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Abstract. This paper deals with a frontend part of the readout circuit developed as an 

integrated circuit that after bonding together with a MEMS capacitive microphone 

(MCM) chip will be used in a noise dosimeter applicable in very noisy and harsh 

environment, e.g. mine. Therefore, the main attention has been paid to the high dynamic 

range, low offset and low noise of the developed readout interface as well as its low-

power consumption feature. For conversion of the MCM’s capacitance variation into 

voltage, an approach based on the buffered input conversion stage biased by a voltage 

divider was used. The advantage of this approach is that the voltage divider formed by 

MOS transistors can be connected to the high-impedance node (i.e. the output of the 

MCM, in this case). The whole frontend part of the readout interface was designed in a 

standard 0.35m CMOS technology. Finally, the achieved results are discussed and 

compared to other works. 
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1. INTRODUCTION 

MEMS (Micro-Electro-Mechanical-System) microphones are commonly used devices 

in a portable electronic systems, because they offer the miniaturization and integration of 

the whole system on a single chip. For such integration, CMOS technology is rather 

advantageous thanks to its good compatibility with MEMS manufacturing process and 

relatively low price. MCMs are acoustic sensors being proposed to improve the integration 

and cost of acoustic systems by employing great features of advanced MEMS technologies. 

Even though the well-known Electret-Condenser-Microphones (ECM) still represent the 

current market solution for most of acoustic applications, MCMs are considered as the 

future choice for mobile phones, consumer electronics and number of medical applications, 
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e.g. hearing aids [1]. With the fast development of MEMS technologies also the field of 

possible applications for MEMS sensors is getting wider. 

MCMs offer several advantages over the classical ECMs. First of all, they are smaller 

in size, compatible with high-temperature automated printed circuit board (PCB) 

mounting process and less susceptible to mechanical shocks. Furthermore, the possibility 

of monolithic integration of the sound sensor with CMOS electronics is another major 

advantage towards a robust and cost-effective system, enabling both the electrical and 

mechanical properties of silicon. 

To convert the output of a MCM (capacity variations in order of fF-pF) into an 

appropriate electrical signal representation, dedicated circuitry, either analog or digital 

so-called readout interface is required [2]–[5]. This necessitates a low-noise signal 

conversion provided by the readout interface. Additionally, in recent applications, low-

power profile is required in order to provide the system portability. 

In our research, a MCM-based application specific integrated circuit (ASIC) designed 

as a part of a portable low-cost noise dosimeter for very noisy and harsh environment is 

targeted. Therefore, the main goal is to develop a novel readout circuit schemes suitable 

for such applications. Thus, the most significant features of the developed ASIC are: low 

power, low cost and mass production aspects. Moreover, a wide dynamic range of the 

developed analog frontend is one of the major priorities as well. Thus, this paper presents 

an approach based on the buffered conversion input stage biased by a voltage divider that 

is formed using diode-connected MOS transistors. A MOS transistor of small size exhibits 

high resistance and therefore, such a voltage divider can be connected to high impedance 

node i.e. the microphone output. This solution ensures reliable DC bias voltage for an input 

buffer of the readout circuit. Moreover, with high-resistance MOS transistors, low-

frequency pole of the MCM with a small value of the nominal capacitance can be easily set. 

2. PRELIMINARY WORK 

Microphone is a device, which converts the sound into an electrical signal. Typical 

structure of a MEMS capacitive microphone is shown in Fig. 1.Acoustic sound pressure 

incident the diaphragm (membrane) causes capacitance changes of the structure that is 

then transformed into electrical signal by the readout circuit. The MCM has a diaphragm 

and cavity like some other MEMS microphones. However, compared to other types, 

MCMs have a fixed and porous backplate that is separated from the diaphragm by the air 

gap. The backplate holes are used to tune the bandwidth and resonance frequency of the 

microphone [6]. 

Generally, capacitive microphone can be classified as electret and condensed. Electret 

microphones are less used because they are biased with the stable embedded charge and 

therefore, the fabrication is more difficult. Condensed microphones are biased by an 

external voltage source, which makes them easier to use. Accordingly, the sensitivity of 

the capacitive microphone depends on the size of the membrane as well as on the electric 

field in the air gap that is invoked by the external voltage source [1]. 

Readout interface 

The main role of the readout interface (RI) is to convert the capacitance changes 

produced by an MCM into electrical signal such as voltage, current, etc. In the last years, 
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many readout circuits based on the capacitive sensing for MEMS sensors and its several 

modifications have been proposed [2,4,7-11]. 

The most important requirements for the MCMs readout interface include very high 

input impedance, low offset and low noise. On the other hand, the design of readout 

circuitry strongly depends on features of the MCM but it is also determined by the end 

application. Therefore, it is not easy to make the optimum design of the readout circuit, 

which could fulfill all the requirements.  

In general, there are three basic approaches (based on a preamplifier) to readout circuit 

topology, depending on the method used for the microphone capacitance conversion. Those 

are: constant-voltage, constant-charge and force-feedback approaches [12]. 

In continuous time constant-voltage approach, changes in capacitance of the MCM 

caused by acoustic input pressure create an AC current that can be sensed using a 

preamplifier with extremely high input impedance so called transimpedance amplifier 

(TIA) [8]. In this approach, the microphone output node tries to be maintained fixed 

(termed as the DC-component of the sensor) that mitigates the influence of parasitic 

capacitances. This results in the transformation of charge change(ΔQ) by a charge 

preamplifier into output voltage signal. The DC biasing of the preamplifier input in constant-

voltage approach is not so critical, and also pole of high pass filter can be localized more 

properly [12, 17]. In [9], this approach was supported by floating-gate circuit techniques to 

adapt the charge and improve SNR.   

Constant-voltage approach can be also implemented in the discrete form. Therefore, 

switched capacitor (SC) circuits can be also used to implement a readout circuit for the 

MCMs [2,8]. Using SC circuits, the robust DC bias in the sensing node can be achieved 

and the influence of the MCM parasitic capacitance can be reduced. Low input offset can 

be achieved by employing the offset reduction techniques used for SC circuits like auto-

zero, correlated double sampling or chopper stabilization technique [18-20]. However, 

the main disadvantage of a SC readout circuit is thermal noise of the switches, kT/C noise 

caused by sampling capacitors as well as noise produced by sampling process itself.  

Better noise performance can be achieved with constant-charge approach based on an 

impedance conversion buffer, where the capacitance change is converted into a voltage 

signal by proper biasing of the MCM. However, in this approach, high impedance of the 

preamplifier dramatically influences the frequency band and stray impedance of the MCM 

and also attenuates the microphone sensitivity. Nevertheless, the effect of interconnects and 

parasitic capacitances can be reduced by bootstrapping [12-13]. Preamplifier offset also 

belongs to critical features of this approach. Despite these disadvantages, constant-charge 

approach still remains popular [14-16]. However, the key challenge in this technique is 

setting the DC bias voltage at the MCM output (represents the very high impedance node). 

Approaches presented in [21-22] uses diodes and a unity gain OTA (Operational 

Transconductance Amplifier) for DC biasing and for current to voltage conversion. 

Force-feedback approach has been commonly used to minimize the impact of mechanical 

imperfections and inherent non-linearities in MEMS capacitive sensors through close-loop 

bias voltage tuning [14, 23]. A feedback loop can be successfully exploited for offset 

cancellation and the dynamic range enhancement [24-25]. The reset noise reduction 

schemes [26] also include a feedback loop that either cancels the reset noise or reduces the 

bandwidth of noise or controls the reset process itself. Interesting concept was presented in 

[27], where electro-mechanic feedback incorporates a triangle voltage wave generator. In 

combination with the constant-voltage approach and transimpedance amplifier, high 
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dynamic range was achieved. However, the power consumption, sensitivity, a range of 

capacitance variation and lower limit of sense capacitance make this readout design 

impractical for MEMS microphones. This concept belongs to the semi-digital methods 

that encode the information either in time (pulse-width modulation) or frequency (pulse-

frequency modulation) domain. Therefore, main advantages include broad dynamic 

range, low power consumption and robustness against the environmental noise. However, 

the vast majority of realizations do not meet the readout circuit requirements for MEMS 

microphones[22-27].  

This paper presents a novel constant-charge approach, where the voltage divider 

based on diode-connected MOS transistor is used for DC biasing of the input conversion 

LNA (Low Noise Amplifier) buffer. Advantage of this approach is that the high-

resistance voltage divider does not affect the high output impedance of the MCM, and 

also the pole of high pass filter can be easy localized.  

3. PROPOSED READOUT FRONTEND CIRCUIT 

3.1. The whole RI concept 

The principal scheme of the proposed RI is shown in Fig. 1. The proposed readout 

approach is based on the buffered conversion input stage. Whole RI was designed in a 

standard 0.35 m CMOS technology, with the supply voltage of 3V. Generally, the 

readout interface for MCMs can be divided into two main parts - frontend part and 

backend section. In our case, the frontend part consists of the impedance conversion 

buffer (input conversion bock), preamplifier and filters while the sigma-delta modulator, 

which converts the output of the frontend circuitry into a digital form, represents the 

backend part of the RI.  

 

 
 

Fig. 1 Concept of the proposed RI  

 

In this paper, we present the frontend part of the proposed RI. Because of high output 

impedance of the MCM, a buffer with low output impedance has been connected to the 

microphone’s output. Capacitance variation at the MCM output is converted into voltage 

using so-called sensing element that is followed by the input buffer. The sensing element 

has been also used to ensure the DC bias voltage for the input buffer. In general, the input 

buffer can be implemented using a source follower, a common-gate amplifier or an 

operational amplifier (OPAMP) based voltage follower. In our case, a simple two stage 

OPAMP connected as a voltage follower was used. 
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Usually, the sensing element requires high resistance and therefore, it is implemented 

by a diode-connected MOS transistor or by a diode in the reverse direction. The sensing 

element is the most critical part of the RI because several significant parameters (e.g. 

sensitivity, low corner frequency, DC bias voltage, etc.) of the microphone can be affected 

by its properties.  

Output signal from the input buffer is then converted into a differential form to 

improve noise immunity and consequently, the differential signal is amplified. Since the 

low corner frequency of the RI is set to 30Hz, two external (off-chip) capacitors (with 

capacitance in order of hundreds of nF) are employed to implement the high-pass filter 

(HPF) with the slope of 20 dB per decade. The active low-pass filter (LPF) with the slope 

of 40 dB/decade is realized completely on a chip.  Consequently, the output signal from 

the LPF is buffered and processed by the sigma-delta modulator. 

3.2. Input conversion block 

The most important building block of the proposed RI is the input conversion block. 

Its main role is to convert the capacitance variations into voltage changes. Transistor 

level schematic of the designed input conversion block as well as size of the transistors 

used in the input buffer are depicted in Fig. 2.  

 

 
 

Fig. 2 Schematic diagram of the input conversion block 

 

The proposed readout approach is based on the buffered input conversion stage, 

where the main challenge is how to ensure the DC bias voltage for the input buffer. Since 

the output impedance of the MCM is very high, another important task is to maintain the 

input impedance of the input conversion block as higher as possible. In order to achieve 

high input impedance of the input conversion block, in our case, the DC bias voltage was 
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provided by a voltage divider implemented with diode-connected MOS transistors. This 

represents rather important advantage of the proposed readout approach. To achieve a 

high resistance of the MOS transistor, W\L ratio should be lower than 1. 

The main requirement for the input buffer is low voltage noise and low value of the 

input offset. However, a two-stage OPAMP topology has been used for realization of the 

input LNA buffer (Fig. 2). In order to increase common-mode input range, bulk of the 

MOS transistors used in the input differential pair was shorted with source. In this way, 

the body effect of those transistors is eliminated. Bias voltage (VBIAS) is generated on 

chip using a mirrored reference current. Design of the LNA buffer has been optimized by 

the proper transistor size to obtain low noise and low input offset voltage. Nevertheless, 

from the whole readout frontend circuit point of view, the input offset voltage of LNA is 

not critical parameter because DC voltage is removed by external coupling capacitors C1 

and C2 (Fig. 1). Since the input capacitance of the input buffer depends on gate-source 

capacitance (CGS) of input transistors used in the buffer, sizes of the input transistors have 

to be optimized in order to reduce capacitance CGS. To reduce the input noise caused by 

the MCM, capacitors CP1 and CP2 were connected in parallel with the diode-connected MOS 

transistors (Fig. 3). On the other hand, capacitances CP1 and CP2 together with capacitance of 

the microphone form a capacitive divider (sensitivity of the MCM might be influenced). 

Therefore, another critical issue is minimization of the impact of capacitances CP1 and 

CP2, which can negatively affect the microphone sensitivity. 

Small-signal equivalent circuit of the input conversion block is depicted in Fig. 3, 

where CMCM is the nominal capacitance of the microphone, Cin_buff is the input capacitance 

of the input buffer and rDS represents a resistance of the respective diode-connected MOS 

transistor. 

 
 

Fig. 3 Small-signal equivalent circuit of the input conversion block 

Transfer function of the proposed block is expressed by Eq. 1. 

 

A(s) =
CMCM

CMCM +CTOT
×

1

1+
CMCM

CMCM +CTOT
×

1

sCMCMrDS

 (1) 

Capacitance CTOT represents the sum of capacitances CP1, CP2 and Cin_buff. However, 

transfer function can be rewritten as:  
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where 

 

k =
CMCM

CMCM +CTOT

 (3) 

From transfer function, one can express the gain and corner frequency of the inverted 

pole. As can be seen from Eq. 2, gain of the transfer function is multiplied by term k. Thus, 

sensitivity of the microphone depends on the ratio of capacitances CMCM and CTOT, 

expressed by Eq. 3. Hence, in terms of requirements for the MCM sensitivity, values of 

capacitors CP1 and CP2 should be at least 10 times lower than the nominal capacitance 

(CMCM) of the microphone. Under this condition, the original value of the MCM sensitivity 

is maintained. 

The low frequency corner, formed by the input conversion block, can be expressed as: 

 _ 3

1
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L dB

DS MCM TOT

f
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 
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 (4) 

From Eq. 4, one can observe that capacitors CP1 and CP2 might cause an undesired 

shift of the low corner frequency of the readout interface. Therefore, to maintain the 

original value of the low corner frequency, the values of capacitors CP1 and CP2 should be 

chosen appropriately. To conclude, we would like to underline that capacitors CP1 and 

CP2 can be used for noise reduction but in order to maintain the original value of the 

MCM sensitivity and low corner frequency of the readout circuit, their values must be 

carefully selected.  

4. RESULTS AND DISCUSSION 

For evaluation the designed RI, the main parameters were simulated in Cadence 

design environment. Fig. 4 shows the boundary frequency responses of the proposed 

readout circuit obtained from Corner Analysis, where the process and temperature 

variations were taken into account. The low corner frequency will vary from 19.2 Hz to 

33.1 Hz while the high corner frequency is kept in the range from 7.4 kHz to 15.2 kHz.  

The obtained gain is in the range from 24.6 dB to 26.1 dB. Slope of the LPF and HPF is 

10dB/octave and 18dB/octave, respectively. However, shape of the final frequency 

response mainly depends on the frequency response of the MEMS microphone itself. 

Further parameter that expresses the linearity of the RI circuit is the Total Harmonic 

Distortion (THD), which depends on the amplitude of the input signal. Fig. 5 shows the 

dependence of the THD parameter on the input amplitude. It can be observed that THD 

will be lower than 0.1% for the input amplitude in the range from 100 V to 70 mV. For 

the input amplitude over 70 mV, the THD will rapidly increase, and as the input 

amplitude reaches 100 mV the THD of whole RI will be about 0.6%. 
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Fig. 4 Frequency response of the RI circuit 

 

The linearity of the RI can also be observed from Fig. 5, where the dependence of the 

output amplitude on the input amplitude is shown. Since the input range of the sigma-

delta modulator is from 0 V to 2 V, one can observe that in the whole considered range, 

the proposed RI exhibits good linearity. 
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Fig. 5 Output amplitude and THD versus the input amplitude 

 

The main achieved parameters of the designed readoutfrontend circuit obtained from 

schematic as well as postlayout simulationsare summarized in Tab. 1. Layout of the 

proposed readout frontend circuit and comparison of the frequency responses obtained 

from schematic and postlayout simulations are depicted in Fig. 6a and Fig. 6b, 

respectively. In Fig. 6a, the input conversion block is marked. From Tab. 1 and Fig. 6b, 

one can observe that the biggest change in the frequency response was achieved at higher 
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frequencies. The high frequency corner 9.66 kHz was achieved, which represents about 

10% lower value compared to the schematic simulation result. Other parameters either 

slightly change or maintain their original values. 

  

Table 1 Main parameters of the proposed readout frontend circuit 

 

Parameter Conditions Typical Postlayout Unit 

Maximum Gain   25.75 25.7 dB 

Frequency Response Low frequency -3 dB point 25.75 25.6 Hz 

High frequency -3 dB point 10.66 9.66 kHz 

Noise Input noise @ 1 kHz 0.293 0.27 µV/√Hz 

Output noise @ 1 kHz 5.66 5.24 µV/√Hz 

THD   0.099 0.096 % 

Signal to Noise (S/N)  68.76 68.31 dB 

Dynamic Range (DR)  110.6 110.7 dB 

IDD consumption of 

selected block 

Input conversion block 50 50 µA 

Single-ended to differential 165 165 µA 

2x AMP 550 550 µA 

Filter 820 820 µA 

Total IDD consumption VDD = 3V 1.56 1.56 mA 
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a) Layout of the readout frontend b) Postlayout vs schematic simulation results 

Fig. 6 RI layout and post-layout simulation results 

 

 

 



272 D. ARBET, V. STOPJAKOVÁ, M. KOVÁČ, L. NAGY, G. NAGY 

Comparison of the achieved results to other works is presented in Tab.2. 

 

Table 2 Comparison of the achieved results 

 
SC - switching capacitors, SE: single ended, DE: differential ended,  

DR: dynamic range, CV: constant voltage, CC: constant charge 

 
Nevertheless, it is important to note that the other works are based on different approaches, 

so the comparison might not be fully relevant. Thus, we also specify the approach, which 

the respective design is employing. As can be observed, in our case, the best result was 

achieved for the dynamic range (DR) parameter, where 110dB is achieved as required by 

the target application. Moreover, sensitivity and input noise as well as the noise floor 

obtained by this approach are better than those presented in [31]. The proposed readout 

circuit requires smaller chip area than in approaches presented in [29] and [30]by 18% 

and 23% higher than [27] and [31], respectively. Finally, in comparison to other works, 

the most important improvements and features of the presented readout frontend circuitry 

can be summarized as follows: 

 broader dynamic range 

 better noise performance 

 low power consumption  

However, these features are achieved at costs of area overhead (about 20% with 

respect to works presented in [27] and [31]). 

5. CONCLUSION 

The frontend part of the readout interface for MCM was proposed and designed in a 

standard 0.35 m CMOS technology. The achieved results show that the proposed 

approach brings the high dynamic range and very good noise performance, which are the 

most important parameters required by a MCM-based noise dosimeter meant to be used 

in very harsh environment.  

  [27] [29] [30] [31] this work 

CMOS Process 0.35 μm 0.35 μm 0.8 μm 0.8 μm 0.35 μm 

Supply ± 1.65 V 3.3 V 5 V 5 V 3 V 

Power 7.9 mW N/A 8.38 mW 0.56 mW 4.68 mW 

Area 0.24 mm
2
 12  mm

2
 1.21 mm

2
 0.22 mm

2
 0.29  mm

2
 

Peak SNDR/DR 91.7 dB N/A 60 dB N/A 110.66 dB 

Noise Floor N/A N/A N/A 0.25 aF/√Hz 

(500Hz) 

0.09 aF/√Hz 

(1kHz) 

Adjustable Gain yes  

(by drive current) 

no no no no 

Sensitivity 0.1Vnorm/1pF 38 μsec/pF 9980 mV/fF 12.42 mV/fF 62.6 mV/fF 

Output Swing N/A N/A N/A N/A SE: 1.9 V 

DE: 3.8 V 

Approach CV with AC 

drive current 

Semi-digital 

(PWM) 

SC SC CC 
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Currently, the developed readout interface is being fabricated. In the future research, 

evaluation of prototype chips will be performed and possible modification of the RI 

design towards further improvements is expected. 
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