
FACTA UNIVERSITATIS

Series: Electronics and Energetics Vol. 32, No 1, March 2019, pp. 129-145
https://doi.org/10.2298/FUEE1901129V

FPGA IMPLEMENTATION OF MODIFIED ELLIPTIC CURVE

DIGITAL SIGNATURE ALGORITHM

Kamalakannan Venkataraman, Tamilselvan Sadasivam

 Department of Electronics and Communication Engineering,

Pondicherry Engineering College, Pillaichavady, Puducherry, India

Abstract. With rapid deployment of Internet-of-Things (IoT) devices, security issues

related to data transmitted between the devices increases. Thus the integrity of perceptual

layer devices is of utmost importance to secure the information being transmitted between

the devices. In a secured information system, digital signature generation and verification

processes are entirely different from data encryption and decryption processes. Digital

signatures are rapidly emerging due to the problems related to data integrity thus playing a

crucial role in the authentication process by enabling the sender to attach a signature to the

encrypted message. Based on the devices it is beneficial to select an algorithm showing

favorable behavior, therefore Keccak-f [1600] algorithm is best suited for devices having

area and cost constraints. In this paper, implementation of the original Elliptic Curve

Digital Signature Algorithm and its variants are considered and evaluated in terms of the

security level and computational cost. Here the modified ECDSA scheme concepts related

to signature generation and verification are similar to the original ECDSA scheme. The

computational cost of the Modified ECDSA is reduced by removing inverse operation in

key generation and signing phase, also problems related to signature being forged are

resolved using hidden generator point concept. Hence the Modified ECDSA is more

secure with less computational cost when implemented on FPGA using Verilog HDL.

Therefore, this algorithm can be applied for the devices being connected in perceptual

layer of the IoT.

Key words: Internet of Things, Elliptic Curve Cryptography, Elliptic Curve Digital

Signature Algorithm, Secured Hash Algorithm, Keccak

1. INTRODUCTION

The Internet of Things (IoT) represents a network of independent devices interconnected

globally. In the IoT enormous amounts of information have to be communicated, stored,

processed and analyzed securely. Securing these pieces of information is one of the

fundamental challenges in the IoT. Many IoT products consist of inexpensive components

Received June 20, 2018; received in revised form September 26, 2018
Corresponding author: Kamalakannan Venkataraman

Department of Electronics and Communication Engineering, Pondicherry Engineering College, Pillaichavady,

Puducherry, India
(e-mail: vkamalakannan@pec.edu)

130 V. KAMALAKANNAN, S. TAMILSELVAN

with limited memory and computational resources. Such devices might be unable to support

the computationally intense cryptographic functions of asymmetrical cryptography. If

designers considered the privacy implications of unencrypted data, they have limited options

for encryption because of this hardware platform. Therefore the designers have to create their

own security protocols. As it is known cryptography is the branch of cryptology dealing with

the design of algorithms for encryption and decryption, intended to ensure the secrecy and/or

authenticity of message [1]. In 1985 Neal Koblitz and Victor S. suggested that the public key

cryptography relates to the algebraic structure of Elliptic Curve (EC) over finite fields. The

Digital Signature Algorithm (DSA) was proposed in August 1991 by the U.S. National

Institute of Standards and Technology (NIST) and was specified in a U.S. Government

Federal Information Processing Standard (FIPS) 186 called the Digital Signature Standard

(DSS). In 1992 Scott Vanstone proposed Elliptic Curve Digital Signature Algorithm

(ECDSA) because NIST requested public comment related to DSS proposal. In 1998 it was

accepted as ISO 14888-3 standard by International Standards Organization (ISO) and in 1999

it was accepted as ANSI X9.62 standard by American National Standard Institute (ANSI). In

2000 it was accepted as IEEE 1363-2000 standard by Institute of Electrical and Electronics

Engineers (IEEE) and FIPS 186-2 standard by Federal Information Processing Standards

(FIPS). Elliptic Curve Cryptography (ECC) is a public cryptography that has a mathematical

advantage when compared to Rivest Shamir Adleman (RSA) as it requires full exponential

time for solving Elliptic Curve Discrete Logarithmic Problem (ECDLP). The ECDLP is

distributed over points on the Elliptic Curve (EC). A digital signature is generally an

authentication process that enables the sender to attach a signature to a message, thus

comprises of digital signature generation and digital signature verification processes [2]. The

integrity of the message is guaranteed because the digital signatures detects and stops

unauthorized users from modifying the data and also authenticates the identity of the

signatory. Generally, the ECDSA is an Elliptic Curve variant of the DSA and it gives

cryptographically strong digital signatures due to ECDLP concept. Here Keccak-f [1600],

recognized as a new Secure Hash Algorithm-3, i.e. SHA-3 by NIST is considered in the

digital signature generation and the digital signature verification processes [3]. Here the

complexity of digital signature generation and digital signature verification is also analyzed to

stop the attacker attempting to forge the signature. In this paper the analysis of the original

ECDSA and its variants are considered and evaluated in terms of the implementation area,

security level and speed of execution. Based on these analysis a modified ECDSA method is

designed and implemented on FPGA for IoT devices. This section gives a brief introduction

about the paper. Section 2 and section 3 give an overview of Elliptic Curve Cryptography and

Secured Hash Algorithm-3 Keccak. Section 4 gives a detailed description of original ECDSA

scheme, its security proofs and an attack possible on original ECDSA scheme. Section 5

describes modified ECDSA suitable for signer with limited computation capability and a

method to solve forging problem using initialization and authorization stage. Section 6

provides comparison of ECDSA schemes, whereas Section 7 explains implementation and

synthesis of ECDSA. The result analysis of ECDSA and its variant are given in section 8 with

conclusions drawn in section 9 followed byreferences.

 FPGA Implementation of Modified Elliptic Curve Digital Signature Algorithm 131

2. ELLIPTIC CURVE CRYPTOGRAPHY

Elliptic Curves have been studied for centuries by mathematicians, therefore have a

very rich history. ECC is the foremost choice in public key schemes due to its smaller

key size [4], [13]. The key length of ECC is considerably shorter than that of RSA, but it

achieves the same level of security of RSA. Generally, EC are of two finite fields; fields

of odd characteristic Fp, where p is a large prime number, and fields of characteristic two

F2
m
, where 2

m
 is a large binary value. When the distinction is not important, denote both

of them as Fq, where n = p or n = 2
m
. An EC is the set of solutions (x, y) to Weierstrass

equation. An elliptic curve E over a field K is defined by an Eq. (1) as

 E (K): y
2
 + a1xy + a3y = x

3
 + a2x

2
 + a4x + a6 (1)

where the coeffients a1, a2, a3, a4, a6 ∈ K.

The curve E is nonsingular or smooth and is an elliptic curve if and only if the

discriminant of E, ∆E is nonzero. The Weierstrass equation has been transformed to the

elliptic curve called a short Weierstrass curve, where a, b ∈ K. We assume that the

characteristic of K ≠ 2, 3 and the discriminant of short Weierstrass curve is given in Eq. (2) as

 ∆ = − (4a
3
 + 27b

2
) (2)

3. SECURE HASH ALGORITHM-3

Keccak has a different structure when compared to other hash functions. Secure Hash

Algorithm-3 Keccak was selected because in 2004 SHA-1 was found to be weak, and the

threat was carried to SHA-2 also. Successful attacks have been reported in the algorithms

SHA-0 and SHA-1, which generate collisions, which influences the principle of hash

functions, which is to ensure the information integrity. The function SHA-2 is currently still

safe, but as sharing a similar structure with its predecessor, the SHA-1, becomes suspicious

and raises doubts about its safety stimulated the scientific community to search a successor

more robust and secure. The sha-3 was focused in the information secure area and was

more robust and secure. The Keccak architecture is as shown in the Fig. 1 consisting of pre-

processing and the sponge construction [5].

Fig 1 High-level view on Keccak

132 V. KAMALAKANNAN, S. TAMILSELVAN

In the pre-processing construction the message is spliced into blocks with necessary

padding. In the sponge construction absorbing (or input) phase and squeezing (or output)

phases are present as shown in Fig. 2.

Fig. 2 Absorbing and squeezing phases of the sponge construction

In the absorption phase the block data are applied to the algorithm for processing. In the

squeezing phase the processed data is squeezed out based on the configurable length. The

function Keccak-f is used in both phases. It reads the input blocks xi, and generates the

output blocks yj allowing arbitrary-length outputs y0···yu. The security level of Keccak has

to be configured with several parameters related to the input and output sizes. The

parameter b to be configured is the width of the state depending on the exponent l i.e.,

b = r + c = 25(2
l
), where l = 0,1,..,6, having width of b ∈{25,50,100,200,400,800,1600}, r is

the bit rate and c is called the capacity. The function Keccak-f referred to as Keccak-f

permutation is the main part in hash algorithm and is used in both absorbing phase and

squeezing phase. The Keccak-f structure is shown in Fig 3. There are nr rounds in the

function, here each round has an input b bits. The parameter l influences the number of

rounds specified in Eq. (3) as

 nr = 12+2l (3)

Fig. 3 Internal structure of function Keccak

The number of rounds required for the respective state width is provided in Table 1.

Any instance of the Keccak sponge function family makes use of one of the seven

Keccak-f permutations, denoted Keccak-f[b], where b ϵ {25, 50, 100, 200, 400, 800,

1600} is the width of the permutation.

 FPGA Implementation of Modified Elliptic Curve Digital Signature Algorithm 133

Table 1 Number of rounds within Keccak-f

State width b

[bits]

rounds

nr

25

50

100

200

400

800

1600

12

14

16

18

20

22

24

These Keccak-f permutations are iterated constructions consisting of a sequence of

almost identical rounds. The number of rounds nr depends on the permutation width, and

is given by nr = 12 + 2ℓ, where 2
ℓ
 = b/25. This gives 24 rounds for Keccak-f [1600]. Thus

referring the Table 1 the SHA-3 Keccak repeats 24 rounds, each round consists of five

steps in sequence manipulating the entire state

 Step 1 - step

 This function consists of three equations involving simple XOR and bitwise cyclic

shift operations.

 [] [] [] [] [] [] (4)

 [] [] ([]) (5)

 [] [] [] (6)

 Theta step involves XOR-ing between the input state matrix from Eq. (4) and output

lanes obtained from Eq. (5) to generate Eq. (6).

 Step 2 - step

 [] []([]) (7)

Here steps Rho (ρ) and Pi (π) together calculates a 5x5 array “B”. The operation of

Rho (ρ) and Pi (π) take the state array “C” and perform circular rotation on each of the 25

lanes by a fixed number to obtain array “D” in Eq. (7).

 Step 3 - step

 [] [] ([] []) (8)

 In this step operation on the lanes, the D array obtained in the previous steps is

manipulated and the results are replaced in the state array “S” illustrated in the Eq. (8).

 Step 4 - step

 In the Iota (step specified in Eq. (9) the XOR operation is performed for RC round

constant specific for each of the 24 rounds of Keccak-f[1600] with the lane at location [0,

0] of the new state matrix “S”.

 [] [] [] (9)

4. ELLIPTIC CURVE DIGITAL SIGNATURE ALGORITHM

In 1992 Scott Vanstone proposed ECDSA because NIST requested public comment

related to DSS proposal [6]. In 1998 it was accepted as ISO 14888-3 standard by

International Standards Organization (ISO). The ECDSA is an Elliptic Curve variant of

134 V. KAMALAKANNAN, S. TAMILSELVAN

the DSA and because of ECDLP generates a cryptographically strong digital signatures.

The integrity plays a critical role to safeguard data inside the network as shown in Fig 4.

Sender Bob generates a signature to be added with the message before transmission. At

the other end receiver Alice verifies the signature, in order to receive the message [7].

Fig. 4 Digital signature process

ECDSA has been established as an efficient algorithm against cyberattacks and are

characterized by their speed to generate and verify the signature. ECDSA consists of 3

phases: key generation, signature generation and signature verification. These three

phases are explained in the following sub-sections.

4.1. ECDSA Key Generation

To generate a public and private key sender performs the following steps

Step 1: Select a random integer dA ∈ [1, p-1]

Step 2: Computes the public key QA = dAG.

4.2. ECDSA Signature Generation

Using the sender‟s private key dA and public key QA

Step 1: Select an integer K ∈ [1, p − 1]

Step 2: Compute h = HASH (M) = SHA-3 (M)

Step 3: Calculate KG= (x1, y1)

Step 4: Compute r = x1 (mod p), If r = 0, go to step 2

Step 5: Compute s = K
-1

(h + dA r) (mod p). If s = 0, go to step 2

The signature pair generated is (r, s)

4.3. ECDSA Signature Verification

Using public key QA and sender‟s signature (r, s)

Step 1: Verify that r and s ∈ [1, p − 1]. If not, the signature is invalid

Step 2: Compute h = HASH (M) = SHA-3 (M)

Step 3: Compute w = s
-1

 (mod p)

Step 4: Compute u1 = hw (mod p) and u2 = rw (mod p)

Step 5: Compute (x2, y2) = u1G + u2QA

Step 6: Compute v = x2(mod p)

 FPGA Implementation of Modified Elliptic Curve Digital Signature Algorithm 135

4.4. Proof of ECDSA Scheme

Step 1: Compute s = K
-1

(h + dA r) mod p on rearranging

Step 2: Compute K = s
-1

(h + dA r)

Step 3: Compute KG = s
−1

 (h + dA r) G = (x1, y1)

Step 4: Compute KG = s
−1

hG + s
−1

 dA r G

Step 5: Compute KG = w h G + r w QA where w = s
−1

 (mod p) and QA = dA G (mod p)

Step 6: Compute KG = u1 G + u2 Qs = (x2, y2) where u1 = hw (mod p) and

u2 = rw (mod p)

Therefore

 LHS= KG=(x1, y1) and r = x1 (mod p)

 RHS=u1G + u2QA = (x2, y2) and v= x2(mod p)

Hence v=r

 The signature is valid if v = r valid, invalid otherwise.

In this algorithm if the same key K is being used for signing each and every messages,

then there is an issue of the secret key being found by the intruder. This is explained in

the following example, where the same secret K is applied for two different messages m1

and m2. In this process two signatures (r, s1) and (r, s2) are generated from the Eq. (10)

and Eq. (11) as

 s1 = K
−1

 (h1 + dA r) (10)

 s2 = K
−1

 (h2 + dA r) (11)

where h1 = SHA-3 (m1); h2 = SHA-3 (m2)

Knowing s1 and s2 it is possible to find the secret key K using the Eq. (12)

 K = (h1 – h2)/(s1 – s2) (12)

From the equation K s1  K s2 = h1 + dA r  h2 – dA r

Thus knowing K, r, s and h in the encryption concept, it is possible to find dA by Eq. (13)

 dA = (Ksh)/r (13)

Hence different key should be used for signing different messages, otherwise the

private key dA can be sensed by the intruder. The ECDSA is modified to solve the above

problem by considering inverse operation only in verification phase. In this method there

is no need of inverse operation in the key generation and signing phase there is no need

of inverse operation. The scheme processes are discussed in the following sub-sections

having the same key pair generation algorithm.

4.5. ECDSA Scheme 2 Signature Generation

Using the sender‟s private key dA and public key QA

Step 1: Compute h = HASH (M) = SHA-3 (M)

Step 2: Select a random integer K from [1, p − 1]

Step 3: Compute KG= (x1, y1)

Step 4: Compute r = x1 (mod p), If r = 0, go to step 2

Step 5: Compute s = (Kh + (r xor h)dA) G (mod p). If s = 0, go to step 2

The signature pair generated is (r, s)

136 V. KAMALAKANNAN, S. TAMILSELVAN

4.6. ECDSA Scheme 2 Signature Verification

Using the sender‟s private key dA and public key QA

Using public key QA and sender‟s signature (r, s)

Step 1: Verify that r and s are integers in [1, p − 1]. If not, the signature is invalid

Step 2: Compute h = HASH (M) = SHA-3 (M)

Step 3: Compute w = h
−1

 (mod p)

Step 4: Compute u = (r xor h) (mod p)

Step 5: Compute (x2, y2) = w(s – uQA)

Step 6: The signature is valid if v = x2 (mod n) = r, invalid otherwise

4.7. Proof of ECDSA Scheme 2

Step 1: Compute s = (Kh + (r xor h)dA) G = (Kh + u dA) G = KhG + udAG

Step 2: Compute sw = KhwG + uwdAG

Step 3: Compute sw = KG + uwQA where w = h
-1

 (mod p) and QA = dA G (mod p)

Step 4: Compute KG = sw- uwQA = w (s – u Qs)

Therefore

LHS= KG=(x1, y1) and r = x1 (mod p)

RHS= w(s – u QA) = (x2, y2) and v= x2(mod p)

Hence v=r

In the ECDSA Scheme 2, an intruder can forge the signature by knowing the public

parameters (G, n, p, Qs) and transmit the wrong information to the receiver. The receiver

receives the signature and verifies the signature to authenticate the sender's signature.

This is been explained as follows

If an intruder „T‟ is forges the signature by knowing the public parameters (G, n, p,

Qs) for a false message „M‟ in the following steps

Step 1: For signing a message „M‟ by sender, using private key dA and public key

 QS = dAG

Step 2: Calculate h = HASH (M) = SHA-3 (M)

Step 3: Select a random integer KT from [1, p − 1]

Step 4: Compute KT G= (xT, yT)

Step 5: Calculate rT = xT (mod p), If rT = 0, go to step 2

Step 6: Calculate sT = (KT h + (rT xor h) QS (mod p). If sT = 0, go to step 2

Thus the signature pair (rT, sT) is transmitted with the false message „M‟

The receiver obtains an authenticated copy of sender‟s signature pair with the false

message „M‟ and verifys the authenticity of sender‟s signature (rT, sT) using public

parameters (G, n, p, Qs) for message „M‟ by performing the following steps:

Step 1: Verify that rT and sT are integers in [1, p − 1]. If not, the signature is invalid

Step 2: Calculate h = HASH (M) = SHA-3 (M)

Step 3: Calculate w = h
−1

 (mod p)

Step 4: Calculate u = (rT xor h)(mod p)

Step 5: Calculate (xT, yT) = w(sT –uQS)

Step 6: The signature is valid if vT = xT (mod p) = rT, invalid otherwise

If the forged signature is validated, then intruder can successfully send false information,

hence digital signature schemes are not secure. To solve this drawback public parameters

being shared are reduced.

 FPGA Implementation of Modified Elliptic Curve Digital Signature Algorithm 137

5. MODIFIED ELLIPTIC CURVE DIGITAL SIGNATURE ALGORITHM

While comparing the original ECDSA and its variants, it is found that original ECDSA
is vulnerable to attack if the same key is used for different messages. Scheme 2 is useful for
verifier with limited compute apparatus as there is no inverse calculation in key generation
and signing phase, but anyone can use legitimate user‟s public-key to forge the signature of
any information. Thus in the Modified ECDSA scheme hidden generator point concept is
applied to authenticate the encrypted message communicated between the devices
connected in the perceptual layer of IoT. The normal ECDSA are configured with the points
on the Elliptic Curve, a generator point „G‟ is selected publicly available and distributed
over the network by the Certificate Authority (CA) [11]. In this scheme, the requirement of
CA makes it difficult to implement security. The information shared by the CA can be
breached by the intruders, making the network susceptible to MIM attack [12].

Hence to elucidate this exposure and to secure the network against MIM attacks,
maintaining the security for each session of communication between the two nodes
without a common generator point is suggested. Therefore a generator point is shared
only between the devices being connected to communicate. This concept is implemented
in the ECDSA has two stages; initialization stage and authorization stage.

5.1 Initialization Stage

Let us consider two nodes represented in Fig. 5 in the WSN. It is assumed that both
nodes, i.e. sender and receiver, select their generator points, GS and GR individually apart
from the private keys, KS and KR.

The inverse of the private keys KS
-1

 and KR
-1

 are also computed. Once the inverse of
the private keys are computed, the sender generates its public key PSA using the Eq. (14),
whereas the receiver generates its public key PRA using the Eq. (15)

 PSA = KS
-1

GS (14)
 PRA =KR

-1
GR (15)

Both the public keys PSA and PRA are exchanged between sender and receiver after
multiplying it with the inverses of their private keys. The resultant key is transmitted to
the receiver as is specified in the Eq. (16), and the resultant key received by the sender is
specified in the Eq. (17)
 PSB = PRAKS

-1
= KR

-1
GRKS

-1
(16)

 PRB = PSAKR
-1

= KS
-1

GSKR
-1

(17)

Fig. 5 Computational process for Generator point

138 V. KAMALAKANNAN, S. TAMILSELVAN

These received keys are multiplied again by the sender and the receiver to generate PSC

and PRC as specified in Eq. (18) and Eq. (19)

PSC=PRBKS=KS
-1

GSKR
-1

KS =GSKR
-1

(18)

PRC=PSBKR=KR
-1

GRKS
-1

KR= GRKS
-1

(19)

When PSC and PRC received by the individual sender and receiver, they are multiplied

with KS and KR to obtain GR and GS.

The sender computes the receiver‟s generator point in Eq. (20) as

 PRC*KS=KS
-1

*GR*KS=GR (20)

The receiver computes the sender‟s generator in Eq. (21) as

 PSC*KR=KR
-1

*GS*KR=GS (21)

These generator points GS and GR are added to generate a common generator points for

the sender and receiver given in Eq. (22) as

 G = GS + GR (22)

Hence the sender and receiver exchanges information between them and generated using

„G‟ and computing P, 2P….. kP.

5.2 Authorization Stage

Let us consider two nodes in the WSN. The public key and the private keys of the

transmitter are PS and KS, whereas for receiver it is PR and KR. The key has to be

generated by the process shown in Fig. 6 for every session of transmission between the

sender and receiver. Thus authorization has to be provided for each transmission.

Fig. 6 Computational process for Key

Both the public keys PSR and PRS are exchanged after multiplying it with private keys.

The key transmitted to the receiver is specified in the Eq. (23), and the key received by

the sender is specified in the Eq. (24)

 FPGA Implementation of Modified Elliptic Curve Digital Signature Algorithm 139

 PSR = PRKS

(23)
 PRS = PSKR

(24)

The keys of the sender and the receiver are multiplied again to generate KSR and KRS
given in Eq. (25) and Eq. (26) as

 KSR = PSRPRS

=

PRKS

PSKR

(25)

 KRS = PRSPSR =

PRKS

PSKR

(26)

When PSR and PRS received by the individuals, the Key KSR and KRS are generated by
the sender and receiver individually which are equal, thus commonly referred as Key „K‟
in the implementation of ECDSA.

The sender and receiver in the WSN have individual generator points, GS and GR
with their unique private keys, KS and KR. After initializing the keys generation process,
both devices exchange the generator points GS and GR and generate a common generator
point by the initialization process explained in subsection 5.1. Hence the sender and
receiver exchange information between them by considering common generator point ‘G’
and computing P, 2P, 3P….. kP.

The sensor nodes must securely share a key before encryption. The shared secret
key is generated and refreshed between the sender and receiver. The public key of sender
and receiver are PS and PR. are exchanged using DHKE process and a key is generated by
the method explained in the sub section 5.2.
Considering the generator point ‘G’ and key ‘K’, scalar multiplication is performed to
compute KG provided in Eq. (27), to be applied for signature generation and signature
verification process.

 () () (27)

From the initialization and authorization stage, the values of K and G are known. This
scheme processes are discussed in the following steps.

5.3. Modified ECDSA Signature Generation

To generates the signature for message M the signer using the values of K and G by
performing the following steps:

Step 1: Calculate h = HASH (M) = SHA-3 (M)
Step 2: Compute KG= (x1, y1)
Step 4: Compute r = x1 (mod p)
Step 5: Compute s = (K + (r xnor h)) G (mod p).

 The signature pair thus generated is (r, s).

5.4. Modified ECDSA Signature Verification

The verifier verifies the signature using K and G from the initialization and authorization
stage for message M by performing the following steps:

Step 1: Verify that s is integers in [1, p − 1]. If not, the signature is invalid
Step 2: Compute KG= (x1, y1)
Step 3: Compute r = x1 (mod p)
Step 4: Compute u = (r xnor h) mod (mod p)
Step 5: (x2, y2) = (s - uG)
Step 6: The signature is valid if v = x2 (mod p) = r, invalid otherwise.

140 V. KAMALAKANNAN, S. TAMILSELVAN

5.5 Proof of Modified ECDSA Scheme

Signature send by sender to receiver is (r, s) and s can be generated only by Sender

because of its private key.

Step 1: Compute s = (K + (r xnor h) G

Step 2: Compute s = (K + u) G where u = (r xnor h)

Step 3: Compute s = KG + uG

Step 4: Compute s - uG = KG = (x2, y2)

Therefore

 LHS = KG = (x1, y1) and r = x1 (mod p)

 RHS = (s  uG) = (x2, y2) and v = x2(mod p)

 Hence v=r

The improved ECDSA scheme reduces the computational cost while keeping the same

security as original ECDSA. They are suitable for the users who have limited computing

capacity.

6. COMPARISON OF ELLIPTIC CURVE DIGITAL SIGNATURE ALGORITHM

The original ECDSA and proposed ECDSA are compared and represented in the

Table 2. While comparing the original ECDSA and the proposed ECDSA, it is found that

the original ECDSA consists of inverse operations in signature generation and signature

verification and hence is more complex as needs more point multiplication operation. The

improved scheme, the initialization stage and authorization stage are introduced to share the

values of K and G between the sender and receiver, thus reducing the computational cost as

no inverse operations are required for signature generation and signature verification, while

keeping the same security as original ECDSA.

Table 2 Comparison of ECDSA variants

Algorithm Signature Generation
Signature

Verification
Attack

Inverse

in

Key generation

Inverse

in

Signing

Inverse

in

Verification

Original

ECDSA

S=k− 1(h + dAr) u1=hs−1

u2=rs−1

u1G + u2QA

Vulnerable No Yes Yes

Proposed

ECDSA

s = (K + (r xnor h) G u = (r xnor h)

(s - uG)

Not

Vulnerable

No No No

7. IMPLEMENTATION AND SYNTHESIS ELLIPTIC CURVE DIGITAL SIGNATURE ALGORITHM

The original ECDSA signature generation and signature verification was realized in

Verilog HDL and simulation was carried out using ISim simulation tool available in

XILINX 14.3 for verifying its functional correctness. The RTL block schematic of the

ECDSA signature generation is illustrated in Fig. 7 and ECDSA signature verification is

illustrated in Fig. 8.

 FPGA Implementation of Modified Elliptic Curve Digital Signature Algorithm 141

The ECDSA signature generation and signature verification were synthesized and the

device utilization summary, timings summary and memory utilization are tabulated in

Table 3. The hardware implementation of ECDSA signature generation was performed

on Virtex-5 5XC5VLX50T-1FF1136 FPGA Development board by XILINX to evaluate

the area and speed. It was found that the ECDSA signature generation operated at a

maximum frequency of 13.180 MHz whereas the ECDSA signature verification operated

at a maximum frequency of 13.210 MHz.

Fig. 7 RTL Block Schematic of ECDSA signature generation

Fig. 8 RTL Block Schematic of ECDSA signature verification

142 V. KAMALAKANNAN, S. TAMILSELVAN

Table 3 Synthesis Summary for ECDSA

Parameters Signature
Generation

Signature
Verification

Slice Registers 6701 6790
Slice LUTs 16370 22734
LUT-FF pairs 4884 4996
Bonded IOBs 226 226
Real Time 2627.00 secs 890.00 secs
CPU Time 2626.99 secs 890.19 secs
Maximum Frequency 13.180 MHz 13.210 MHZ

The modified ECDSA signature generation and signature verification was realized in

Verilog HDL and the simulation was carried out using ISim simulation tool in XILINX

for verifying its functional correctness. The RTL block schematic of the Modified

ECDSA signature generation is illustrated in Fig. 9, and Modified ECDSA signature

verification is illustrated in Fig. 10.

Fig. 9 RTL Block Schematic of modified ECDSA signature generation

Fig. 10 RTL Block Schematic of Modified ECDSA signature verification

 FPGA Implementation of Modified Elliptic Curve Digital Signature Algorithm 143

The Modified ECDSA signature generation and signature verification are synthesized

and the device utilization summary, timings summary and memory utilization are

tabulated in the Table 4.

Table 4 Synthesis Summary for modified ECDSA

Parameters Signature

Generation

Signature

Verification

Slice Registers 198 454

Slice LUTs 7853 16387

LUT-FF pairs 152 346

Bonded IOBs 41 34

Real Time 924.00 secs 910.00 secs

CPU Time 923.69 secs 910.09 secs

Maximum Frequency 13.469 MHz 13.156 MHz

8. RESULT ANALYSIS OF ELLIPTIC CURVE DIGITAL SIGNATURE ALGORITHM

The ECDSA and its variants are synthesized and analyzed using XILINX tool. The

Table 5 and Table 6 illustrate the values obtained after synthesizing Original ECDSA and

modified ECDSA Scheme for signature generation and signature verification.

Comparison was performed related to maximum frequency and number of Slice LUTs.

Table 5 Comparison of Synthesis results of ECDSA Signature Generation

Parameters Original

ECDSA

Proposed

ECDSA

Number of Slice LUTs 16370 7853

Max. Frequency(MHz) 13.180 13.469

Table 6 Comparison of Synthesis results ECDSA Signature Verification

Parameters Original

ECDSA

Proposed

ECDSA

Number of Slice LUTs 22734 16387

Max. Frequency(MHz) 13.210 13.156

The outcomes obtained show that the modified ECDSA scheme is better suitable for

resource constrained devices. The maximum achievable frequency of 13.469 MHz is

achieved for signature generation and maximum achievable frequency of 13.156 MHz is

achieved for signature verification on Virtex-5 (XC5VLX50T-1FF1136) FPGA board is

better than the existing ECDSA schemes. Based on the design metric such as Frequency

(MHz) and Area (Slices/ALUTs), the modified ECDSA outperforms the existing ones in

terms of time for execution and Slice LUTs required in FPGA device.

144 V. KAMALAKANNAN, S. TAMILSELVAN

9. CONCLUSION

Elliptic Curve Digital Signature Algorithm (ECDSA) is one of the primitives of Elliptic

Curve Cryptography (ECC). The SHA-3 algorithms like Keccak provide better security and

proves beneficial wherever security constraints have to be achieved. Here a variant of

Keccak-f [1600] having five steps (𝜃 step, 𝜌 𝑎𝑛𝑑 𝜋 step, 𝜒 step and 𝜏 step) repeated 24

times were applied to generate hashed output. Generally, Modular Inversion is computed

using Montgomery‟s method which consists of a GCD operations. The GCD operation

utilizes more number of arithmetical operations. Thus computational cost increases when

implemented on FPGA as number of operations increases. From the analysis, it is found

that ECDSA is vulnerable to MIM attack when the same key is applied for all messages. At

the same time if computational cost is reduced, then there are chances of signature being

forged by the intruder. Therefore, the modified ECDSA scheme keeps the mathematical

structure of ECDSA and security the same as the original ECDSA scheme, but reduces the

computational cost by reducing the inverse operation being applied in the key generation

and signing phase. Also this scheme solves the problems related to signature forging due to

the available public parameters (G, n, p, QS). These are achieved by using hidden generator

concept. Hence this scheme has more security with less computational cost, therefore can

be implemented in the perceptual layer devices in IoT i.e., the ECDSA can be applied for

securing the information communicated by devices such as WSNs, RFIDs, etc., having

limited memory and computational capacity. Since FPGAs are used as end products, the

design of ECDSA is fine-tuned for FPGA implementation. The work can be extended by

considering advanced FPGAs where parallelism can be exploited in the architecture to

reduce the delay in the asymmetrical cryptography.

REFERENCES

[1] N. Koblitz, A. J. Menezes, and S. A. Vanstone, “The state of elliptic curve cryptography”, Design,
Codes, and Cryptography, vol. 19, Issue 2-3, pp.173-193, 2000.

[2] V. Miller, “Use of elliptic curves in cryptography”, Advances in Cryptography-Crypto ‟85. LNCS 218,

Springer Verlag, 1986, pp. 417-426.
[3] G. Provelengios, P. Kitsos, N. Sklavos, and C. Koulamas, “FPGA-Based Design Approaches of Keccak

Hash Function,” In Proceedings of the 15th Euromicro Conference, 2012, pp. 648-653.

[4] D. Manel, O. Raouf, H. Ramzi and A. Mtibaa, “Hash Function and Digital Signature based on Elliptic
Curve”, In Proceedings of the 14th international conference on Sciences and Techniques of Automatic

control & computer engineering - STA'2013, Sousse, Tunisia, December 20-22, 2013 pp. 388-392.

[5] K. Latif, M. M. Rao, A. Aziz, and A. Mahboob, “Efficient Hardware Implementations and Hardware
Performance Evaluation of SHA-3 Finalists,” In Proceeding of 3rd SHA-3 Candidate Conference, March 2012.

[6] S. P. Raj, A. P. Renold, “An Enhanced Elliptic Curve Algorithm for Secured Data Transmission in

Wireless Sensor Network”, In Proceedings of Global Conference on Communication Technologies
(GCCT 2015), pp. 891-896.

[7] A. Khalique, K. Singh, S. Sood, “Implementation of Elliptic Curve Digital Signature Algorithm”,

International Journal of Computer Applications, vol. 2, no. 2, pp. 21-27, May 2010.
[8] E. Wajih, B. Noura, M. Mohsen & T. Rached, “Low Power Elliptic Curve Digital Signature Design for

Constrained Devices”, International Journal of Security (IJS), vol. 6, no.2, pp. 1-14, April 2012.

[9] G. Sarath, D. C. Jinwala and S. Patel, “A Survey on Elliptic Curve Digital Signature Algorithm and its
Variants”, Computer Science & Information Technology (CS & IT) –CSCP, 2014, pp. 121–136.

[10] A. I. Ali, H. P. Isitc, “Comparison and Evaluation of Digital Signature Schemes Employed in NDN

Network”, International Journal of Embedded systems and Applications (IJESA), vol. 5, no. 2, pp. 15-29, June
2015,

 FPGA Implementation of Modified Elliptic Curve Digital Signature Algorithm 145

[11] H. Junru, “The improved elliptic curve digital signature algorithm”, In Proceedings of the International

Conference on Electronic and Mechanical Engineering and Information Technology (EMEIT), 2011, pp.
257-259.

[12] B. Panjwani, D. C. Mehta, “Hardware-Software Co-design of Elliptic Curve Digital Signature Algorithm

over Binary Fields”, In Proceedings of the International Conference on Advances in Computing,
Communications and Informatics (ICACCI), 2015, pp. 1101-1106.

[13] X. Zhang, S. Ma, W. Shi, and D. Han, “Implementation of Elliptic Curve Digital Signature Algorithm on

IRIS Nodes”, In Proceedings of the International Conference on Estimation, Detection and Information
Fusion (ICEDIF 2015), pp. 403-406.

