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Abstract. With rapid deployment of Internet-of-Things (IoT) devices, security issues 

related to data transmitted between the devices increases. Thus the integrity of perceptual 

layer devices is of utmost importance to secure the information being transmitted between 

the devices. In a secured information system, digital signature generation and verification 

processes are entirely different from data encryption and decryption processes. Digital 

signatures are rapidly emerging due to the problems related to data integrity thus playing a 

crucial role in the authentication process by enabling the sender to attach a signature to the 

encrypted message. Based on the devices it is beneficial to select an  algorithm showing 

favorable behavior, therefore Keccak-f [1600] algorithm is best suited for devices having 

area and cost constraints. In this paper, implementation of the original Elliptic Curve 

Digital Signature Algorithm and its variants are considered and evaluated in terms of the 

security level and computational cost. Here the modified ECDSA scheme concepts related 

to signature generation and verification are similar to the original ECDSA scheme. The 

computational cost of the Modified ECDSA is reduced by removing inverse operation in 

key generation and signing phase, also problems related to signature being forged are 

resolved using hidden generator point concept. Hence the Modified ECDSA is more 

secure with less computational cost when implemented on FPGA using Verilog HDL. 

Therefore, this algorithm can be applied for the devices being connected in perceptual 

layer of the IoT. 

Key words: Internet of Things, Elliptic Curve Cryptography, Elliptic Curve Digital 

Signature Algorithm, Secured Hash Algorithm, Keccak 

1. INTRODUCTION 

The Internet of Things (IoT) represents a network of independent devices interconnected 

globally. In the IoT enormous amounts of information have to be communicated, stored, 

processed and analyzed securely. Securing these pieces of information is one of the 

fundamental challenges in the IoT. Many IoT products consist of inexpensive components 
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with limited memory and computational resources. Such devices might be unable to support 

the computationally intense cryptographic functions of asymmetrical cryptography. If 

designers considered the privacy implications of unencrypted data, they have limited options 

for encryption because of this hardware platform. Therefore the designers have to create their 

own security protocols. As it is known cryptography is the branch of cryptology dealing with 

the design of algorithms for encryption and decryption, intended to ensure the secrecy and/or 

authenticity of message [1]. In 1985 Neal Koblitz and Victor S. suggested that the public key 

cryptography relates to the algebraic structure of Elliptic Curve (EC) over finite fields.  The 

Digital Signature Algorithm (DSA) was proposed in August 1991 by the U.S. National 

Institute of Standards and Technology (NIST) and was specified in a U.S. Government 

Federal Information Processing Standard (FIPS) 186 called the Digital Signature Standard 

(DSS). In 1992 Scott Vanstone proposed Elliptic Curve Digital Signature Algorithm 

(ECDSA) because NIST requested public comment related to DSS proposal. In 1998 it was 

accepted as ISO 14888-3 standard by International Standards Organization (ISO) and in 1999 

it was accepted as ANSI X9.62 standard by American National Standard Institute (ANSI). In 

2000 it was accepted as IEEE 1363-2000 standard by Institute of Electrical and Electronics 

Engineers (IEEE) and FIPS 186-2 standard by Federal Information Processing Standards 

(FIPS). Elliptic Curve Cryptography (ECC) is a public cryptography that has a mathematical 

advantage when compared to Rivest Shamir Adleman (RSA) as it requires full exponential 

time for solving Elliptic Curve Discrete Logarithmic Problem (ECDLP). The ECDLP is 

distributed over points on the Elliptic Curve (EC). A digital signature is generally an 

authentication process that enables the sender to attach a signature to a message, thus 

comprises of digital signature generation and digital signature verification processes [2]. The 

integrity of the message is guaranteed because the digital signatures detects and stops 

unauthorized users from modifying the data and also authenticates the identity of the 

signatory. Generally, the ECDSA is an Elliptic Curve variant of the DSA and it gives 

cryptographically strong digital signatures due to ECDLP concept. Here Keccak-f [1600], 

recognized as a new Secure Hash Algorithm-3, i.e. SHA-3 by NIST is considered in the 

digital signature generation and the digital signature verification processes [3]. Here the 

complexity of digital signature generation and digital signature verification is also analyzed to 

stop the attacker attempting to forge the signature. In this paper the analysis of the original 

ECDSA and its variants are considered and evaluated in terms of the implementation area, 

security level and speed of execution. Based on these analysis a modified ECDSA method is 

designed and implemented on FPGA for IoT devices. This section gives a brief introduction 

about the paper.  Section 2 and section 3 give an overview of Elliptic Curve Cryptography and 

Secured Hash Algorithm-3 Keccak. Section 4 gives a detailed description of original ECDSA 

scheme, its security proofs and an attack possible on original ECDSA scheme. Section 5 

describes modified ECDSA suitable for signer with limited computation capability and a 

method to solve forging problem using initialization and authorization stage. Section 6 

provides comparison of ECDSA schemes, whereas Section 7 explains implementation and 

synthesis of ECDSA. The result analysis of ECDSA and its variant are given in section 8 with 

conclusions drawn in section 9 followed byreferences. 
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2. ELLIPTIC CURVE CRYPTOGRAPHY 

Elliptic Curves have been studied for centuries by mathematicians, therefore have a 

very rich history. ECC is the foremost choice in public key schemes due to its smaller 

key size [4], [13]. The key length of ECC is considerably shorter than that of RSA, but it 

achieves the same level of security of RSA. Generally, EC are of two finite fields; fields 

of odd characteristic Fp, where p is a large prime number, and fields of characteristic two 

F2
m
, where 2

m
 is a large binary value. When the distinction is not important, denote both 

of them as Fq, where n = p or n = 2
m
. An EC is the set of solutions (x, y) to Weierstrass 

equation. An elliptic curve E over a field K is defined by an Eq. (1) as 

 E (K): y
2
 + a1xy + a3y = x

3
 + a2x

2
 + a4x + a6 (1) 

where the coeffients a1, a2, a3, a4, a6 ∈ K.  

The curve E is nonsingular or smooth and is an elliptic curve if and only if the 

discriminant of E, ∆E is nonzero. The Weierstrass equation has been transformed to the 

elliptic curve called a short Weierstrass curve, where a, b ∈ K. We assume that the 

characteristic of K ≠ 2, 3 and the discriminant of short Weierstrass curve is given in Eq. (2) as  

                                            ∆ = − (4a
3
 + 27b

2
)                                                         (2) 

3. SECURE HASH ALGORITHM-3 

Keccak has a different structure when compared to other hash functions. Secure Hash 

Algorithm-3 Keccak was selected because in 2004 SHA-1 was found to be weak, and the 

threat was carried to SHA-2 also. Successful attacks have been reported in the algorithms 

SHA-0 and SHA-1, which generate collisions, which influences the principle of hash 

functions, which is to ensure the information integrity. The function SHA-2 is currently still 

safe, but as sharing a similar structure with  its predecessor, the SHA-1, becomes suspicious 

and raises doubts about its safety stimulated the scientific community to search a successor 

more robust and secure. The sha-3 was focused in the information secure area and was 

more robust and secure. The Keccak architecture is as shown in the Fig. 1 consisting of pre-

processing and the sponge construction [5].  

 

Fig 1 High-level view on Keccak 

 



132 V. KAMALAKANNAN, S. TAMILSELVAN 

In the pre-processing construction the message is  spliced into blocks with necessary 

padding. In the sponge construction absorbing (or input) phase and squeezing (or output) 

phases are present as shown in Fig. 2.  

 

Fig. 2 Absorbing and squeezing phases of the sponge construction 

 

In the absorption phase the block data are applied to the algorithm for processing. In the 

squeezing phase the processed data is squeezed out based on the configurable length. The 

function Keccak-f is used in both phases. It reads the input blocks xi, and generates the 

output blocks yj allowing arbitrary-length outputs y0···yu. The security level of Keccak has 

to be configured with several parameters related to the input and output sizes. The 

parameter b to be configured is the width of the state depending on the exponent l i.e.,  

b = r + c = 25(2
l
), where l = 0,1,..,6, having width of b ∈{25,50,100,200,400,800,1600}, r is 

the bit rate and c is called the capacity. The function Keccak-f referred to as Keccak-f 

permutation is the main part in hash algorithm and is used in both absorbing phase and 

squeezing phase. The Keccak-f structure is shown in Fig 3. There are nr rounds in the 

function, here each round has an input b bits. The parameter l influences the number of 

rounds specified in Eq. (3) as 

 nr = 12+2l (3) 

 
Fig. 3 Internal structure of function Keccak 

 

The number of rounds required for the respective state width is provided in Table 1. 

Any instance of the Keccak sponge function family makes use of one of the seven 

Keccak-f permutations, denoted Keccak-f[b], where b ϵ {25, 50, 100, 200, 400, 800, 

1600} is the width of the permutation.  
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Table 1 Number of rounds within Keccak-f 

State width b 

[bits] 

# rounds  

nr 

25 

50 

100 

200 

400 

800 

1600 

12 

14 

16 

18 

20 

22 

24 

These Keccak-f permutations are iterated constructions consisting of a sequence of 

almost identical rounds. The number of rounds nr depends on the permutation width, and 

is given by nr = 12 + 2ℓ, where 2
ℓ
 = b/25. This gives 24 rounds for Keccak-f [1600]. Thus 

referring the Table 1 the SHA-3 Keccak repeats 24 rounds, each round consists of five 

steps in sequence manipulating the entire state 

 Step 1 -  step  

 This function consists of three equations involving simple XOR and bitwise cyclic 

shift operations. 

                                [ ]   [   ]   [   ]   [   ]   [   ]   [   ]                    (4) 

                                             [ ]   [   ]      ( [   ])                                 (5) 

                                                 [   ]   [   ]   [ ]                                                   (6) 

 Theta step involves XOR-ing between the input state matrix from Eq. (4) and output 

lanes obtained from Eq. (5) to generate Eq. (6).     

 Step 2 -   step  

                                              [       ]      [   ]( [   ])                                     (7) 

Here steps Rho (ρ) and Pi (π) together calculates a 5x5 array “B”. The operation of 

Rho (ρ) and Pi (π) take the state array “C” and perform circular rotation on each of the 25 

lanes by a fixed number to obtain array “D” in Eq. (7). 

 Step 3 -   step  

                                           [   ]   [   ]  (  [     ]  [     ])                    (8) 

 In this step operation on the lanes, the D array obtained in the previous steps is 

manipulated and the results are replaced in the state array “S” illustrated in the Eq. (8). 

 Step 4 -   step   

 In the Iota (  step specified in Eq. (9) the XOR operation is performed for RC round 

constant specific for each of the 24 rounds of Keccak-f[1600] with the lane at location [0, 

0] of the new state matrix “S”.  

                                          [   ]   [   ]   [   ]                                       (9) 

4. ELLIPTIC CURVE DIGITAL SIGNATURE ALGORITHM 

In 1992 Scott Vanstone proposed ECDSA because NIST requested public comment 

related to DSS proposal [6]. In 1998 it was accepted as ISO 14888-3 standard by 

International Standards Organization (ISO). The ECDSA is an Elliptic Curve variant of 
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the DSA and because of ECDLP generates a cryptographically strong digital signatures. 

The integrity plays a critical role to safeguard data inside the network as shown in Fig 4. 

Sender Bob generates a signature to be added with the message before transmission. At 

the other end receiver Alice verifies the signature, in order to receive the message [7]. 

 

Fig. 4 Digital signature process 

ECDSA has been established as an efficient algorithm against cyberattacks and are 

characterized by their speed to generate and verify the signature. ECDSA consists of 3 

phases: key generation, signature generation and signature verification. These three 

phases are explained in the following sub-sections. 

4.1. ECDSA Key Generation 

To generate a public and private key sender performs the following steps   

Step 1: Select a random integer dA ∈ [1, p-1]  

Step 2: Computes the public key QA = dAG. 

4.2. ECDSA Signature Generation 

Using the sender‟s private key dA and public key QA  

Step 1: Select an integer K ∈ [1, p − 1] 

Step 2: Compute h = HASH (M) = SHA-3 (M) 

Step 3: Calculate KG= (x1, y1)  

Step 4: Compute r = x1 (mod p), If r = 0, go to step 2 

Step 5: Compute s = K
-1

(h + dA r) (mod p). If s = 0, go to step 2 

The signature pair generated is (r, s) 

4.3. ECDSA Signature Verification 

Using public key QA and sender‟s signature (r, s)   

Step 1: Verify that r and s ∈ [1, p − 1]. If not, the signature is invalid 

Step 2: Compute h = HASH (M) = SHA-3 (M) 

Step 3: Compute w = s
-1

 (mod p) 

Step 4: Compute u1 = hw (mod p) and u2 = rw (mod p) 

Step 5: Compute (x2, y2) = u1G + u2QA 

Step 6:  Compute v = x2(mod p) 
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4.4. Proof of ECDSA Scheme 

Step 1: Compute s = K
-1 

(h + dA r) mod p on rearranging   

Step 2: Compute K = s
-1

(h + dA r)  

Step 3: Compute KG = s
−1

 (h + dA r) G = (x1, y1) 

Step 4: Compute KG = s
−1

hG + s
−1

 dA r G  

Step 5: Compute KG = w h G + r w QA where w = s
−1

 (mod p) and QA = dA G (mod p) 

Step 6: Compute KG = u1 G + u2 Qs = (x2, y2) where u1 = hw (mod p) and  

u2 = rw (mod p) 

Therefore   

 LHS= KG=(x1, y1) and  r = x1 (mod p) 

 RHS=u1G + u2QA = (x2, y2) and v= x2(mod p) 

Hence v=r 

 The signature is valid if v = r valid, invalid otherwise. 

In this algorithm if the same key K is being used for signing each and every messages, 

then there is an issue of the secret key being found by the intruder. This is explained in 

the following example, where the same secret K is applied for two different messages m1 

and m2. In this process two signatures (r, s1) and (r, s2) are generated from the Eq. (10) 

and Eq. (11) as 

                                                       s1 = K
−1

 (h1 + dA r)                                                   (10) 

                                                       s2 = K
−1

 (h2 + dA r)                                                   (11) 

where h1 = SHA-3 (m1); h2 = SHA-3 (m2)   

Knowing s1 and s2 it is possible to find the secret key K using the Eq. (12) 

                                                      K = (h1 – h2)/(s1 – s2)                                                 (12) 

From the equation K s1  K s2 = h1 + dA r  h2 – dA r 

Thus knowing K, r, s and h in the encryption concept, it is  possible to find dA by Eq. (13) 

                                                         dA = (Ksh)/r (13) 

Hence different key should be used for signing different messages, otherwise the 

private key dA can be sensed by the intruder. The ECDSA is modified to solve the above 

problem by considering inverse operation only in verification phase. In this method there 

is no need of inverse operation in the key generation and signing phase there is no need 

of inverse operation. The scheme processes are discussed in the following sub-sections 

having the same key pair generation algorithm.  

4.5. ECDSA Scheme 2 Signature Generation 

Using the sender‟s private key dA and public key QA  

Step 1:  Compute h = HASH (M) = SHA-3 (M) 

Step 2:  Select a random integer K from [1, p − 1] 

Step 3:  Compute KG= (x1, y1)  

Step 4:  Compute r = x1 (mod p), If r = 0, go to step 2 

Step 5:  Compute s = (Kh + (r xor h)dA) G (mod p). If s = 0, go to step 2 

The signature pair generated is (r, s) 
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4.6. ECDSA Scheme 2 Signature Verification 

Using the sender‟s private key dA and public key QA  

Using public key QA and sender‟s signature (r, s)   

Step 1:  Verify that r and s are integers in [1, p − 1]. If not, the signature is invalid 

Step 2:  Compute h = HASH (M) = SHA-3 (M) 

Step 3:  Compute w = h
−1

 (mod p) 

Step 4:  Compute u = (r xor h) (mod p) 

Step 5:  Compute (x2, y2) = w(s – uQA) 

Step 6:  The signature is valid if v = x2 (mod n) = r, invalid otherwise 

4.7. Proof of ECDSA Scheme 2 

Step 1:  Compute s = (Kh + (r xor h)dA) G = (Kh + u dA) G = KhG + udAG  

Step 2:  Compute sw = KhwG + uwdAG   

Step 3:  Compute sw = KG + uwQA   where w = h
-1

 (mod p) and QA = dA G (mod p) 

Step 4:  Compute KG = sw- uwQA = w (s – u Qs)  

Therefore  

LHS= KG=(x1, y1) and  r = x1 (mod p) 

RHS= w(s – u QA) = (x2, y2) and v= x2(mod p) 

Hence v=r 

In the ECDSA Scheme 2, an intruder can forge the signature by knowing the public 

parameters (G, n, p, Qs) and transmit the wrong information to the receiver. The receiver 

receives the signature and verifies the signature to authenticate the sender's signature. 

This is been explained as follows  

If an intruder „T‟ is forges the signature by knowing the public parameters (G, n, p, 

Qs) for a false message „M‟ in the following steps 

Step 1:  For signing a message „M‟ by sender, using private key dA and public key 

 QS = dAG 

Step 2:  Calculate h = HASH (M) = SHA-3 (M) 

Step 3:  Select a random integer KT from [1, p − 1] 

Step 4:  Compute KT G= (xT, yT)  

Step 5:  Calculate rT = xT (mod p), If rT = 0, go to step 2 

Step 6:  Calculate sT = (KT h + (rT xor h) QS (mod p). If sT = 0, go to step 2 

Thus the signature pair (rT, sT) is transmitted with the false message „M‟ 

The receiver obtains an authenticated copy of sender‟s signature pair with the false 

message „M‟ and verifys the authenticity of sender‟s signature (rT, sT) using public 

parameters (G, n, p, Qs) for message „M‟ by performing the following steps:   

Step 1:  Verify that rT and sT are integers in [1, p − 1]. If not, the signature is invalid 

Step 2:  Calculate h = HASH (M) = SHA-3 (M) 

Step 3:  Calculate w = h 
−1

 (mod p) 

Step 4:  Calculate u = (rT xor h)(mod p) 

Step 5:  Calculate (xT, yT) = w(sT –uQS) 

Step 6:  The signature is valid if vT = xT (mod p) = rT, invalid otherwise 

If the forged signature is validated, then intruder can successfully send false information, 

hence digital signature schemes are not secure. To solve this drawback public parameters 

being shared are reduced. 
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5. MODIFIED ELLIPTIC CURVE DIGITAL SIGNATURE ALGORITHM  

While comparing the original ECDSA and its variants, it is found that original ECDSA 
is vulnerable to attack if the same key is used for different messages. Scheme 2 is useful for 
verifier with limited compute apparatus as there is no inverse calculation in key generation 
and signing phase, but anyone can use legitimate user‟s public-key to forge the signature of 
any information. Thus in the Modified ECDSA scheme hidden generator point concept is 
applied to authenticate the encrypted message communicated between the devices 
connected in the perceptual layer of IoT. The normal ECDSA are configured with the points 
on the Elliptic Curve, a generator point „G‟ is selected publicly available and distributed 
over the network by the Certificate Authority (CA) [11]. In this scheme, the requirement of 
CA makes it difficult to implement security. The information shared by the CA can be 
breached by the intruders, making the network susceptible to MIM attack [12].   

Hence to elucidate this exposure and to secure the network against MIM attacks, 
maintaining the security for each session of communication between the two nodes 
without a common generator point is suggested. Therefore a generator point is shared 
only between the devices being connected to communicate. This concept is implemented 
in the ECDSA has two stages; initialization stage and authorization stage.  

5.1 Initialization Stage 

Let us consider two nodes represented in Fig. 5 in the WSN. It is assumed that both 
nodes, i.e. sender and receiver, select their generator points, GS and GR individually apart 
from the private keys, KS and KR.  

The inverse of the private keys KS
-1

 and KR
-1

 are also computed. Once the inverse of 
the private keys are computed, the sender generates its public key PSA  using the Eq. (14), 
whereas the receiver generates its public key PRA using the Eq. (15) 

 PSA = KS
-1

GS  (14) 
 PRA =KR

-1
GR (15) 

Both the public keys PSA and PRA are exchanged between sender and receiver after 
multiplying it with the inverses of their private keys. The resultant key is transmitted to 
the receiver as is specified in the Eq. (16), and the resultant key received by the sender is 
specified in the Eq. (17) 
 PSB = PRAKS

-1 
= KR

-1
GRKS

-1 
(16) 

 PRB = PSAKR
-1 

= KS
-1

GSKR
-1 

(17) 

 
Fig. 5 Computational process for Generator point 
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These received keys are multiplied again by the sender and the receiver to generate PSC 

and PRC as specified in Eq. (18) and Eq. (19)  

PSC=PRBKS=KS
-1

GSKR
-1

KS =GSKR
-1   

(18) 

PRC=PSBKR=KR
-1

GRKS
-1

KR= GRKS
-1  

(19) 

When PSC and PRC received by the individual sender and receiver, they are multiplied 

with KS and KR to obtain GR and GS. 

The sender computes the receiver‟s generator point in Eq. (20) as 

 PRC*KS=KS
-1

*GR*KS=GR  (20) 

The receiver computes the sender‟s generator in Eq. (21) as  

 PSC*KR=KR
-1

*GS*KR=GS (21) 

These generator points GS and GR are added to generate a common generator points for 

the sender and receiver given in Eq. (22) as 

 G = GS + GR (22) 

Hence the sender and receiver exchanges information between them and generated using 

„G‟ and computing P, 2P….. kP.  

5.2 Authorization Stage 

Let us consider two nodes in the WSN. The public key and the private keys of the 

transmitter are PS and KS, whereas for receiver it is PR and KR. The key has to be 

generated by the process shown in Fig. 6 for every session of transmission between the 

sender and receiver. Thus authorization has to be provided for each transmission. 

 
Fig. 6 Computational process for Key 

Both the public keys PSR and PRS are exchanged after multiplying it with private keys. 

The key transmitted to the receiver is specified in the Eq. (23), and the key received by 

the sender is specified in the Eq. (24) 
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 PSR = PRKS
 

(23) 
 PRS = PSKR

 
(24) 

The keys of the sender and the receiver are multiplied again to generate KSR and KRS 
given in Eq. (25) and Eq. (26) as 

                                            KSR = PSRPRS 
   
=

 
PRKS

 
PSKR

 
(25) 

                                           KRS = PRSPSR =
   
PRKS

 
PSKR

 
(26) 

When PSR and PRS received by the individuals, the Key KSR and KRS are generated by 
the sender and receiver individually which are equal, thus commonly referred as Key „K‟ 
in the implementation of ECDSA. 

The sender and receiver in the WSN have individual generator points, GS and GR 
with their unique private keys, KS and KR. After initializing the keys generation process, 
both devices exchange the generator points GS and GR and generate a common generator 
point by the initialization process explained in subsection 5.1. Hence the sender and 
receiver exchange information between them by considering common generator point ‘G’ 
and computing P, 2P, 3P….. kP.  

The sensor nodes must securely share a key before encryption. The shared secret 
key is generated and refreshed between the sender and receiver. The public key of sender 
and receiver are PS and PR. are exchanged using DHKE process and a key is generated by 
the method explained in the sub section 5.2. 
Considering the generator point ‘G’ and key ‘K’, scalar multiplication is performed to 
compute KG provided in Eq. (27), to be applied for signature generation and signature 
verification process. 

    (     )  (     ) (27) 

From the initialization and authorization stage, the values of K and G are known. This 
scheme processes are discussed in the following steps. 

5.3. Modified ECDSA Signature Generation 

To generates the signature for message M the signer using the values of K and G by 
performing the following steps:   

Step 1: Calculate h = HASH (M) = SHA-3 (M) 
Step 2: Compute KG= (x1, y1)  
Step 4: Compute r = x1 (mod p) 
Step 5: Compute s = (K + (r xnor h)) G (mod p).  

 The signature pair thus generated is (r, s). 

5.4. Modified ECDSA Signature Verification 

The verifier verifies the signature using K and G from the initialization and authorization 
stage for message M by performing the following steps:   

Step 1: Verify that s is integers in [1, p − 1]. If not, the signature is invalid 
Step 2: Compute KG= (x1, y1)  
Step 3: Compute r = x1 (mod p) 
Step 4: Compute u = (r xnor h) mod (mod p) 
Step 5:  (x2, y2) = (s - uG) 
Step 6: The signature is valid if v = x2 (mod p) = r, invalid otherwise. 
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5.5 Proof of Modified ECDSA Scheme 

Signature send by sender to receiver is (r, s) and s can be generated only by Sender 

because of its private key.  

Step 1: Compute s = (K + (r xnor h) G  

Step 2: Compute s = (K + u) G where u = (r xnor h)  

Step 3: Compute s = KG + uG   

Step 4: Compute s - uG = KG = (x2, y2)     

Therefore   

 LHS =  KG = (x1, y1) and  r = x1 (mod p) 

 RHS = (s  uG) = (x2, y2) and v =  x2(mod p) 

 Hence v=r 

The improved ECDSA scheme reduces the computational cost while keeping the same 

security as original ECDSA. They are suitable for the users who have limited computing 

capacity.  

6. COMPARISON OF ELLIPTIC CURVE DIGITAL SIGNATURE ALGORITHM 

The original ECDSA and proposed ECDSA are compared and  represented in the 

Table 2.  While comparing the original ECDSA and the proposed ECDSA, it is found that 

the original ECDSA consists of inverse operations in signature generation and signature 

verification and hence is more complex as needs more point multiplication operation. The 

improved scheme, the initialization stage and authorization stage are introduced to share the 

values of K and G between the sender and receiver, thus reducing the computational cost as 

no inverse operations are required for signature generation and signature verification, while 

keeping the same security as original ECDSA.  

Table 2 Comparison of ECDSA variants 

Algorithm Signature Generation 
Signature 

Verification 
Attack 

Inverse  

in  

Key generation 

Inverse   

in 

Signing 

Inverse  

in 

Verification 

Original 

ECDSA 

S=k− 1(h + dAr) u1=hs−1 

u2=rs−1 

u1G + u2QA 

Vulnerable No Yes Yes 

Proposed 

ECDSA 

s = (K + (r xnor h) G u = (r xnor h) 

(s - uG) 

Not 

Vulnerable 

No No No 

7. IMPLEMENTATION AND SYNTHESIS ELLIPTIC CURVE DIGITAL SIGNATURE ALGORITHM 

The original ECDSA signature generation and signature verification was realized in 

Verilog HDL and simulation was carried out using ISim simulation tool available in 

XILINX 14.3 for verifying its functional correctness. The RTL block schematic of the 

ECDSA signature generation is illustrated in Fig. 7 and ECDSA signature verification is 

illustrated in  Fig. 8. 
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The ECDSA signature generation and signature verification were synthesized and the 

device utilization summary, timings summary and memory utilization are tabulated in 

Table 3. The hardware implementation of ECDSA signature generation was performed 

on Virtex-5 5XC5VLX50T-1FF1136 FPGA Development board by XILINX to evaluate 

the area and speed. It was found that the ECDSA signature generation operated at a 

maximum frequency of 13.180 MHz whereas the ECDSA signature verification operated 

at a maximum frequency of 13.210 MHz. 

 

Fig. 7 RTL Block Schematic of ECDSA signature generation 

 

Fig. 8 RTL Block Schematic of ECDSA signature verification 
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Table 3 Synthesis Summary for ECDSA 

Parameters Signature 
Generation 

Signature 
Verification 

Slice Registers 6701 6790 
Slice LUTs  16370 22734 
LUT-FF pairs  4884 4996 
Bonded IOBs 226 226 
Real Time  2627.00 secs 890.00 secs 
CPU Time  2626.99 secs 890.19 secs 
Maximum Frequency 13.180 MHz 13.210 MHZ 

The modified ECDSA signature generation and signature verification was realized in 

Verilog HDL and the simulation was carried out using ISim simulation tool in XILINX 

for verifying its functional correctness. The RTL block schematic of the Modified 

ECDSA signature generation is illustrated in  Fig. 9, and Modified ECDSA signature 

verification is illustrated in  Fig. 10.  

 

Fig. 9 RTL Block Schematic of modified ECDSA signature generation 

 
Fig. 10 RTL Block Schematic of Modified ECDSA signature verification 
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The Modified ECDSA signature generation and signature verification are synthesized 

and the device utilization summary, timings summary and memory utilization are 

tabulated in the Table 4.  

Table 4 Synthesis Summary for modified ECDSA 

Parameters Signature 

Generation 

Signature 

Verification 

Slice Registers 198 454 

Slice LUTs  7853 16387 

LUT-FF pairs  152 346 

Bonded IOBs 41 34 

Real Time  924.00 secs 910.00 secs 

CPU Time  923.69 secs 910.09 secs 

Maximum Frequency 13.469 MHz 13.156 MHz 

8. RESULT ANALYSIS OF ELLIPTIC CURVE DIGITAL SIGNATURE ALGORITHM 

The ECDSA and its variants are synthesized and analyzed using XILINX tool. The 

Table 5 and Table 6 illustrate the values obtained after synthesizing Original ECDSA and 

modified ECDSA Scheme for signature generation and signature verification. 

Comparison was performed related to maximum frequency and number of Slice LUTs.  

Table 5 Comparison of Synthesis results of ECDSA Signature Generation 

Parameters Original 

ECDSA 

Proposed 

ECDSA 

Number of Slice LUTs 16370 7853 

Max. Frequency(MHz) 13.180 13.469 

Table 6 Comparison of Synthesis results ECDSA Signature Verification 

Parameters Original 

ECDSA 

Proposed 

ECDSA 

Number of Slice LUTs 22734 16387 

Max. Frequency(MHz) 13.210 13.156 

The outcomes obtained show that the modified ECDSA scheme is better suitable for 

resource constrained devices. The maximum achievable frequency of 13.469 MHz is 

achieved for signature generation and maximum achievable frequency of 13.156 MHz is 

achieved for signature verification on Virtex-5 (XC5VLX50T-1FF1136) FPGA board is 

better than the existing ECDSA schemes. Based on the design metric such as Frequency 

(MHz) and Area (Slices/ALUTs), the modified ECDSA outperforms the existing ones in 

terms of time for execution and Slice LUTs required in FPGA device. 
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9. CONCLUSION 

Elliptic Curve Digital Signature Algorithm (ECDSA)  is one of the primitives of Elliptic 

Curve Cryptography (ECC). The SHA-3 algorithms like Keccak provide better security and 

proves beneficial wherever security constraints have to be achieved. Here a variant of 

Keccak-f [1600] having five steps (𝜃 step, 𝜌 𝑎𝑛𝑑 𝜋 step, 𝜒 step and 𝜏 step) repeated 24 

times were applied to generate hashed output. Generally, Modular Inversion is computed 

using Montgomery‟s method which consists of a GCD operations. The GCD operation 

utilizes more number of arithmetical operations. Thus computational cost increases when 

implemented on FPGA as number of operations increases. From the analysis, it is found 

that ECDSA is vulnerable to MIM attack when the same key is applied for all messages. At 

the same time if computational cost is reduced, then there are chances of signature being 

forged by the intruder. Therefore, the modified ECDSA scheme keeps the mathematical 

structure of ECDSA and security the same as the original ECDSA scheme, but reduces the 

computational cost by reducing the inverse operation being applied in the key generation 

and signing phase. Also this scheme solves the problems related to signature forging due to 

the available public parameters (G, n, p, QS). These are achieved by using hidden generator 

concept. Hence this scheme has more security with less computational cost, therefore can 

be implemented in the perceptual layer devices in IoT i.e., the ECDSA can be applied for 

securing the information communicated by devices such as WSNs, RFIDs, etc., having 

limited memory and computational capacity. Since FPGAs are used as end products, the 

design of ECDSA is fine-tuned for FPGA implementation. The work can be extended by 

considering advanced FPGAs where parallelism can be exploited in the architecture to 

reduce the delay in the asymmetrical cryptography. 
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