
FACTA UNIVERSITATIS  

Series: Electronics and Energetics Vol. 28, No 1, March 2015, pp. 123 - 131 

DOI: 10.2298/FUEE1501123F 

TEMPERATURE MEASUREMENT PERFORMANCE 

OF SILICON PIEZORESISTIVE MEMS PRESSURE SENSORS 

FOR INDUSTRIAL APPLICATIONS

 

Miloš Frantlović
1,2

, Ivana Jokić
1,2

, Žarko Lazić
2
, Branko Vukelić

1,2
, 

Marko Obradov
1,2

, Dana Vasiljević-Radović
2
, Srđan Stanković

1
 

1
School of Electrical Engineering, University of Belgrade, Serbia 

2
ICTM – Center of Microelectronic Technologies, University of Belgrade, Serbia 

Abstract. Temperature and pressure are the most common parameters to be measured 

and monitored not only in industrial processes but in many other fields from vehicles 

and healthcare to household appliances. Silicon microelectromechanical (MEMS) 

piezoresistive pressure sensors are the first and the most successful MEMS sensors, 

offering high sensitivity, solid-state reliability and small dimensions at a low cost 

achieved by mass production. The inherent temperature dependence of the output 

signal of such sensors adversely affects their pressure measurement performance, 

necessitating the use of correction methods in a majority of cases. However, the same 

effect can be utilized for temperature measurement, thus enabling new sensor 

applications. In this paper we perform characterization of MEMS piezoresistive pressure 

sensors for temperature measurement, propose a sensor correction method, and 

demonstrate that the measurement error as low as ± 0.3 °C can be achieved. 
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1. INTRODUCTION 

The most commonly used temperature sensors for contact temperature measurement in 

industrial processes are those based on Seebeck effect (thermocouples), and those based 

on the temperature dependent resistance of platinum (Resistance Temperature Detectors – 

RTDs). The former do not offer high accuracy (worse than ± 0.5 °C), but have the widest 

temperature range, while the latter can be of very high performance (better than ± 0.05 °C 

for Standard Platinum Resistance Thermometers – SPRTs). 

In a typical industrial plant both temperature and pressure measurements are required 

at various points of the process, often at remote locations, while monitoring and control 

functions are centralized. Industrial telemetry relies on the use of a special kind of 
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industrial-grade instruments able to transmit their measurement indication in the form of 

an electrical signal from the measurement site to the control room, and therefore called 

industrial transmitters. 

During the past three decades, industrial pressure transmitters evolved from simple 

electronic devices that perform analog signal processing and generate an analog output 

signal to much more complex computerized instruments with two-way digital communication. 

Contemporary intelligent pressure transmitters owe their high measurement performance to 

sensor correction techniques based on digital signal processing. In this paper we 

investigate the possibility of using silicon piezoresistive MEMS pressure sensors for 

temperature measurement, utilizing hardware resources already existing in contemporary 

intelligent pressure transmitters. Some early results of our work were presented in Ref. 

[1], while this paper contains more comprehensive information based on measurement 

data obtained for a new set of sensors. 

Research of silicon MEMS piezoresistive pressure sensors, including their design, 

fabrication and correction techniques, has been performed at the Center of Microelectronic 

Technologies (CMT) for more than 25 years [2]-[11]. One of the successful types of 

pressure sensing elements developed and fabricated at CMT is the SP-9, which was 

chosen for this work. It is intended for measurement of absolute or relative pressure in the 

range from 0.5 bar to 50 bar. The base material used for its fabrication is a double sided 

polished single crystal n-type silicon wafer (specific resistivity from 3 cm to 5 cm). 

Four p-type piezoresistors are formed by boron diffusion on the surface of the silicon 

substrate, constituting a Wheatstone bridge. Two piezoresistors are in the radial direction 

and the remaining two in the transversal direction relative to the edges of a micromachined 

diaphragm. The diaphragm is square, 2×2 mm
2
 in size, fabricated by anisotropic etching 

of silicon on the bottom side of the wafer. The thickness of the diaphragm is from 43 μm 

to 160 μm, depending on the nominal pressure range of the sensing element. Positions of 

the piezoresistors are optimized for each diaphragm thickness in order to achieve the 

highest linearity of the output signal. The overall size of the sensing element die is 

3.2×3.2×0.38 mm
3
. After the fabrication of the die, it is anodically bonded to a 1.7 mm 

thick glass support. If a sensing element is intended for relative pressure measurement, 

there must be a channel through the glass support in order for the fluid at the reference 

pressure to reach the bottom side of the sensing element diaphragm. A photograph of the 

sensing element mounted on a TO-5 housing is shown in Fig. 1a. 

An industrial-grade pressure sensor consists of a pressure sensing element (e.g. the 

SP-9) and a metallic sensor body that ensures optimal operating conditions for the sensing 

element, protects it from damage, and provides for a standardized process connection. A 

photograph of an industrial pressure sensor based on the SP-9 sensing element is shown in 

Fig. 1b. A separation membrane, located inside the metallic body, eliminates a direct 

contact between the sensing element and a possibly electrically conductive, chemically 

aggressive or dirty fluid whose pressure is measured. The sensing element is surrounded 

by chemically inert silicone oil which is also a good dielectric. 
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Fig. 1 Photographs of a) SP-9 sensing element mounted on a TO-5 housing, 

b) industrial pressure sensor based on the SP-9 sensing element 

A simplified electrical circuit diagram of a piezoresistive sensor with current 

excitation is shown in Fig. 2. For a typical sensing element made by CMT, the resistances 

R1, R2, R3, and R4 are approximately equal in the absence of the applied pressure. Their 

value is within the range from 2 kΩ to 3 kΩ, and the temperature coefficient of the 

resistance is in the range from 0.13 %/°C to 0.15 %/°C. 

 

Fig. 2 Simplified electrical circuit diagram of a piezoresistive pressure sensor  

with current excitation 
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2. METHOD 

2.1. Sensor characterization 

In order to devise a temperature measurement method based on the resistance of the 

sensor's Wheatstone bridge, three gauge pressure sensors based on the SP-9 sensing 

element are characterized in terms of their temperature response. The mechanical 

construction of all the sensors is the same, featuring a separation membrane and silicone 

oil filling. 

The experimental setup used for the characterization of the sensors was similar to the 

one described in our previous work [11], except for the relative pressure that was set to 

zero by leaving the sensors' pressure ports at the normal atmospheric pressure throughout 

the experiment. Acquisition of the signals from the pressure sensors was performed using 

a custom designed signal acquisition unit connected to a personal computer. A simplified 

block diagram of the unit is shown in Fig. 3. 

 

 

Fig. 3 Simplified block diagram of the signal acquisition unit 

The input circuitry connected to the sensor under test consists of a constant current 

source for sensor excitation (I0=420 μA), two 24-bit delta-sigma analog-to-digital 

converters (ADC), two zero-drift programmable gain instrumentation amplifiers (PGA), 

one zero-drift buffer amplifier and one high-performance resistor (Rref=5 kΩ with ±0.01% 

tolerance, temperature coefficient of resistance ≤ 2 ppm/°C). The amplifiers are necessary 

when low level signals are measured and also because of the high impedance of the sensor 

used as the signal source. Measurements are ratiometric, with the ADC reference voltage 

proportional to the sensor excitation current (Vref=I0·Rref), in order to eliminate the error 

introduced by variations of the excitation current. The resistance of the sensor, seen at its 

excitation port, is calculated as Rbr=(Rref/(A·2
n-1

))·N, where A is the amplifier gain, n is the 

resolution of the ADC, and N is the numeric value at the ADC's output (in this case A=1 

and n=24). In this experiment the voltage between the remaining ends of the Wheatstone 
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bridge was not measured. For the reference measurement of the pressure sensor's 

temperature a high performance Pt-100 sensor was used. The temperature measurement 

block shown in the diagram is realized using the same circuitry as the one used for the 

pressure sensor, thus enabling the inputs of the signal acquisition unit to be 

interchangeable. The Control & data acquisition block is based on a MSP430F169 

microcontroller. It controls all the unit's functions, including the communication with the 

PC computer via the RS-232 interface (the Comm. interface block). The Power supply 

block contains low-noise voltage regulators. The power consumption of the signal 

acquisition unit is low, so it is powered by 4 AAA batteries. The temperature of the sensor 

under test is controlled using a climatic test chamber, in the range from -20 °C to 70 °C. 

During the sensor characterization experiment the operator sets the temperature value, 

waits for the sensor temperature to settle and then initiates the measurement. The process 

is repeated for each temperature value in a sequence. The personal computer receives the 

measurement data from the signal acquisition unit, displays the measurement indications 

and saves the data to a file. 

A diagram showing the experimentally obtained dependences of Rbr on the temperature T 

for the three tested sensors is shown in Fig. 4. In order to evaluate the temperature 

measurement performance of the tested sensors without any sensor correction method 

applied, a linear calibration function is used. Its parameters are calculated by fitting it to the 

obtained characterization data of each of the sensors, using the least squares method [12]. 

The temperature measurement error is calculated as the difference between the obtained 

temperature indication and the temperature value measured using the Pt-100 sensor, at all the 

set temperatures. The results are shown graphically in Fig. 5. It can be concluded from the 

diagram that the temperature measurement error exhibited by the tested sensors is within 

± 4 °C. 

 

 

Fig. 4 Experimentally obtained dependences of the resistance Rbr  

on temperature T for three tested sensors 
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Fig. 5 Temperature measurement error ΔТ as a function of temperature T  

for three tested sensors, without sensor correction 

2.2. Sensor correction method 

In order to improve the measurement performance, a suitable sensor correction 

method must be applied. In this case a third order polynomial has been chosen for the 

sensor calibration function. Its parameters were determined by fitting it to the sensor 

characterization data, using the least squares method [12]. A diagram showing the 

calibration functions obtained in this way for the three tested sensors is given in Fig. 6. 

3. RESULTS & DISCUSSION 

Temperature measurement error with the described correction method applied can be 

estimated by calculations performed using the characterization data obtained in 2.1. Such 

a calculation indicates that the temperature measurement error is within ± 0.3 °C for the 

three tested sensors. 

In order to experimentally verify that the performance expected based on calculations 

can be achieved in real applications, a series of temperature measurements was performed 

using the same sensors with the described correction method applied. The time interval 

between the sensor characterization and the new series of measurements was approximately 

six months. An offset correction was subsequently performed at 20 °C. A diagram showing 

the temperature measurement error as a function of temperature for the three tested 

sensors is shown in Fig. 7. It can be seen from the diagram that the measurement error 

exhibited by the tested sensors is indeed within ± 0.3 °C. This result represents a great 

improvement achieved by using the proposed sensor correction method, since the 

temperature measurement error is reduced by at least 10 times compared to the results 

obtained without the correction method applied. 
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Fig. 6 Calibration functions of three tested sensors 

The achieved measurement accuracy is better than that of thermocouples and also 

surpasses a majority of dedicated semiconductor-based temperature sensors. However, 

typical industrial pressure sensors are neither designed nor optimized for temperature 

measurement, so there are some disadvantages and limitations that must be considered in 

practical applications. The temperature range, size and shape, and dynamic behavior of 

the sensors are the most important limitations, and therefore will be discussed here. 

The temperature range of a silicon piezoresistive sensing element is predominantly 

determined by the physical properties of silicon as a semiconductor material. It extends 

from cryogenic temperatures to 130 °C, whereas platinum resistance thermometers can 

measure temperatures up to 600 °C, and certain types of thermocouples beyond 1000 °C. 

There is, however, a multitude of applications where the temperature is below 130 °C, 

including liquid fuel or water tanks and pipelines, heating, ventilating, and air conditioning 

(HVAC) systems etc. 

The size and shape of pressure sensors, as well as their mass and other properties, can 

differ significantly depending on intended applications. In some cases the sensing element 

can be surrounded by the fluid whose pressure or temperature is measured, with only a 

minimal mechanical support, whereas in many industrial applications a relatively large 

metallic body with a protective oil filling is required (as described in the Introduction). 

Since the thermal time constant of the sensing element in the air is of the order of 10 s, the 

time constant of the whole sensor is predominantly determined by other sensor elements, 

especially the sensor body. Furthermore, dynamic properties of all contact temperature 

measurements inevitably depend on parameters and conditions external to the sensor, 

which contribute to the overall thermal inertia of the system. Many industrial processes 

involve large amounts of fluids and/or large metallic objects whose heat capacity causes 

the thermal response time of the system to be much greater than that of a typical industrial 

pressure sensor. Some preliminary results indicate that the thermal time constant of the 

described industrial pressure sensor is approximately 400 s in still air, which will be 

further investigated in our future work. 
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Fig. 7 Temperature measurement error ΔТ as a function of temperature Т  

for three tested sensors, with sensor correction 

4. CONCLUSION 

In this paper we presented a method for temperature measurement using MEMS 

piezoresistive pressure sensors. Three such sensors made by CMT were tested and 

characterized for temperature measurement. The measurement error, which was within ± 0.3 °C 

in the observed temperature range (from -20 °C to 70 °C), can be considered as a good 

result, knowing that many dedicated semiconductor-based temperature sensors, as well as 

thermocouples, exhibit greater measurement errors. 

The use of piezoresistive pressure sensors instead of dedicated temperature sensors for 

temperature measurements has some disadvantages and limitations. Being a silicon-based 

semiconductor device, the pressure sensing element has a very limited temperature range (less 

than 130 °C) compared to some dedicated temperature sensors such as platinum resistance 

thermometers, and especially thermocouples. Another limitation is the thermal response time of 

a typical industrial-grade pressure sensor. In spite of these limitations, many applications exist 

where the described temperature measurement method can be useful. Some interesting new 

applications are possible. For example, in industrial processes with many pressure sensors 

installed there is often a need for an additional temperature measurement. The presented 

method enables a simple on-site conversion of a pressure transmitter into a temperature 

transmitter, as well as sensor validation and various multisensor configurations. 

In our future work in this research field we intend to improve the sensor measurement 

performance and to overcome the limitations by using more advanced sensor designs, 

materials and fabrication techniques. For example, the mentioned temperature range 

limitation can be overcome by fabricating sensing elements on SOI (Silicon-On-Insulator) 

substrates [13]. Combined pressure and temperature influences as well as dynamic 

properties of the sensors will be investigated. The development of sensor correction 

methods will be continued and expanded to other types of MEMS sensors. 
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