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Abstract. In this paper we provide an overview of instabilities observed in commercial 

power VDMOSFETs subjected to irradiation, NBT stress, and to consecutive exposure 

to them. The results have indicated that irradiation of previously NBT stressed devices 

leads to additional threshold voltage shift, while NBT stress effects in previously 

irradiated devices depend on the gate bias applied during irradiation and on the total 

dose received. This points to the importance of the order of applied stresses, indicating 

that for proper insight into the prediction of device behaviour not only harsh 

conditions, but also the order of exposure have to be considered. It has also been 

shown that changes in the densities of oxide trapped charge and interface traps during 

spontaneous recovery after each of applied stresses can be significant, thus leading to 

additional instability, even though the threshold voltage seems to remain stable, 

pointing to the need for clarifying the responsible mechanisms. 

Key words: Negative bias temperature instability (NBTI), irradiation effects, responsible 

mechanisms, oxide trapped charge, interface traps, spontaneous recovery 

1. INTRODUCTION 

Development of advanced electronic industry is based on combining two concepts: 

More Moore (miniaturization) and More than Moore (diversification), i.e. on combining 

of System-on-Chip and System-in-Package concepts, thus leading to higher value 

systems. Second concept includes integration of different devices, such as passives, 

analog/RF, power devices, sensors and actuators and biochips. Among these, power 

vertical double-diffused metal oxide semiconductor (VDMOS) transistors exhibit a 
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number of advantages, such as high switching speed, high current driving capabilities, 

high breakdown voltage, high input impedance and high thermal stability, which make 

these devices attractive for various application in power control in industrial electronics 

(automation, robotics), auto industry (automotive electronics), nuclear power plants, 

communication satellites, military and civil airplane industry, and military equipment 

(tanks, ships, submarines). In many of these applications devices may be subjected to 

stress or harsh environment conditions. Accordingly, investigation of their reliability and 

related effects is of high importance [1-11]. 

Because of its superior switching characteristics which enable operation at high 

frequencies, the power VDMOSFET is attractive as a switching device especially in 

communication satellites that require many extremely small, lightweight power supplies 

for supplying various components, circuits and systems. Namely, high-frequency 

operation of power supplies enables reduction of their weight and volume through the use 

of smaller passive components (transformers, choke-coils, and capacitors), so the power 

VDMOSFETs are suited for these applications. However, during a communication 

satellite operation of several years, assembled devices can accumulate the total dose up to 

100 Gy (SiO2), while in high orbits this dose can be even 10 kGy (SiO2) [12]. Therefore, 

the most important requirement for power VDMOSFETs assembled in electronic systems 

for application in radiation environment is high radiation tolerance. The ionizing 

irradiation may cause degradation of power VDMOSFETs electrical parameters, such as 

threshold voltage shift, reduction of transconductance, increase of leakage currents and 

reduction of breakdown voltage [13, 14]. Threshold voltage shift (VT) is the most 

serious problem in these devices since it may cause change of operation mode from 

enhancement to depletion in n-channel devices or dramatic reduction of current driving 

capability in p-channel ones. Threshold voltage shift is known to increases with total dose 

received and in many investigations it is shown that the main irradiation effects on 

electrical parameters are caused by the creation of positive gate oxide charge (Not) and 

interface traps (Nit) [15].  

Besides operation in the irradiation environment, in a number of application devices 

are routinely operated at high voltage and current levels, which lead to both self heating 

and increased gate oxide fields [16]. Negative bias temperature instability (NBTI) is a 

phenomenon that is commonly observed in p-channel devices operated in the temperature 

range 100-250 C at negative gate voltages producing gate oxide electric fields 2-6 

MV/cm [17-20]. Note that electric fields and temperatures that cause NBTI are typically 

found during the device burn-in tests [21, 22]. NBT stress may lead to degradation of 

important electrical parameters of power VDMOSFETs. Among these the negative VT 

caused by increase of Not and Nit is the most serious reliability problem [23]. Note that 

more significant negative VT is obtained at higher temperatures and/or higher gate 

voltages, i.e. higher oxide electric fields [24-28].     

Although NBTI phenomenon is known for more than a half of the century, the 

reliability issues associated with NBTI have resurfaced in the past two decades due to 

convergence of several factors resulting from the device scaling. This is the reason that 

vast majority of recent extensive investigation of NBTI has been focused on the related 

phenomena in ultrathin gate dielectrics layers, and only few research groups seem to have 

addressed the NBTI in thick gate oxides [24, 29, 30]. However, in spite of device 

dimensions being generally scaled down, there is still high interest in ultra-thick oxides 
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owing to widespread use of MOS technology for the realization of power devices, so the 

investigation of NBTI in VDMOSFETs is of high interest. 

It should be emphasised that PMOS transistors can be subjected to a single stress, but 

also in numerous applications to simultaneous or consecutive NBT and irradiation 

stresses. Namely, if p-channel power devices which exposed to radiation operate at higher 

temperature or at maximum power, the mechanisms responsible for both radiation effects 

and NBT instability can be activated. For example, satellite electronic equipment can be 

exposed to cosmic irradiation during a long time without air convection cooling. So, the 

active p-channel MOS devices can be irradiated and in the same time exposed to NBT 

stress, while the back-up devices (which do not operate) are only irradiated. 

It is known that irradiation effects and NBT instabilities in power MOS devices have 

been extensively studied, but they have been investigated separately. Though, the results 

of elevated temperature effects on the radiation response have been reported in some 

studies performed in order to estimate the MOS device behaviour in real irradiation 

environment [31, 32], but the p-channel devices used in those studies were irradiated 

and/or annealed under the positive gate bias. Regarding the fact that devices which 

operate in real applications can be stressed and recovered under different conditions and 

that final effects depend on specific applications and device mission, in this paper we 

present the results of consecutively NBT stressed and irradiated p-channel power 

VDMOS transistors. In this way the effects of specific kind of stress in devices previously 

subjected to the other kind of stress are investigated. 

However, for proper understanding of the effects induced by applied stresses, it is 

important to analyze in detail not only the changes in the electrical parameters, but also 

the mechanisms responsible for the observed effects. Clarification of behaviour and 

nature of oxide and interface defects created during and after the stress is very important 

in order to improve device stability and resistivity to applied stress. That is why this paper 

is aimed at analysis of reliability problems in power VDMOS transistors caused by NBT 

stress and radiation, as well as at related degradation and underlying mechanisms. The 

most vulnerable parts of the VDMOS transistors subjected to extreme, harsh environmental 

conditions or to the stress are the parts based on dielectrics (SiO2 and SiO2-Si interface), as both 

NBT stress and irradiation of VDMOS transistors lead to creation of oxide and interface 

defects causing significant degradation of electrical parameters. It is of great interest to 

know the nature of the defects, and these are still in the focus of many investigations 

aimed at clarifying responsible mechanisms and improving possibilities of predicting 

device behaviour in specific application. 

2. RADIATION EFFECTS 

As already mentioned, the threshold voltage shift is, undoubtedly, the most serious 

problem for irradiated devices since it may cause change of operation mode from 

enhancement to depletion in n-channel devices (thus leading to faulty operation of 

switching power supplies), or dramatic reduction of current driving capability in p-

channel ones. Even the radiation-hardened devices may fail due to reduction in current-

drive capability owing to channel carrier mobility degradation and/or positive VT [33]. 

The irradiation effects in MOSFETs have been extensively investigated by many 

researchers in the last decades. In our early study we have examined radiation response of 
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commercially available n-channel power VDMOSFETs EFL1N10 manufactured by "Ei-

Microelectronics", Niš, Serbia, which were realized in a standard Si-gate technology with 

the hexagonal cell geometry and gate oxide thickness of 100 nm. Gamma radiation was 

performed in Co-60 source (dose rate 0.04 Gy/s) at room temperature for two groups of 

the devices (without and with gate bias applied VG = + 9 V). Drains and sources of all 

devices were grounded during irradiation.  

The changes of the threshold voltage and mobility () during the irradiation of the 

devices [2] are presented in Fig. 1(a), where are also comparatively presented the results 

for similar devices [34]. Observed significant threshold voltage shift and mobility 

reduction in the devices were much more pronounced in the case of positive gate bias 

applied. It should be noted that the similar behaviour of these electrical parameters of the 

power VDMOS transistors has also been observed by other investigators and it has been 

generally established as a typical behaviour [14, 15, 33].     

The radiation tolerance of the power VDMOS transistors, as a very important 

requirement, can be determined for the maximum operating positive bias applied as this is 

the worst case scenario. As can be seen in Fig. 1(a), the threshold voltage shift becomes 

equal to threshold voltage (VT = - VT) at the total dose of about 250 Gy (denoted point at 

which investigated devices change their operating mode from enhancement to depletion). 

Therefore, the radiation tolerance of used commercial devices is of about 250 Gy, which 

is half the value required for their application in communication satellites with life spans 

of ten years [2]. 
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Fig. 1 Gamma-irradiation induced (a) VT and /0; 

(b) Not and Nit in n-channel power VDMOSFETs (EFL1N10). 

Considering that the main radiation effects on electrical parameters are caused by the 

creation of both Not and Nit , the changes in their densities (Not and Nit ) are very often 

analysed and discussed in the literature [8, 15, 33, 35-37]. In Fig. 1(b) Not and Nit in 

the devices which were irradiated in our experiment are presented. 

It should be emphasized that reliability screening is important in achieving high 

reliability of VDMOSFETs for application in radiation environment. Screening is 

normally performed on all devices in order to reduce the possibility of infant mortality. 

The standard reliability screening for these devices includes „burn-in tests“ (US MIL-

STD 883, Test Method 1015), such as: high temperature reverse bias (HTRB), high 
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temperature gate bias (HTGB) and high temperature storage life (HTSL) stresses [38]. 

However, it was shown that HTGB stress affects the radiation response in MOS 

transistors. This was the reason for modification of the standard qualification testing for 

application of MOSFETs in radiation environment and for imposing the requirement for 

radiation qualification testing after burn-in (US MIL-STD 883, Test Method 1019). Our 

results [22, 39, 40] which have shown that burn-in tests could have a significant impact 

not only on the radiation response of VDMOSFETs, but also on annealing of radiation 

defects, have confirmed the need for modification of qualification testing.  

In the another experiment also commercially available IRF510 (with nominal gate 

oxide thickness of 100 nm, realized in a standard Si-gate technology) and EFL1N10 

devices (from different batches A and B) were irradiated by Co-60 source (dose rate 

0.13 Gy/s) at room temperature with gate bias applied VG = + 10 V.  

The changes of the threshold voltage and mobility during the irradiation of EFL1N10 

(batch A and B) and IRF510 devices [22] are presented in Fig. 2, and Fig. 3, respectively, 

while underlying changes of Not and Nit are presented in Fig. 4. In these figures the 

results for reference devices and for devices subjected to HTRB (VD = 80 V, T = 125 C 

for 168 h) and HTGB (VG = 20 V, T = 125 C for 168 h) stresses are compared. It can be 

seen that VT was more pronounced in EFL devices, indicating that IRF devices were 

better in view of radiation tolerance, while there was almost no difference in mobility 

reduction.  
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Fig. 2 Gamma-irradiation induced VT in EFL-batch A, EFL-batch B and IRF n-channel 

power VDMOSFETs in HTRB and HTGB stressed and reference devices [40].  

It can be seen that there was almost no difference between the HTRB and HTGB 

stress effects on radiation response of investigated devices. The results which suggested 

that radiation response appeared to be almost independent of device pre irradiation stress 

biasing were obtained also for field -oxide MOSFETs [41]. As can be seen in Figs. 2 and 

3, VT during irradiation was slightly larger in HTRB stressed devices, while the mobility 

reduction was slightly larger in HTGB stressed ones. Similar behaviour of VT was 

obtained for irradiated field-oxide MOSFETs [41]. 

As can be seen from Fig. 4, the build-up oxide trapped charge appeared to be almost 

independent of device pre irradiation stress. On the other hand, the build-up of interface 

traps was somewhat less pronounced in the stressed device. For explanation of such 

behaviour of Not and Nit the chain of mechanisms, in which the diffusion of hydrogen 
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related species (originating either from package inside or gate oxide adjacent structures) 

from the bulk of the oxide towards the interface, has been proposed. 
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Fig. 3 Gamma-irradiation induced /0 in EFL-batch A, EFL-batch B and IRF n-channel 

power VDMOSFETs in HTRB and HTGB stressed and reference devices [40]. 

In many investigations of p-channel power MOSFETs radiation response, the role of 

Not and Nit were also emphasized. In Fig. 5(a) the radiation induced threshold voltage 

shift (VTNH) and degradation of the hole mobility /0 in non-hardened IRF9130 and 

threshold voltage shift in radiation hardened FRM9130 (VTRH) p-channel power 

MOSFETs are presented [14]. 
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Fig. 4 Gamma-irradiation induced Not and Nit in EFL-batch A, EFL-batch B and IRF  

n-channel power VDMOSFETs in HTRB and HTGB stressed and reference devices [40]. 

Also, in the Fig. 5(a) the contributions of the gate oxide charge (Vot) and interface 

traps (Vit) to the VTNH (for non-hardened devices) are presented. Devices were irradiated 

at room temperature by Co-60 gamma-ray source (dose rate of 0.2 Gy(Si)/min), with gates 

biased at VG = + 9 V, while source and drain terminals were grounded. Unlike the non-

hardened devices, VTRH of hardened devices is small for total dose below 400 Gy and 

mobility degradation is less than 4%. Both gate oxide charge (Not = Vot COX/q) and 
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interface traps (Nit = Vit COX/q) are positive, that gives rise to negative VTNH, i. e. 

VTNH = Vot + Vit . 
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Fig. 5 Gamma-radiation induced (a) VTNH and /0 in non-hardened and VTRH in 

hardened p-channel power MOSFET; (b) VT and corresponding Not and Nit 

(in inserted figure) in commercial p-channel power VDMOSFETs. 

In Fig. 5(b) the radiation induced VT and behaviours of corresponding buildup of 

Not and Nit (in inserted figure) in commercially available IRF9520 p-channel power 

VDMOSFETs irradiated at different gate bias applied are presented. Although irradiation 

conditions and obtain results will be discussed in detail in Sect. 4, it should be mentioned 

that significant negative VT induced by radiation also increases with total dose received 

and depends on gate bias applied. 

3. NBT STRESS EFFECTS 

NBT stress-induced threshold voltage instabilities in commercial power VDMOSFETs, 

as well as the implications of related degradation on device lifetime have been extensively 

investigated in our research in the last decade [27, 42-44]. Although in many experiments 

devices have been subjected to various NBT stress (static or pulsed) and annealing 

conditions [9, 23, 25, 45, 46, 48-52], in this section a part of results obtained during static 

NBT stress and annealing is presented, with attention to insight into the NBTI as a result of 

sequential NBT stress and bias annealing steps.         

In these investigations commercial p-channel power VDMOSFETs transistors 

IRF9520 (with current and voltage ratings of 6.8 A and 100 V) were used. These devices 

were built in standard silicon-gate technology with 100 nm thick gate oxide. Devices have 

been stressed up to 2000 hours by applying negative voltages (30 – 45 V) to the gate, with 

drain and source terminals grounded, at temperatures ranging from 125 to 175 C. 

Important details of used equipment for stress, annealing and measurement will be described 

in Sect. 4.  

During NBT stresses VT of investigated p-channel power VDMOSFETs was more 

significant in the cases of higher stress voltage and/or temperatures [25]. The underlying 

phenomenon leading to the observed VT in the stressed devices is the stress-induced 

buildup of Not and Nit. Typical time dependencies of stress induced buildup of Not and 
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Nit for different stress voltages at the temperature of 150 C and for different stress 

temperatures at stress voltage of - 40 V are presented in Fig. 6, while corresponding VT 

are presented in inserted figures. In these figures the results for NBT stressed devices 

during 2000 hours are presented. Analysis has shown that VT time dependencies follow 

the t
n
 power low, but with three different phases (that depends on the parameter n), which is 

indicated by the dashed lines (in inserted figures). In the first phase, parameter n depends on 

bias as well as on temperature, and varies from 0.4 to 1.14. In the second phase parameter n 

is almost independent on bias and temperature, and equals approximately 0.25 as obtained 

in all earlier NBTI investigations [17, 24, 53, 54]. This phase begins earlier in devices 

stressed at higher voltages and/or temperatures, and might be even expected that the first 

phase disappears under more severe stress conditions. In the third (long stress) phase 

parameter n again becomes bias and temperature dependent, varying from 0.25 to 0.14. 

Also, in Fig. 6 could be observed that the buildup of Not is more significantly 

pronounced than that of Nit for each specific combination of temperature and stress 

voltage in all three stress phases. In addition, it could be seen that Nit rapidly increases 

in the early phase, but slows down in the second phase and tends to more rapidly saturate 

than Not . It should be emphasized that the strong correlation between time dependence 

of VT and corresponding Not in all cases (all combinations of temperatures and stress 

voltages) was observed. On the other hand, such correlation between VT and Nit time 

dependencies was not observed. This disagreement becomes more noticeable as the NBT 

stressing advances into the second phase and, especially, further into the third phase. 

Therefore, time dependence of VT in investigated p-channel power VDMOSFETs seems 

to be mostly affected by NBT stress induced buildup of oxide trapped charge, which does 

not appear to be consistent with most of literature data emphasizing dominant role of 

stress induced interface traps [17, 24, 53]. 

In addition, it was shown that the effects of post-stress annealing (at various voltages 

and/or temperatures, during various time intervals), provided after each phase of NBT 

stress (1
st 

-
 
3

rd
), depend not only on temperature and gate bias conditions, but also on 

status of the gate oxide and SiO2–Si interface, immediately after the stress [46]. Namely, 

observed effects were affected by the densities of stress-induced Not and Nit and their 

spatial and energy distributions, number of potential trapping sites and quantities of 

reacting species available after the stress, quantity and distribution of new defects 

possibly created by preceding stress, etc. 

Besides that, in order to further disclose the effects of post-stress and intermittent 

annealing on degradation associated to NBTI, another experiment, in which devices were 

subjected to a five step sequence, was performed. In this experiment, commercial p-

channel IRF9520, and n-channel IRF510 power VDMOSFETs were also used. IRF510 

transistors were also built in standard silicon-gate technology with 100 nm thick gate 

oxide. The experiment included three NBT stress steps interchanging with two bias 

annealing steps. Namely, one week of NBT stressing with gate voltage of - 40 V at 

T = 150 C was followed by one week of annealing without or with the gate bias applied, 

also at 150 C. After that, NBT stress and annealing were repeated, followed by final 

NBT stress. Devices were annealed without or with gate bias applied (VG = +10 V or 

VG = - 10 V). 
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It was shown that annealing with negative gate bias applied did not affect noticeably 

Not and Nit , while annealing performed under the zero and positive gate bias removed 

the portion of stress induced oxide charge, but created a new interface traps over to those 

that have been created during the preceding NBT stress. Observed effects were more 

pronounced in the case of positive gate bias applied. Therefore, evolutions of VT in p- 

and n-channel power VDMOSFETs and corresponding evolutions of Not and Nit in p-

channel transistors obtained during NBT stress and annealing under the positive gate bias 

applied are presented in Fig. 7 and Fig. 8, respectively. In these figures can be observed 

that majorities of the changes occurred only in an early stage of the annealing steps, as 

well as of NBT stresses. 
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Fig. 6 Time dependence of Not and Nit (and VT at inserted figure) for different: 

(a) stress voltages at the same temperature (150 C); (b) stress temperatures  

for the same stress voltage (VG = - 40 V). 

In Fig. 7 it can be seen that evolutions of VT  were similar in both types (p- and n-

channel) of transistors, and that overall variations of VT over the entire stress and anneal 

sequence were greater in n-channel ones. Besides that, in Fig. 7(a) (VT in p-channel 

transistor) it can be seen that VT was significantly recovered, but the initial stress-induced 

ΔVT did not fall below 100 mV after both annealing. During repeated NBT stress the 

major portion of VT induced by the initial NBT stress is also quickly restored. The 

changes of ΔVT tend to decrease on each new repetition of annealing, indicating that there 

is a non-reversible component of ΔVT, which resulted from the portion of non-annealed 

stress-induced oxide-trapped charge and interface traps and new created interface traps.  

In Fig. 8 it can be seen that the shapes of Not mostly follow the shapes of VT over 

the complete sequence. This suggests that charge trapping/detrapping processes occurring 

in oxide bulk could be of primary importance for NBTI in power VDMOSFETs. It should 

be emphasized that although recovery of VT during annealing was observed, it does not 

seem to be a true device recovery because only Not decreases while Nit simultaneously 

increases. This increase could be ascribed to a reversed drift direction of positively 

charged species. It should be emphasized that similar to radiation induced degradation, 

degradation induced by NBT stressing in power VDMOSFETs might be associated with 

gate oxides as reservoirs of hydrogen related species required for both passivation and 



376 V. DAVIDOVIĆ, D. DANKOVIĆ, S. GOLUBOVIĆ', ET AL.   

depassivation processes occurring at the SiO2–Si interface during and after the stress. 

Accordingly, some elements of the approach applied in standard model of irradiation 

damage [15, 23, 55, 56] might be reasonable in considering the NBTI in power 

VDMOSFETs. 

0.0

0.1

0.2

0.3

0 40 80 120 160

160 120 80 40 0

V
G 

= + 10 V

V
G 

= - 40 V

I 
V

T
 I 

(V
)

 1
st
 stress

 2
nd

 stress

 3
rd

 stress

Anneal time (h)

Stress time (h)

Stressing

 

 1
st
 anneal

 2
nd

 anneal

T = 150 
o
C

Annealing 

 

-0.2

0.0

0.2

0 40 80 120 160

160 120 80 40 0

V
G 

= + 10 V

V
G 

= - 40 V

I 
V

T
 I 

(V
)

 1
st
 stress

 2
nd

 stress

 3
rd

 stress

Anneal time (h)

Stress time (h)

Stressing

 

 1
st
 anneal

 2
nd

 anneal

T = 150 
o
C

Annealing 

 
          a)      b) 

Fig. 7 Evolution of VT in power VDMOSFETs during complete sequence of NBT 

stressing and positive bias annealing steps in: (a) p-channel and (b) n-channel. 
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Fig. 8 Evolution of (a) Not and (b) Nit in p-channel power VDMOSFETs during 

complete sequence of NBT stressing and positive bias annealing steps. 

Also, in Fig. 8 it can be observed that the changes of Not and Nit tend to decrease 

during each new repetition, indicating that non-reversible components of Not and Nit tend 

to increase. Namely, the repetition of NBT stress after annealing re-created the annealed 

portion of Not , while removed the reversible component of Nit . It is interesting that 

interface traps created during each annealing are almost completely removed during 

following NBT stress. The second and the third NBT stresses actually lead to decrease of 

Nit to value approximately equal to one after the first stress. In this way Nit remains 

almost on the same value as it was after the first NBT stress. Besides, it could be noticed 

that the values of Not are significantly higher than that of Nit after each NBT stress. On 

the other hand, the values of Not after annealing become almost the same as values of 

Nit after NBT stresses, at these experimental conditions. 
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The observed changes could be ascribed to the available oxide trapped charge and 

interface trap precursors, as well as to the presence of hydrogen species that significantly 

contribute to the observed VT , Not and Nit evolution. 

4. CONSECUTIVE RADIATION AND NBT STRESS EFFECTS 

The devices used in the investigation of consecutive irradiation and NBT stress were 

also the commercial p-channel power VDMOSFETs IRF9520, whose important 

properties were presented in Sect. 3. In this investigation two different experiments were 

performed: 1) after NBT stress the samples were irradiated (NBT-RAD experiment) and 

2) after irradiation samples were NBT stressed (RAD-NBT experiment). In the first 

experiment NBT stress was followed by spontaneous recovery (24 hours), irradiation, by 

another spontaneous recovery (168 hours) and by thermal annealing. In the second 

experiment irradiation was followed by spontaneous recovery (24 hours), NBT stress, 

another spontaneous recovery (168 hours) and by thermal annealing. In both experiments, 

all stresses and recoveries, as well as thermal annealing were done under the same 

conditions. During NBT stresses and irradiations the source and drain were grounded. 

NBT stressing was performed in thermally stable Heraeus chambers at 175 C (168 h) 

with device gates biased at VG = - 45 V. 

Chosen voltage value of - 45 V enables to observe notable VT within a reasonable 

period of time. Namely, stressing of these devices with gate voltage within the range 

found in manufacturer’s data sheet (maximal gate voltage - 20 V), would lead to small 

degradation which would be notable after a long period (thousands of hours) [16]. Chosen 

voltage value of - 45 V exceeds the range of gate voltages allowed for application in the 

investigated devices, but it is within the range of gate voltages used for NBT stress 

experiments on these power devices. Regarding the choosing of temperature, significant 

device degradation at room temperature can be observed only at stress voltages which are 

just few volts below the gate oxide breakdown voltage (70 V), and can be ascribed to tunnelling 

effects [57], while at T > 175 C, backward interface reactions can be activated [58]. It should 

be mentioned that in this study the NBT stressing was limited to 168 h with the aim of 

shortening the experiment. Therefore the combination of bias and temperature value, as well as 

NBT stress duration was chosen in order to obtain optimal conditions for this investigation.  

The irradiation was performed at Department of Radiation and Environmental 

Protection at Institute for Nuclear Sciences, Vinča, Serbia. The devices were gamma 

irradiated by Co-60 (dose rate of the source was 0.5 Gy(SiO2)/min) up to a total dose of 

75 Gy (total duration of 150 min). The devices were irradiated without gate voltage applied, 

and with applied positive (+10 V) and negative (-10 V) gate voltage. The chosen voltage 

value of 10 V enables to enhance irradiation effects, and to simulate real cases of biased 

device in the working conditions. Besides that, the chosen total dose of 75 Gy (relatively low 

compared to very high doses that could be achieved in the devices assembled in satellites) 

provides to avoid that radiation effects in devices significantly surpass and masks the NBT 

stress effects. In addition, the thermal annealing (the final phase in both experiments), of all 

devices, was performed at T = 175 C during 168 hours without any bias applied. Both 

spontaneous recovery were carried out at room temperature of T = 25 C, also, without any 

bias applied.  
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In order to detect and monitor the degradation during all phases of experiments, each 

one was interrupted after certain, predefined periods to measure the device transfer ID-VGS 

characteristics. The highly precise source measurement units (SMUs) Keithley 237 (for 

drain biasing and drain current measurement) and Keithley 2400 (for sweeping the gate 

voltage), both controlled by PC over IEEE 488 GPIB were used for devices electrical 

characterization. It should be noted that all measurements were performed at room temperature. 

In Figs. 9 and 10 are presented VT in p-channel power VDMOSFETs during the 

NBT stress - irradiation and irradiation - NBT stress experiment, respectively. All devices 

subjected to initial NBT stress in NBT stress-irradiation experiment follow the same 

degradation curve of VT . On the other hand, irradiation of virgin devices (in irradiation -

  NBT stress experiment) has induced significant negative VT , which increased with total 

dose received and were dependent on the gate bias applied. In the case of zero bias 

applied, the value of VT was the lowest, while at gate bias applied of 10 V it was 

significantly more pronounced. At the same VT was somewhat more pronounced in the 

case of positive bias applied (VG =+10 V) than at negative bias applied (VG =-10 V) [11]. 

The underlying changes of Not and Nit , determined by the commonly used 

subthreshold midgap technique [59], during the NBT-RAD experiment are presented in 

Fig. 11, while underlying changes of Not and Nit , during the RAD-NBT experiment are 

presented in Fig. 12 [60]. 

It should be mentioned that the microscopic origin of the NBTI related degradation 

as well as radiation related degradation was extensively investigated. Namely, the 

changes of oxide trapped charge and interface traps, which lead to corresponding 

threshold voltage shift, could be explained by numerous models of the responsible 

mechanisms for these changes during NBT and gamma radiation stress, as well as during 

the annealing of stressed devices. In many models changes of Not and Nit are the result 

of electro-chemical processes that occur in the gate oxide and at SiO2-Si interface. These 

electro-chemical processes and underlying reactions are based on the charge traps 

precursors existing in the gate oxide and at SiO2-Si interfaces. Some models include 

reactions at SiO2-Si interface involving holes and their transport through the oxide. 

Besides that there are models which can properly explain results obtained in the 

investigations of NBTI and radiation degradation, which are based on transport of 

hydrogen species (H
•
, H

+
, H2, OH

•
, H2O, H3O

+
). The presence of hydrogen species is 

associated with the presence of hydrogen as a common impurity in MOS devices. The 

result in this investigation can also be explained by mentioned models. 

Mechanisms responsible for NBT stress induced changes of Not and Nit are bias 

dependent and thermally activated [9, 16, 20, 23, 24, 26-29]. Interpretations of mechanisms 

responsible for degradation, very often, include various forms of model based on the 

assumption that previously passivated defects at SiO2-Si interface release hydrogen 

species which diffuse into the oxide and leave the interface traps [17, 19, 53, 61]. In these 

models dispersive hydrogen species motions were proposed, due to various assumptions 

related to trap controlled hydrogen migration in the oxide [62-65]. 

In many investigations of NBTI, there were proposals that interface trap creations 

could be reaction controlled mechanism rather than diffusion controlled one [18]. 

Generation of positive charge in the oxide bulk due to hole trapping has been reported in 

addition to generation of interface traps [18, 62, 63]. 
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Although there was a controversy on the role of trapped charge in NBTI [18], 

numerous studies suggested that hole trapping dominantly contributes to degradation [20, 

66, 67]. This might lead to the proposal of a new charge trapping model, which makes 

connection between the NBTI degradation and the creation of switching oxide traps, and 

that is consistent with recovery data showing dispersion over the wide range of time. 
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Fig. 9 Behaviour of VT in p-channel power VDMOSFETs (IRF9520)  

during the NBT stress-irradiation experiment [11]. 
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during the irradiation-NBT stress experiment [11]. 
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during the NBT stress-irradiation experiment [60]. 
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Fig. 12 Behaviours of Not and Nit in p-channel power VDMOSFETs (IRF9520)  

during the irradiation-NBT stress experiment [60]. 

The results obtained in our investigations, in power VDMOSFETs, signify that major 

contribution to NBTI in these devices also originates from the oxide trapped charge. The 

other important feature of NBTI in power VDMOS devices is additional generation of 

interface traps in devices annealed under the positive gate bias. It is important to note that 

our results indicate strong bias dependence of the processes which occurred during both 

stress and annealing. This suggests that one or more kind of charged species could be 

involved. The holes induced and/or accumulated under the gate oxide have to be among 

them, as negative gate bias stress resulted into significant threshold voltage shift. We also 

believe that hydrogen, as a most common impurity in MOS devices, which is widely 

considered as the primary agent of instabilities associated with radiation damage [55, 56], 

hot carrier injection, and high electric field stress [68, 69], has to be considered in BTI as well. 
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5. UNDERLYING MECHANISMS 

During NBT stress high electric field at elevated temperature in the presence of holes 

(h
+
) may cause dissociation of weak Si-H bonds at the interface thus leading to creation of 

interface traps and hydrogen atoms:  

 Si3 ≡ Si-H  +  h
+
   ↔   Si3 ≡ Si

+
  +  H

•
.                         (1) 

Released highly reactive hydrogen atoms (H
•
) could react with holes from the channel and 

create hydrogen ions (H
+
). The holes originate from the channel owing to applied high 

negative gate bias of - 45 V. Created hydrogen ions may dissociate Si-H bonds at the 

interface, thus creating additional interface traps: 

Si3 ≡ Si-H  +  H
+
   ↔   Si3 ≡ Si

+
  +  H2 .             (2) 

Alternatively, hydrogen ions could drift away, due to applied high negative gate bias, 

from the interface into the oxide bulk and participate in creation of positive oxide charge:  

 O3 ≡ Si-H  +  H
+
   ↔   O3 ≡ Si

+
  +  H2.                         (3) 

Buildup of oxide charge under the high negative oxide field can be also explained by 

hole trapping at oxygen vacancy defects near the interface: 

O3 ≡ Si
•
 
•
Si ≡ O3  +  h

+
   →   O3 ≡ Si

+
 
•
Si ≡ O3.            (4) 

It should be mentioned that oxide-trapped charge and switching traps (interface traps 

and near interface oxide traps so-called “border traps” [70]) are all positive in the case of 

p-channel MOS transistor and thus contribute to a negative VT.  

In Fig. 11 (NBT-RAD) it can be observed that during NBT stress the increase of Not 

was more pronounced than Nit and that these values were not affected notably by the 

subsequent spontaneous recovery at 25 C, as the temperature was too low to activate any 
process of relevance for the phenomena under the investigation. Because of that the 

changes of VT were not affected notably by the subsequent spontaneous recovery.  

Regarding the ionizing radiation, the knowledge acquired during many years of 

microelectronic devices testing [15, 71, 72] has been successfully implemented in 

explaining the impact of ionizing radiation on VDMOSFETs, and an appropriate model 

of responsible electrochemical process was proposed in [2]. The essence of the model is 

an assumption that weak bonds between silicon and oxygen atoms in the oxide structure 

(as well as the bonds in the defects between silicon atoms and hydrogen/hydroxyl groups 

and/or atomic clusters containing hydrogen) and near the oxide-silicon interface would be 

broken due to irradiation. 

Namely, high energy (MeV magnitude) ionizing irradiation breaks not only weak Si-

H and Si-OH bonds in the oxide, but also the regular Si-O-Si bonds and generates 

electron-hole pairs in the gate oxide structure:   

O3 ≡ Si-O-Si ≡ O3  
h

h
 O3 ≡ Si

.
  +  O3 ≡ Si-O

.
  +  e


    h

+ 
.           (5) 

 

O3 ≡ Si-H (O3 ≡ Si-H)   
h

h
 O3 ≡ Si

•
    H

•
 (OH

•
)  +  e


    h

+ 
.           (6) 

Although some of these pairs recombine, most of the generated electrons, however, 

quickly escape from the oxide, while most of the holes (which are weakly mobile) get 

captured in the oxide volume on oxygen vacancy defects O3≡Si
•
 
•
Si≡O3, contributing to 

creation of positive oxide trapped charge over a reaction identical to (4).  
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When the gate is positively biased, the electrons almost immediately [35] remove 

through the gate, while when the gate is negatively biased, the electrons remove through 

the semiconductor. In the case of higher electric field applied more unrecombined holes 

remain trapped in the oxide which leads to higher oxide trapped charge. Small difference 

between irradiation effects obtained for positive gate bias and negative gate bias can be 

explained by small difference (due to different surface potential) between the corresponding 

values of electric field in the oxide, which affects the removal of electrons.  

It should be mentioned that a fraction of the holes may dissociate weak Si-H and Si-

OH bonds and can be trapped again in the oxide contributing to oxide trapped charge 

increase: 

h
+
 + O3≡ Si-H (O3≡ Si-OH) → O3≡ Si

+
 + H

• 

(OH
•
).           (7) 

Also, a fraction of the holes could be trapped at oxide defects, such as oxygen 

vacancies, also contributing to oxide trapped charge increase over a reaction identical to (4). 

As mentioned before, holes can react with hydrogen atoms forming the ions. These 

hydrogen ions also could contribute to the oxide trapped charge increase [56]. 

Released holes could dissociate weak Si3  Si-H and Si3  Si-OH bonds which exist at 

the interface creating interface traps:  
                                                 from silicon          

   h
+
  +  Si3  Si-H (Si3  Si-OH)  +  e


   Si3  Si

• 
+ H

•
 (OH

•
) .           (8) 

Similarly, hydrogen ions could contribute to creation of interface traps: 

                                              from silicon          

             H
+
 + Si3  Si-H (Si3  Si-OH) + e


    Si3  Si

• 
+ H2 (H2O) .           (9) 

In Fig. 12 (RAD-NBT) it can be seen that the values of Not are significantly higher 

than those of Nit after irradiation and that all changes were the smallest in the case of 

irradiation without gate bias applied. Also, it can be seen that both Not and Nit were 

somewhat more pronounced in the case of a positive gate bias applied. The reason for 

these differences is found in the electric field dependence of irradiation effects [12, 35]. It 

should be emphasized that post-radiation spontaneous recovery resulted in a decrease of 

Not and an increase of Nit (Fig. 12), although it seems that VT remained stable (Fig. 10).   
In NBT stress-irradiation experiment (Fig. 11), the irradiation applied after NBT 

stressing has produced the additional significant increase of Not and Nit (leading to 

additional negative VT presented in Fig. 9) which were slightly lower, but almost the 
same to those previously observed in irradiated virgin devices during the first step of the 
irradiation-NBT strss experiment (Fig. 12). This suggests that radiation effects probably 
were not noticeably affected by NBT stress-induced degradation. Such behaviours can be 
explained by relatively low temperature (room temperature) and relatively low electric 
field applied during irradiation, as well as relatively low total irradiation dose. 

However, for the effects observed during the NBT stress applied after irradiation (in 

irradiation-NBT stress experiment) two mechanisms might be responsible. The first one is 

activation of electrochemical reactions contributing to NBTI, which leads to additional 

creation of oxide charge and interface traps, and the second one is annealing of irradiation-

induced oxide charge due to high temperature (175 C) applied. In order to compare the 

obtained values of Not and Nit in Figs. 13 their behaviours during NBT stress of virgin 

(Fig. 11) and previously irradiated (Fig. 12) devices are presented. 
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In devices previously irradiated without gate bias applied, the amount of radiation-

induced defects was rather small while the number of available defect precursors 

remained rather high. Therefore, during the NBT stress applied after irradiation additional 

defects were created. This caused further increase of threshold voltage shift. On the other 

hand, in devices previously irradiated at positive or negative gate bias, the amount of 

irradiation-induced defects was much higher and their decreasing during the subsequent 

NBT stress was actually dominant over the new defect creation. Decreasing of oxide 

trapped charge and interface traps led to the decrease of threshold voltage shift. 
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Fig. 13 Comparative presentation of (a) Not and (b) Nit during NBT stress  

for investigated devices (virgin and previously irradiated). 

Also, in order to compare obtained values of VT in Fig. 14 behaviours of VT during 

NBT stress of virgin (Fig. 9) and previously irradiated (Fig. 10) devices are presented [60]. 

It can be seen that the difference in VT established after irradiation between devices 

irradiated with positive and negative gate bias applied, decreased very fast at the beginning 

of the NBT stressing step (within about 24 hours) to a level that remained almost unchanged 

until the end of NBT stress.   

It should be noted that the second spontaneous recovery generally causes a small 

decrease of VT in the first period in all devices. During the rest of the spontaneous 

recovery VT remains almost unchanged in NBT-RAD experiment (Fig. 9), while slightly 

decreases in RAD-NBT experiment (Fig. 10). As in the case of the first spontaneous 

recovery, VT seems also to be relatively stable during the second spontaneous recovery 

in both experiments. Despite this, it was observed decrease of Not and increase of Nit in 

both experiments (Figs. 11 and 12). 

In Figs. 7, 8, 11 and 12 it can be seen that during annealing (last step) VT, Not and 

Nit significantly decreases and that this decrease is more pronounced in devices 

subjected to NBT-RAD experiment. Although the conditions of NBT stress, irradiation 

and annealing have been the same in both experiments, the final values of VT, Not and 

Nit were found to depend on the order of stress steps, and were generally lower in RAD-

NBT experiment. Such obtained values are the result of two high temperature steps after 

irradiation in RAD-NBT experiment which have been applied (NBT stress and annealing, 

both at 175 

o
C for 168 h), so more defects were annealed. In NBT-RAD experiment, only 
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one thermal annealing step was applied after irradiation that resulted in higher final 

values. Namely, in NBT-RAD experiment the defects induced by NBT stress and by 

radiation have been subjected to thermally annealing (175 

o
C) for 168 h, while in RAD-

NBT experiment only NBTI defects have been subjected to thermally annealing (175 

o
C) 

for 168 h, but radiation defects have been subjected to high temperature (175 

o
C) twice as 

much. More pronounced and faster decrease of all values (VT, Not and Nit) in the 

initial period of annealing could be ascribed to higher values of created defects after 

previous steps. The obtained results undoubtedly point to the importance of the order of 

applied stresses. 

During annealing the devices were not biased, and annealing is strongly thermally 

supported, as observed by comparing two last steps in the experiments (spontaneous 

recovery and annealing). The mechanisms during annealing are thermally activated, so the 

diffusion of neutral species like hydrogen molecules from the areas of high concentrations 

in oxide toward lower concentrations near the interface could lead to decrease of Not and 

Nit. Namely, hydrogen molecules could be cracked at charged oxide traps (O3 ≡ Si
+
 and 

O3≡ Si
+

 

•
Si ≡ O3) leading to neutralization of positive oxide traps followed by the H

+
 ions 

releasing [55] over the reverse reaction (3) and:  

        O3 ≡ Si
+ •

Si ≡ O3  + H2  →  O3 ≡ Si-H + H
+
.
   

                     (10) 

The decrease of interface traps during the annealing might be also attributed to the 

hydrogen species (molecule H2 and highly reactive atom H
•
) involved in reactions [20]:  

        Si3  Si
•
  +  H2   →    Si3  Si-H + H

•
,                        (11)  

        Si3  Si
•
  +  H

•
   →   Si3  Si-H .                         (12) 

Observed threshold voltage decrease is in agreement with comparable published 

results [73] (power MOS, 105 nm gate oxide, annealed at 175 

o
C), and also fits to 

Switching-Oxide Traps model used originally as so-called HDL model in interpreting 

irradiation effects and later in NBTI phenomena [12, 20, 30, 55, 56]. 
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Fig. 14 Comparative presentation of VT during NBT stress  

of virgin devices and previously irradiated devices. 
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6. CONCLUSIONS 

The main features of independent NBTI and irradiation effects in p- and n-channel, 

as well as consecutive NBTI and irradiation effects in p-channel power VDMOSFETs 

have been reviewed. It was shown that experimental results of consecutive stresses 

complement the results of research of independent NBTI and irradiation effects. The 

obtained results were analysed in terms of underlying mechanisms. This investigation is 

shown as important in assessing the device behaviour in real working conditions (where 

devices are simultaneously under negative bias, irradiation and selfheating). It was shown 

that radiation induced degradation of previously NBT stressed devices practically was not 

affected by previous NBT stress. However, previously irradiated devices with and without 

gate bias applied have shown different behaviours. Devices previously irradiated without 

gate bias have been further degraded by NBT stress, while devices previously irradiated 

with gate bias have been partially recovered by NBT stress, due to high temperature 

introduced by NBT stress. The obtained results undoubtedly point to the importance of 

the order of applied stresses, indicating that for proper insight into the prediction of 

device behaviour not only harsh conditions, but also the order of their possible 

applications have to be considered. 
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