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Abstract. The application of the Thomas-Fermi method to calculate the electron 

spectrum in quantum wells formed by highly doped n-Si quantum wires is presented 

under finite temperatures where the many-body effects, like exchange, are taken into 

account. The electron potential energy is calculated initially from a single equation. 

Then the electron energy sub-levels and the wave functions within the potential well 

are simulated from the Schrödinger equation. For axially symmetric wave functions the 

shooting method has been used. Two methods have been applied to solve the Schrödinger 

equation in the case of the anisotropic effective electron mass, the variation method and 

the iteration procedure for the eigenvectors of the Hamiltonian matrix.  
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1. INTRODUCTION  

Investigations of the electron spectrum of low-dimensional and highly doped 

structures are central to many nanotechnology applications [1,2]. Quantum devices based 

on silicon have been the subject of a concentrated recent interest, both experimental and 

theoretical, including the recent proposals on quantum computing [1-4]. The infrared 

transitions between the electron sub-levels within -doped quantum wells are perspective 

for using in optoelectronics, especially for infrared modulators, detectors, and lasers [5,6]. 

The electron spectrum of -doped quantum wells can be calculated from solving 

Schrödinger equation jointly with the Poisson one (SP) [5,6]. There exist several 

difficulties for simulations of quantum structures in silicon, namely, anisotropy of the 
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effective electron mass and slow convergence of SP method in the case of an arbitrary 

initial approximation. The investigation of -doped quantum structures is possible with a 

simpler approach based on the statistical Thomas-Fermi (TF) method [6-8]. The 

preference is the separation of the complex problem into the sequential ones, where the 

wave functions are computed after the found solution of the potential energy. In the case 

of axially symmetric high doping, the electron potential energy depends of the radius 

only. Also the combined method can be applied, where the final result of TF simulations 

is used as a starting one for SP [9]. Moreover, a comparison between SP method and TF 

one shows that the simple TF method gives a good approximation for the electron energy 

sub-levels and the total electron concentration within the -doped quantum wells [9].  

In this paper the application of the TF method to calculate the electron spectrum in the 

quantum wells formed by highly doped n-Si quantum wires is presented under finite 

temperatures T, and  many-body effects, like exchange, are taken into account [5,7]. The 

electron potential energy and the total electron concentration are calculated from a single 

equation solved by the Newton method. Then the wave functions and values of the 

electron energy sub-levels are computed from the Schrödinger equation where two 

possible orientations of electron valleys are considered. The peculiarities of solving 

Schrödinger equation in the case of the anisotropic electron mass are pointed out.  

2. BASIC EQUATIONS  

Consider a single -doped electron quantum wire within n-Si. Below the atomic units 

are used for distances a0
*
 =2

/(mce
2
) 0.52 nm and for energy Ry

*
 = e

2
/(2a0

*
)  0.12 eV, 

where mc = 2/3
(m

2
m||)

1/3
  1.06 me  10

-27
 g,  = 6 is the number of the lowest electron 

valleys in Si. In the case of n-Si the lowest valleys are lateral and the effective mass is 

anisotropic: m||, m. With non-dimensional variables the basic equation of TF method for 

the -doped electron quantum wire is [8]:  
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Here V(r) is the electrostatic electron energy, n is the total electron concentration; N1d 

and Nd0 are 1D and 3D donor concentrations, respectively. Vx is the many-body correction 
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to the electron energy due to the exchange [7]. Eq. (1) is the Poisson equation for the 

electrostatic electron energy, where the electron concentration n[V] is calculated from the 

equilibrium statistical Fermi distribution. Note that at the 1D donor concentrations N1d0  

10
21

 cm
-3

 the exchange energy Vx is comparable with the electrostatic one. The donor 

levels are assumed shallow and single charged. The concentration of 1D donors is high 

N1d0  10
20

 cm
-3

; they are fully ionized. The 1D doping is localized at the distances r ~ r0 

 1 – 5 nm. The finite size of the highly doping region r0 is considered, because the distance 

unit a0
*
 in silicon is comparable with the size of the lattice cell. Moreover, 1D doping cannot 

be approximated by the -function directly, because this approximation leads to the 

logarithmic singularity of the electron potential energy at r ~ 0. The results of simulations do 

not depend on the value of the critical electron concentration when nc  10
18

 cm
-3

.  

The position of the Fermi level  has been obtained from the condition of the total 

neutrality of the semiconductor [6]:  
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Here Ed is the donor energy with respect to the bottom of the conduction band.  

Eq. (1) has been solved by the Newton method [8].  
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Note that in the derivative (n/V) the exchange correction Vx does not vary. In the 

boundary conditions the parameter R is an enough big radius. In Eq. (4) the parameter Q 

 1 is chosen to provide better convergence [9]. The rapid convergence of the method has 

been demonstrated, even when the exchange energy has been taken into account.  

After calculation of the electron potential energy V(r), the energy sub-levels Ej, the 

wave functions (WF) j(x,y) of the discrete spectrum of the well, and then the electron 

concentration n in each electron sub-level within the quantum well have been computed 

from the following Schrödinger equations:  
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WF can be chosen as real, because the Hamiltonians are real. There are two different 

orientations of electron valleys in silicon, as seen from Eqs. (5). Namely, Eq. (5a) is for 

the isotropic case of the effective mass components, Eq. (5b) is for the anisotropic case.  
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3. SIMULATIONS OF POTENTIAL ENERGY AND ELECTRON CONCENTRATION  

The results of simulations of the electron potential energy V(r) and the electron 

concentration n(r) are presented in Figs. 1,2. For all  cases the volume doping is Nd0 = 

1·10
16

 cm
-3

, r0 = 2a0
*
  1.04 nm. The previous simulations [10] demonstrated that the 

exchange correction is important for the doping levels N1d  10
21

 cm
-3

. But the total 

electron potential energy W = V + Vx and the electron concentration n are practically the 

same as without this many-body correction.  

The potential energy depends on temperature T, as seen in Fig. 2. This is due to the 

partial ionization of volume donors Nd0 at low temperatures, as seen from Eq. (3). But the 

electron concentration n does not depend on T. Some difference is only at the periphery r 

>> r0.  

 
a)     b) 

Fig. 1 Part a) is dependence of electron potential energy jointly with the exchange energy 

V+Vx on the radius r. Part b) is the dependence of the total electron concentration 

n(r). The values of the maximum doping are N1d0 = 310
21

 cm
-3

 (curve 1), 10
21

 cm
-3

 

(curve 2), 310
20

 cm
-3

 (curve 3), 510
19

 cm
-3

 (curve 4), T = 300 K, r0 = 2a0
*
  1.04 

nm. The corresponding exchange energies Vx are also presented there in the upper 

part of the part a).  

 

  
 a) b)  c) 

Fig. 2 Part a) is dependence of electron potential energy jointly with the exchange energy 

V+Vx on the radius r for different temperatures T. Part b) is the dependence of the 

electron concentration for different temperatures; part c) is the same as b) in details. 

Curve 1 is for T = 300 K, 2 is for 200 K, 3 is for 150 K, 4 is for 100 K, 5 is for 50 K, 

6 is for 20 K. The maximum doping is N1d0 = 310
21

 cm
-3

.  
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4. WAVE FUNCTIONS AND ENERGY SUB-LEVELS  

After calculating  the electron potential energy it is possible to simulate the electron 

energy sub-levels in the quantum well and the corresponding WF.  

To compute WF for the isotropic case (5a), where the effective masses are the same, the 

shooting method has been applied [11]. The axially symmetric WF (r) for the isotropic 

case, Eq. (5a), are presented in Fig. 3, a. The maximum doping level is N1d0 = 310
21

 cm
-3

, T 

= 300 K, as in Fig. 1, a, curve 1. The dependence of the electron energy sub-levels, two 

lowest ones E1,2, on the maximum doping is presented in Fig. 3, b, for T = 300 K. The 

dependence of the electron energy sub-levels on temperature is given in Fig. 3, c. One can 

see that the difference E2 – E1 depends on the temperature T there.  

    

 a) b)  c) 

Fig. 3 Part a) is the axially symmetric WF for the case of isotropic effective mass; part b) 

is the dependence of the energy sub-levels on the maximum doping, T = 300 K; c) 

is the dependence of the energy sub-levels on the temperature T for the maximum 

doping N1d0 = 310
21

 cm
-3

. 

The anisotropic case, Eq. (5b), with different effective masses has been solved by two 

simple methods, which are realized in the Cartesian coordinate frame XOY. The first one 

is the variation method [12]. Namely, the problem of the minimization of the functional of 

the electron energy is considered:  
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WF possesses different types of symmetry or antisymmetry in the plane XOY, due to the 

symmetry of the Hamiltonian, Eq. (5b). The probing functions for the symmetric case 

(±x, ±y)=(x,y) are chosen as:  
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In the case of antisymmetry with respect to x (-x, ±y) = -(x,y) the probing functions are:  
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Analogously, it is possible to write down the probing functions for other types of 

symmetry or antisymmetry, i.e. with the multipliers y or xy.  

Therefore, for the lowest WF there are two variation parameters x01, y01. For the 

second WF there are 3 independent variation parameters, because of the imposing 

orthogonality relation:  

  








 021 dxdy . (9) 

The second method is the search of the eigenvalues of the matrix of the Hamiltonian 

by means of the iteration procedure [13,14]. For this purpose, WF has been expanded by 

the truncated Fourier series. Zero boundary conditions have been used at the periphery 

x = ±Lx, y = ±Ly, where the boundaries Lx, Ly are chosen enough large. Namely, WF is 

represented by the vector, or the column of the coefficients of the expansion; the 

Hamiltonian has been represented by the matrix. Then the following iteration procedure 

has been applied [13,14]:  
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Here ),( 1 ss
 is the scalar product of vectors, s in the number of iterations, E0 < 0 is 

the parameter that has been chosen from the condition of maximum convergence. Usually, 

E0 is close to the lowest energy sub-level computed from the variation method. It is 

important that the matrix inversion can be realized in the simple manner, because of the 

diagonal domination of the shifted Hamiltonian matrix )ˆ( 02 EH  . When the second WF is 

searched, it should be orthogonal to the first WF 1: ),/(),( 111

1

1

11   sss
. 

After each iteration it is better to normalize the vector: .1),(  ss
The initial values of 

the vectors  
s=0

 can be chosen as ones found earlier from the variation method. The 

iterations with the direct Hamiltonian matrix )ˆ( 02 EH   diverge and cannot be applied.  

The profiles of WF for the two lowest sub-levels are presented in Fig. 4 for the 

temperature T = 300 K and the maximum doping N1d0 = 310
21

 cm
-3

. The dependencies of 

the two lowest energy sub-levels in the quantum well on the maximum doping 

concentration for T = 300 K and on the temperature T for the maximum doping N1d0 = 

310
21

 cm
-3

 are given in Fig. 5 for symmetric WF.  
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a)

   

b)

  

c)

 

d)

 

e)

 

f)

 

g)

 

h)

 

Fig. 4 Wave functions computed for the case of anisotropic effective masses, T = 300 K,  

N1d0 = 310
21

 cm
-3
. Part a) is the first symmetric wave function; the left panel is 

computed from the matrix iteration method, the right panel is from the variation method. 
Part b) is the same for the second symmetric wave function. Parts c) and d), e) and f), 
g) and h) are the first and the second wave functions correspondingly computed from 
the variation method for different types of symmetry or antisymmetry. 
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a)     b) 

Fig. 5 The dependence of two lowest energy sub-levels in the quantum well on the 

maximum doping concentration for T = 300 K (a) and on the temperature for N1d0 

= 310
21

 cm
-3

 (b). The case of anisotropic effective mass, Eq. (5b), symmetric WF, 

is considered. The solid lines are the data obtained from the matrix iteration 

method, the dot lines are ones from the variation method. 

The variation method yields accurate values of the energy sub-levels. For instance, at T = 

300 K and N1d0 = 310
21

 cm
-3

 the values of the energy for the symmetric case calculated from 

the iteration procedure are E1 = -4.09 Ry
*
, E2 = -1.94 Ry

*
. The same values computed from 

the variation method are E1 = -4.075 Ry
*
, E2 =  -1.895 Ry

*
. The profiles of WF are 

calculated from the variation method approximately; there is some difference at the 

periphery from those  computed from the matrix iteration procedure. In the report [10] the 

electron spectrum has been calculated from the shooting method applied in the polar 

coordinate system. There is coincidence of the energy sub-levels with the data presented 

here, but that numerical realization of the shooting method is more complicated.  

The difference of the lowest energetic sub-levels E2 – E1 does not depend on the 

temperature for the anisotropic case, symmetric WF, see Fig. 5, b. For the isotropic case, 

Eq. (5a), this is not valid, see Fig. 3, c. This can be explained by higher values of the 

electron sub-levels |E1,2| for the anisotropic case.  

It is possible to calculate WF more accurately also by means the standard simulators 

based on finite element methods, like COMSOL Multiphysics [15].  

 

5. CONCLUSIONS  

An application of TF method to the electron spectrum of quantum wires in n-Si can be 

subdivided into two problems. The first one is the simulation of the electron potential energy 

from the simple ordinary differential equation. The iteration procedure demonstrates  rapid 

convergence even when the many-body effects, like exchange, are taken into account. 

Then it is possible to solve the Schrödinger equations for the wave functions and the 

energy sub-levels. Because of the anisotropy of the effective electron mass in silicon, this 

problem is generally two-dimensional. Two simple methods have been proposed. The 

variation method yields accurate values of the energy sub-levels, whereas the profiles of 

the electron wave functions are approximate at the periphery. The method based on the 

inverse matrix iterations is more accurate both for the eigenvalues and the eigenfunctions.  
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