 15.69766 13.77433 17.14845

2640x3612 98.69:1.31 14.78641 15.59181 13.69504 17.03617

Table 12 Processing time for RLE based compression and decompression method

(Intel® Core™ i5-3470 CPU @ 3.20GHz)

Image

dimensions

(pixels)

White Pixels/

Black Pixels

(%)

Processing Time (ms)

RLE Compression RLE Decompression

719x328 93.09:6.91 0.24246 0.25897 0.17094 0.18088

1266x924 83.51:16.49 1.42943 1.54486 1.00416 1.06919

2632x3575 98.06:1.94 9.77028 10.26213 6.09392 6.58797

2640x3612 98.69:1.31 9.61185 10.10193 5.96242 6.46359

Table 13 Processing time for RLE based compression and decompression method

(Intel® Celeron® E3400 CPU @ 2.60GHz)

Image

dimensions

(pixels)

White Pixels/

Black Pixels

(%)

Processing Time (ms)

RLE Compression RLE Decompression

719x328 93.09:6.91 0.45608 0.58744 0.34018 0.63256

1266x924 83.51:16.49 3.00126 3.56548 2.50430 3.85496

2632x3575 98.06:1.94 16.44169 20.02098 20.42599 27.38618

2640x3612 98.69:1.31 16.07075 19.90696 20.32023 27.60395

Table 14 Processing time for contour extraction based compression method and scanline

fill decompression method (document image size of 719x328 pixels)

PC Machine Specification

Processing Time (ms)

Contour

Compression

Scanline Fill

Decompression

AMD Athlon™ X4 840 Quad Core Processor 3.1 GHz 0.26672 0.29824 1.59406 2.06575

AMD Athlon™ 64 X2 Dual Core Processor 5200+ 2.6 GHz 1.10936 1.24688 2.94814 6.71124

Intel® Core™ i3-4150 CPU @ 3.50GHz 0.50409 0.52009 1.16008 1.18575

Intel® Core™ i5-750 CPU @ 2.67GHz 1.05348 1.06509 1.94235 1.95962

Intel® Core™ i7-920 CPU @ 2.67GHz 1.13896 1.22269 1.93016 1.97598

Intel® Core™ i7-4700 MQ Processor 2.4 GHz 0.74069 0.75961 1.69607 1.72861

Intel® Core™2 Quad Q9550 CPU @ 2.83GHz 0.89366 0.90396 1.85968 1.87623

Intel® Core™ i5-3470 CPU @ 3.20GHz 0.53816 0.57638 1.19594 1.27253

Intel® Celeron® E3400 CPU @ 2.60GHz 0.98342 1.82706 2.36290 3.41929

Time complexity results shown in Tables 5-14 are also obtained after 10000 executions

of analyzed algorithms implementations. In the previous tables, the average and the best

482 B. ARIZANOVIĆ, V. VUĈKOVIĆ

processing time are given. Provided results prove the superiority of the linear image

representation used in the character segmentation system. All processing time are below

50ms which is a quite good result for real-time usage. The first method also achieves very

good results in case of document images with bigger number of black pixels which is a

characteristic of documents with predominant textual content. The second method

processing time is primarily affected by the number of closed contour which represent

character borders and need to be filled using scanline fill algorithm. Each time the closed

contour needs to be filled, scanline fill algorithm for region filling needs to be executed.

Since the document image used for obtaining the results in Table 14 has huge areas of the

same color and small number of characters, the second method proved to be very efficient.

7. CONCLUSIONS

This paper presents an image compression/decompression stage of the authors‟ existing

character segmentation approach. In Section 2 the description of the other image

compression methods and the authors‟ character segmentation approach is given. Section 3

provides a theoretical background for bi-level image compression standards and a

theoretical comparison of the JPEG and JPEG 2000 image compression standards used for

evaluation of the proposed methods, as well as a description of the RLE data compression

algorithm and scanline fill algorithm exploited for the proposed image compression and

decompression algorithms. In Section 4 the image compression and decompression

methods are presented. The presented image compression and decompression methods are

adapted to document images and use the RLE data compression algorithm and document

character contour extraction for image compression, and the scanline fill algorithm for

document image decompression. The decoupling of the image compression/decompression

stage allows preparation document images for further processing later, to keep the

document images in compressed form and save storage memory, to use the improved

character segmentation and recognition software independently from the pre-processing

stage, and also to test independently the character segmentation and recognition stages. In

Section 5, pseudocodes and suggestion for optimal implementation of the proposed image

compression and decompression algorithms are given. In Section 6 a large set of

experimental results is provided for image compression methods. The proposed image

compression algorithms perform up to 25 times faster than the JBIG2 image compression

and 4 times better than JPEG2000 image compression standard in its lossless mode

regarding the image compression ratio, whereas the proposed algorithms give much worse

compression ratio results compared with JBIG2 compression standard. The results proved

that image compression quality does not affect the segmentation accuracy. Also, the

proposed image compression and decompression methods proved to be suitable for a real

time character segmentation system. The official evaluation of the complete system

performance will be performed at the “Nikola Tesla Museum”, since the approach is

designed for the needs of the museum, namely for conversion of the original Nikola Tesla

documents to electronic form. Future work will be focused on algorithms improvement,

particularly of the segmentation logic, further approach optimization and automation, and

its integration into the complete OCR system.

 Efficient Compression and Decompression Algorithms for OCR Systems 483

Acknowledgments: This paper is supported by the Ministry of Education, Science and

Technological Development of the Republic of Serbia (Project III44006-10), Mathematical Institute

of Serbian Academy of Science and Arts (SANU), Museum of Nikola Tesla (providing original

typewritten documents of Nikola Tesla), and Pattern Recognition & Image Analysis Research Lab

(PRimA) (providing ground-truth historical machine-printed documents).

REFERENCES

[1] A. Andreopoulos and J. K. Tsotsos, “50 Years of object recognition: Directions forward”, Computer
Vision and Image Understanding, vol. 117, no. 8, pp. 827-891, 2013.

[2] N. Bourbakis, N. Pereira and S. Mertoguno, “Hardware design of a letter-driven OCR and document

processing system”, Journal of Network and Computer Applications, vol. 19, no. 3, pp. 275-294, 1996.
[3] S. Khoubyari and J. J. Hull, “Font and Function Word Identification in Document Recognition”,

Computer Vision and Image Understanding, vol. 63, no. 1, pp. 66-74, 1996.

[4] J. Mao and K. M. Mohiuddin, “Improving OCR performance using character degradation models and
boosting algorithm”, Pattern Recognition Letters, vol. 18, no. 11-13, pp. 1415-1419, 1997.

[5] A. Namane, A. Guessoum, E. H. Soubari and P. Meyrueis, “CSM neural network for degraded printed

character optical recognition”, Journal of Visual Communication and Image Representation, vol. 25, no.
5, pp. 1171-1186, 2014.

[6] J. I. Olszewska, “Active contour based optical character recognition for automated scene understanding”,

Neurocomputing, vol. 161, no. 5, pp. 65-71, 2015.
[7] M. I. Razzak, F. Anwar, S. A. Husain, A. Belaid and M. Sher, “HMM and fuzzy logic: A hybrid approach

for online Urdu script-based languages‟ character recognition”, Knowledge-Based Systems, vol. 23, no. 8,

pp. 914-923, 2010.
[8] G. Vamvakas, B. Gatos, N. Stamatopoulos and S. Perantonis, “A Complete Optical Character Recognition

Methodology for Historical Documents”, IAPR International Workshop on Document Analysis Systems,

vol. 1, 2008, pp. 525-532.
[9] H. Fujisawa, “Forty years of research in character and document recognition-and industrial perspective”,

Pattern Recognition, vol. 41, no. 8, pp. 2435-2446, 2008.

[10] Y. Lu, “Machine Printed Character Segmentation - An Overview”, Pattern Recognition, vol. 28, no. 1, pp.
67-80, 1995.

[11] Y. Lu and M. Shridhar, “Character segmentation in handwritten words - An overview”, Pattern

Recognition, vol. 29, no. 1, pp. 77-96, 1996.
[12] Á. González and L. M. Bergasa, “A text reading algorithm for natural images”, Image and Vision

Computing, vol. 31, no. 3, pp. 255-274, 2013.

[13] D. Karatzas and A. Antonacopoulos, “Colour text segmentation in web images based on human
perception”, Image and Vision Computing, vol. 25, no. 5, pp. 564-577, 2007.

[14] J. Lim, J. Park and G. G. Medioni, “Text segmentation in color images using tensor voting”, Image and
Vision Computing, vol. 25, no. 5, pp. 671-685, 2007.

[15] J. Min-Chul, S. Yong-Chul and S. N. Srihari, “Machine Printed Character Segmentation Method Using

Side Profiles”, In Proceedings of the IEEE SMC ‟99 Conference on Systems, Man and Cybernetics, 1999.
[16] N. Nikolaou, M. Makridis, B. Gatos, N. Stamatopoulos and N. Papamarkos, “Segmentation of historical

machine-printed documents using Adaptive Run Length Smoothing and skeleton segmentation paths”,

Image and Vision Computing, vol. 28, no. 4, pp. 590-604, 2010.
[17] H. C. Park, S. Y. Ok, Y. J. Yu and H. G. Cho, “A word extraction algorithm for machine-printed

documents using a 3D neighborhood graph model”, International Journal on Document Analysis and

Recognition, vol. 4, no. 2, pp. 115-130, 2001.
[18] L. Zheng, A. H. Hassin and X. Tang, “A new algorithm for machine printed Arabic character

segmentation”, Pattern Recognition Letters, vol. 25, no. 15, pp. 1723-1729, 2004.

[19] A. Choudhary, R. Rishi and S. Ahlawat, “A New Character Segmentation Approach for Off-Line Cursive
Handwritten Words”, Procedia Computer Science, First International Conference on Information

Technology and Quantitative Management, vol. 17, pp. 88-95, 2013.

[20] K. Fukushima and T. Imagawa, “Recognition and segmentation of connected characters with selective
attention”, Neural Networks, vol. 6, no. 1, pp. 33-41, 1993.

[21] E. B. Lacerda and C. A. B. Mello, “Segmentation of connected handwritten digits using Self-Organizing

Maps”, Expert Systems with Applications, vol. 40, no. 15, pp. 5867-5877, 2013.

484 B. ARIZANOVIĆ, V. VUĈKOVIĆ

[22] H. Lee and B. Verma, “Binary segmentation algorithm for English cursive handwriting recognition”,

Pattern Recognition, vol. 45, no. 4, pp. 1306-1317, 2012.
[23] J. Oh, S. Joon, S. Sangkuk, L. Ji-Won, K. Nojun and K. Em, “Online recognition of handwritten music

symbols”, International Journal on Document Analysis and Recognition (IJDAR), pp. 1-11, 2017.

[24] T. Plötz and G. A. Fink, “Markov models for offline handwriting recognition: a survey”, International
Journal on Document Analysis and Recognition (IJDAR), vol. 12, pp. 269-298, 2009.

[25] A. Rehman and T. Saba, “Performance analysis of character segmentation approach for cursive script

recognition on benchmark database”, Digital Signal Processing, vol. 21, no. 3, pp. 486-490, 2011.
[26] N. Stamatopoulos, B. Gatos, G. Louloudis, U. Pal and A. Alaei, “ICDAR 2013 Handwriting Segmentation

Contest”, In Proceedings of the 12th International Conference on Document Analysis and Recognition

(ICDAR), 2013.
[27] O. Surinta, M. F. Karaaba, L. R. B. Schomaker and M. A. Wiering, “Recognition of handwritten

characters using local gradient feature descriptors”, Engineering Applications of Artificial Intelligence,

vol. 45, pp. 405-414, 2015.
[28] J. Tan, J. Lai, C. Wang, W. Wang and X. Zuo, “A new handwritten character segmentation method based

on nonlinear clustering”, Neurocomputing, vol. 89, pp. 213-219, 2012.

[29] M. Younes and Y. Abdellah, “Segmentation of Arabic Handwritten Text to Lines”, In Proceedings of the
Procedia Computer Science, International Conference on Advanced Wireless Information and

Communication Technologies (AWICT 2015), vol. 73, pp. 115-121, 2015.

[30] A. Antonacopoulos and D. Karatzas, “Semantics-based content extraction in typewritten historical
documents”, In Proceedings of the 8th International Conference on Document Analysis and Recognition

(ICDAR „05), 2005, pp. 48-53.

[31] I. Bar-Yosef, A. Mokeichev, K. Kedem, I. Dinstein and U. Ehrlich, “Adaptive shape prior for recognition
and variational segmentation of degraded historical characters”, Pattern Recognition, vol. 42, no. 12, pp.

3348-3354, 2009.

[32] M. R. Gupta, N. P. Jacobson and E. K. Garcia, “OCR binarization and image pre-processing for searching
historical documents”, Pattern Recognition, vol. 40, no. 2, pp. 389-397, 2007.

[33] L. A. F. Fernandes and M. M. Oliveira, “Real-time line detection through an improved Hough transform

voting scheme”, Pattern Recognition, vol. 41, no. 1, pp. 299-314, 2008.
[34] V. Shapiro, “Accuracy of the straight line Hough Transform: The non-voting approach”, Computer Vision

and Image Understanding, vol. 103, no. 1, pp. 1-21, 2006.

[35] C. Singh, N. Bhatia and A. Kaur, “Hough transform based fast skew detection and accurate skew
correction methods”, Pattern Recognition, vol. 41, no. 12, pp. 3528-3546, 2008.

[36] G. Bessho, K. Ejiri and J. F. Cullen, “Fast and accurate skew detection algorithm for a text document or a

document with straight lines”, In Proc. of the SPIE, vol. 2181, pp. 133-140, 1994.
[37] Y. Cao, S. Wang and H. Li, “Skew detection and correction in document images based on straight-line

fitting”, Pattern Recognition Letters, vol. 24, no. 12, pp. 1871-1879, 2003.

[38] A. Fernández-Caballero, M. T. López and J. C. Castillo, “Display text segmentation after learning best-
fitted OCR binarization parameters”, Expert Systems with Applications, vol. 39, no. 4, pp. 4032-4043,

2012.
[39] H. Z. Eldin, M. A. Elhosseini and H. A. Ali, “Image compression algorithms in wireless multimedia

sensor networks: A survey”, Ain Shams Engineering Journal, vol. 6, no. 2, pp. 481-490, 2015.

[40] J. Mtimet and H. Amiri, “Arabic Textual Image Compression Approach”, Procedia Computer Science,
vol. 35, pp. 118-126, 2014.

[41] M. Wu, “Genetic algorithm based on discrete wavelet transformation for fractal image compression”,

Journal of Visual Communication and Image Representation, vol. 25, no. 8, pp. 1835-1841, 2014.
[42] L. Wang, J. Bai, J. Wu and G. Jeon, “Hyperspectral image compression based on lapped transform and

Tucker decomposition”, Signal Processing: Image Communication, vol. 36, pp. 63-69, 2015.

[43] A. M. Rufai, G. Anbarjafari and H. Demirel, “Lossy image compression using singular value

decomposition and wavelet difference reduction”, Digital Signal Processing, vol. 24, pp. 117-123, 2014.

[44] Z. Zheng, J. Zhao, H. Guo, L. Yang, X. Yu and W. Fang, “Character Segmentation System Based on C#

Design and Implementation”, Procedia Engineering, International Workshop on Information and
Electronics Engineering, vol. 29, pp. 4073-4078, 2012.

[45] A. Sedighi and M. Vafadust, “A new and robust method for character segmentation and recognition in

license plate images”, Expert Systems with Applications, vol. 38, no. 11, pp. 13497-13504, 2011.
[46] M. Grafmüller and J. Beyerer, “Performance improvement of character recognition in industrial

applications using prior knowledge for more reliable segmentation”, Expert Systems with Applications,

vol. 40, no. 17, pp. 6955-6963, 2013.

 Efficient Compression and Decompression Algorithms for OCR Systems 485

[47] C. Papaodysseus, P. Rousopoulos, F. Giannopoulos, S. Zannos, D. Arabadjis, M. Panagopoulos, E. Kalfa,
C. Blackwell and S. Tracy, “Identifying the writer of ancient inscriptions and Byzantine codices. A novel

approach”, Computer Vision and Image Understanding, vol. 121, pp. 57-73, 2014.

[48] N. B. Venkateswarlu and R. D. Boyle, “New segmentation techniques for document image analysis”,
Image and Vision Computing, vol. 13, no. 7, pp. 573-583, 1995.

[49] J. Li, M. Li, J. Pan, S. Chu and J. F. Roddick, “Gabor-based kernel self-optimization Fisher discriminant

for optical character segmentation from text-image-mixed document”, Optik - International Journal for
Light and Electron Optics, vol. 126, no. 21, pp. 3119-3124, 2015.

[50] J. H. Bae, K. C. Jung, J. W. Kim and H. J. Kim, “Segmentation of touching characters using an MLP”,

Pattern Recognition Letters, vol. 19, no. 8, pp. 701-709, 1998.
[51] P. P. Roy, U. Pal, J. Lladós and M. Delalandre, “Multi-oriented touching text character segmentation in

graphical documents using dynamic programming”, Pattern Recognition, vol. 45, no. 5, pp. 1972-1983, 2012.

[52] O. Starostenko, C. Cruz-Perez, F. Uceda-Ponga and V. Alarcon-Aquino, “Breaking text-based CAPTCHAs
with variable word and character orientation”, Pattern Recognition, vol. 48, no. 4, pp. 1101-1112, 2015.

[53] V. Vuĉković and B. Arizanović, “Efficient character segmentation approach for machine-typed

documents”, Expert Systems with Applications, vol. 80, pp. 210-231, 2017.
[54] V. Vuĉković and B. Arizanović, “Automatic document skew pre-processor for character segmentation

algorithm“, Facta Universitatis: Electronics and Energetics, vol. 30, no. 4, pp. 611-625, 2017.

[55] V. Vuĉković, B. Arizanović and S. Le Blond, “Ultra-fast basic geometrical transformations on linear
image data structure“, Expert Systems with Applications, vol. 91, pp. 322-346, 2018.

[56] V. Vuĉković, B. Arizanović and S. Le Blond, “Generalized N-way iterative scanline fill algorithm for

real-time applications“, Journal of Real-Time Image Processing, vol. 13, no. 4, pp. 1-19, 2018.
[57] B. Žalik, D. Mongus and N. Lukaĉ, “A universal chain code compression method”, Journal of Visual

Communication and Image Representation, vol. 29, pp. 8-15, 2015.
[58] J. Zhu, Z. Wang, R. Zhong and S. Qu, “Dictionary based surveillance image compression”, Journal of

Visual Communication and Image Representation, vol. 31, pp. 225-230, 2015.

[59] A. J. Hussain, D. Al-Jumeily, N. Radi and P. Lisboa, “Hybrid Neural Network Predictive Wavelet Image
Compression System”, Neurocomputing, vol. 151, no. 3, pp. 975-984, 2015.

[60] R. T. Haweel, W. S. El-Kilani and H. H. Ramadan, “Fast approximate DCT with GPU implementation for

image compression”, Journal of Visual Communication and Image Representation, vol. 40 (Part A), pp.

357-365, 2016.

[61] J. Li, “Image Compression - the Mathematics of JPEG 2000”, Microsoft Research, Communication

Collaboration and Signal Processing.

