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Abstract. In this paper we propose a new class of selective CIC filters in recursive and 

nonrecursive form. The filters use a modification of CIC concept, which is achieved by 

applying a set of non-identical comb sections in cascade. We illustrate examples of the 

proposed filter function and calculate integer coefficients of filter impulse response. 

Detailed comparison between the proposed selective filter class and classical CIC 

filters is given. The results show that the stopband selectivity can be improved 

significantly in comparison with classical CIC filters with the same filter complexity. 
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1. INTRODUCTION 

Comb-based digital filters have become widely used in multirate systems in the recent 

years, primarily because of their low complexity and power consumption [1]. Classical 

comb filter functions with finite impulse response and linear phase characteristics HN(z) 

have all their zeroes on a unit circle, and the total number of zeroes is N. 

With cascade synthesis of identical comb filter functions, one can generate 

conventional CIC filter functions whose attenuation characteristics are given by: 
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CIC filters have a great importance in telecommunication techniques and especially in 

multirate processing and sigma-delta modulation [2, 3]. They have two very important 

characteristics: 

1. Linear phase response, and 

2. Multiplierless operation, since they require only delay, addition and subtraction. 
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However, classical CIC filters also have the following important shortcomings: 

1. Very high value of filter function normalization constant N

, 

2. High ratio of max. and min. values of integer coefficients in impulse response: 
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3. Comparatively low stopband attenuation. For example, by setting N = 9, and using 

 = 7 cascades, one can obtain stopband attenuation of: |HCIC(9, 7, z)| = 90.27 dB. 

Stopband attenuation of classical CIC filters is equal to the depth of the first 

sidelobe, and therefore can be estimated as: 
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Some of the attempts to sharpen the filter response and improve the stopband selectivity 

are described in literature, for example [4-12]. Table 1 summarizes the values of 

normalization constants, ratios of maximal and minimal impulse response coefficients, 

and stopband attenuation for different filter parameters N and . 

Table 1 Characteristic values of classical CIC filter functions 

N  
Normalization 

constant 

Max/Min 

coefficient ratio 

Stopband 

attenuation [dB] 

5 

5 3125 381 60.21 

8 390625 38165 96.33 

11 48828125 4091495 132.45 

6 

5 7776 780 62.13 

8 1679616 135954 99.40 

11 362797056 25090131 136.68 

7 

5 16807 1451 63.26 

8 5764801 398567 101.22 

11 1977326743 117224317 139.17 

In this paper, we propose a new class of FIR filter function with all zeroes on the unit 

circle, that improves on all three issues present in classical CIC filters. Normalization 

constants are lower, ratios of hCICmax(N, ) and hCICmin(N, ) are reduced, and stopband 

attenuation values are improved. 

2. THE PROPOSED CLASS OF CIC FIR FILTER FUNCTIONS 

Classical CIC filter is described by the normalized transfer function which can be 

condensed into the recursive form: 
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where N is an integer parameter, and filter order is equal to (N-1). When better stopband 

suppression is required, it is a common procedure to cascade multiple filter sections until 

the requirements are met. By cascading  identical comb/integrator stages, the effective 

transfer function of the cascaded filter is of the form: 

 ( , ) ( ( ))N NH z H z   . (5) 

By cascading non-identical sections of classical CIC filters, it is possible to obtain 

filters with different characteristics. Some particular cases of new filter classes based on 

this approach have been considered previously in [7, 8]. The choice of filter sections can 

in general be arbitrary, and not every combination would yield justifiable results. On the 

other hand, the classification of general cascaded filter type has not been attempted in the 

literature, and we choose to present our own filter class which showed good results 

towards better stopband performance. In this paper, we propose a filter with transfer function 

 2 2 1 1( , ) ( , ) ( , ) ( , ) ( ) ( )N N N N N NH L z H L z H L z H L z H z H z    , (6) 

which consists of two CIC filters with transfer functions HN-1(z) and HN+1(z), and an L-fold 

cascade group of three filters with transfer functions HN-2(z), HN(z), and HN+2(z). 

2.1 Recursive form of the proposed filter class 

Following from (4), the proposed filter function has a recursive form: 
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Frequency response characteristic is: 
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, (8) 

where we denote the total number of CIC cascades as 23  LK . Normalized amplitude 

response is: 
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and the magnitude response is obtained when we take absolute value of the amplitude 

response. As it is obvious from (8), the phase response characteristic is linear and expressed as 
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( , ) ( 1) / 2 2N L N K k      , where k{0, 1, 2, …}, while the group delay of the 

proposed filter class is: 

 ( , ) ( 1)(3 / 2 1)N L N L      (10) 

Normalized response characteristics are shown in Fig. 1, for L = 2, and 3 < N < 25. 

Amplitude response shows that there are no visible variations in the passband. There is 

also the smooth transition towards the stopband, which is consistent with general behavior 

of the classical CIC filters. As the filter order increases, the passband decreases as expected. 

Magnitude response shows strong attenuation in the stopband, and this is clearly the 

consequence of filter zeroes. However, attenuation drops to much lower values between 

the zeroes, effectively defining the stopband attenuation limit. Lines that define the locations 

of filter zeroes are clearly visible for lower filter orders and the overall effect of cascading 

non-identical filter sections is in fact in dispersion of the zeroes. This is also obvious in the 

Fig. 2 where we show contour plots of the attenuation for different filter orders versus 

angular frequency. Fig. 2 also compares the magnitude response of the classical CIC filters 

and the proposed filter class, so that the differences can be highlighted. While the classical 

CIC filters have strong attenuation bands, and comparatively low attenuation between them, 

we see that the proposed filter functions have dispersed high attenuation bands, and 

significantly better attenuation between those bands. As the filter order increases, after 

certain point the characteristics begin to look similar, so we expect significant results in 

stopband attenuation improvement at lower filter orders. Figs. 2b and 2d compare the 

magnitude response spanning lower frequencies close to passband. We can also see that 

the passband responses of the classical CIC and the proposed filters are very similar, and 

therefore we can assume that the compensation techniques used for classical CIC filters 

[14-16] can also be used here successfully. 

     

a) Amplitude response   b) Magnitude response 

Fig. 1 Normalized response characteristics of the proposed CIC FIR filter class  

for N{4-24}, and L = 2. 
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a) Classical CIC filter with  = 8 b) Same as previous, lower part of 

frequency range 
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c) Proposed CIC FIR filter with K = 8 d) Same as previous, lower part of 

frequency range 
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Fig. 2 Contour plots of magnitude response characteristics of classical CIC and the proposed 

CIC FIR filters for N{4-24}, and total number of cascaded sections  = K = 8. 

We further investigate the passband and stopband cut-off values of the proposed filter 

class, and the obtained results are shown in Fig. 3. The results are suitable for determining 

filter parameters N and L when the required values of  passband and stopband cut-offs are 

given. We observe that filter order strongly influences the values of pass- and stopband 

cut-offs, while the number of cascades does less so. As a consequence, in many cases 

requirements can be met using more than a single combination of parameters, which gives 

a certain degree of freedom in choosing the efficient filter function. 
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a) Passband cut-off values for 0.28 dB 

response variation 

b) Stopband cut-off values for 100 dB 

attenuation 

Fig. 3 Passband and stopband cut-off values of the proposed filter class, for N{4-24}, 

and L{1,2,3}. 

2.2 Nonrecursive form of the proposed filter class 

Using the non-recursive form [17, 18] of the normalized classical CIC filter impulse 

response: 
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as a building block, we can write directly the non-recursive form of the proposed filter 

class impulse response: 
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Classical CIC filters have all zeroes (the number of zeroes is equal to filter order, N-1) 

on the unit circle in the z-plane, and their multiplicity increases linearly with increasing 

number of cascades. Therefore, increased multiplicity of the zeroes is a side-effect of 

cascading filter element in order to improve the stopband attenuation. In the proposed 

filter class, there are also multiple filter section, but in contrast with classical CIC, the 

sections are not of the same order. This diversity allows wide spread of zeroes, which are 

also distributed on the unit circle. By distributing zeroes more evenly for the proposed 

filter class, we hope to get significantly better stopband characteristics while retaining the 

other desirable characteristics of the CIC filters. An illustrative example is given in Fig 4, 

where locations and multiplicities of zeroes are compared for the two types of filters with 

the same total number of cascades and the same group delay. 
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a) Classical CIC filter  b) Proposed filter 

Fig. 4 Locations and multiplicities of filter function zeros in z-plane for N = 8, and 

 = K = 8 cascades. 

When all products in (12) are taken into account, the impulse response is written simply as: 
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where 
2 2

, ( 1) ( 2)L L

N LC N N N    is the normalization constant. We can observe that 

the result can be interpreted as a scalar product of the two vectors: 

 , , ,( , ) T

N N L N L N LH L z C A Z , (14) 
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N L z z z    Z , and symbol T 

denotes the vector transpose. Coefficients ak are computed easily for the given filter 

parameters N and L, and although general symbolic formula for the ak may exist, we have 

not pursued its derivation. Instead, we give the coefficients vectors values for filters with 

N{7, 8}, and L{1,2}: 

For sixth order filter (N = 7), with L = 1, we have the following 31 coefficients: 

A7,1 = [1, 5, 15, 35, 70, 125, 204, 309, 439, 589, 750, 910, 1055, 1171, 

1246, 1272, 1246, 1171, 1055, 910, 750, 589, 439, 309, 204, 125, 

70, 35, 15, 5, 1], 

and with L = 2, we have the following 49 coefficients: 

A7,2 = [1, 8, 36, 120, 330, 790, 1699, 3350, 6142, 10578, 17243, 26758, 

39710, 56562, 77553, 102602, 131233, 162538, 195191, 227520, 

257635, 283600, 303628, 316274, 320598, 316274, 303628, 

283600, 257635, 227520, 195191, 162538, 131233, 102602, 77553, 

56562, 39710, 26758, 17243, 10578, 6142, 3350, 1699, 790, 330, 

120, 36, 8, 1] 

Coefficients of seventh order filter with L = 1, are: 

A8,1 = [1, 5, 15, 35, 70, 126, 209, 324, 474, 659, 875, 1114, 1364, 1610, 

1835, 2022, 2156, 2226, 2226, 2156, 2022, 1835, 1610, 1364, 1114, 

875, 659, 474, 324, 209, 126, 70, 35, 15, 5, 1], 
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while the same order filter with L = 2 has the following 57 coefficients: 

A8,2 = [1, 8, 36, 120, 330, 792, 1714, 3415, 6353, 11147, 18586, 29618, 

45313, 66796, 95150, 131293, 175839, 228957, 290246, 358645, 

432396, 509073, 585684, 658844, 725007, 780736, 822984, 

849356, 858322, 849356, 822984, 780736, 725007, 658844, 

585684, 509073, 432396, 358645, 290246, 228957, 175839, 

131293, 95150, 66796, 45313, 29618, 18586, 11147, 6353, 3415, 

1714, 792, 330, 120, 36, 8, 1] 

In order to compare the filter responses, we observe the classical CIC filter with same 

order and group delay has the following impulse response 
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Using the multinomial theorem, previous equation can be written in its expanded form: 
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and finally in the form analogue to (13): 
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In order to further compare the coefficients of classical CIC and proposed filters, we have 

computed the coefficient vectors for both filters, using the same filter order and group delay. 

Relative difference of the coefficients is shown in Fig. 5, with classical CIC filter taken as 

reference, i.e. we define relative difference as (ak - bk)/bk. Since the relative difference is always 

negative, corresponding coefficients of the proposed filter class are always less or equal to those 

of the classical CIC filters, and this is especially true for the largest coefficients. 
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Fig. 5 Relative difference of the impulse response coefficients of the proposed filter class 

compared to corresponding coefficients of the classical CIC filters. 
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Normalization constants and max/min coefficient ratios of the proposed filter class are 

compared to appropriate values of classical CIC filters, and the results are listed in 

Table 2. Relevant values are about 10% to 45% lower, relative to classical CIC. 

Table 2 Characteristic values of the proposed filters impulse responses, and comparison 

to corresponding values for classical CIC filters 

N L  
Normalization 

constant 

Relative to 

classical CIC 

[%] 

Max/Min 

coefficient ratio 

Relative to 

classical CIC 

[%] 

5 

1 5 2520 -19.35 292 -23.36 

2 8 264600 -32.26 24544 -35.69 

3 11 27783000 -43.10 2209862 -45.99 

6 

1 5 6720 -13.58 651 -16.54 

2 8 1290240 -23.18 100716 -25.92 

3 11 247726080 -31.72 16524804 -34.14 

7 

1 5 15120 -10.04 1272 -12.34 

2 8 4762800 -17.38 320598 -19.56 

3 11 1500282000 -24.13 86589572 -26.13 

3. COMPARISON OF STOPBAND CHARACTERISTICS  

As mentioned previously, the most significant effect of zeroes dispersion in the 

proposed filter class is expected to be the stopband attenuation improvement. To study 

and illustrate the effect, we show detailed analysis of numerical results obtained for even 

and odd filter orders N{7, 8}, and different number of cascaded sections, corresponding 

to L{1, 2, 3}. 

In Fig. 6 we show filter attenuation in dBs, for the angular frequency span of 

0    . It is immediately obvious that the proposed filter outperforms classical CIC 

filters in the stopband. At the same time, passband characteristics are closely matched, 

potentially allowing the use of compensators designed for classical CIC filters. As the 

number of cascades increases, so does the benefit of attenuation improvement. This is in 

agreement with our initial assumption that the zeroes multiplicity of classical CIC filters 

can be traded for stopband performance. Numerical values of stopband attenuation, as 

well as stopband cut-off values are shown in the Fig. 7, which shows zoomed areas of 

interest from the Fig. 6. It is evident that the stopband improvement can be significant, 

ranging from about 19 dB for L = 1, 26 dB for L = 2, up to 32 dB for L = 3. 
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a) Number of cascades is  = 5 (corresponding to L = 1 for the proposed filter) 
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b) Number of cascades is  = 8 (corresponding to L = 2 for the proposed filter) 

0 0.5 1.0 1.5 2.0 2.5 3.0
0

150

200

250

Angular frequency [ ]

A
tt
e
n
u
a
ti
o
n
 [
d
B

]

 

c) Number of cascades is  = 11 (corresponding to L = 3 for the proposed filter) 

Fig. 6 Comparison of normalized magnitude response characteristics in dB for classical 

CIC filter with N = 7 (dashed lines), and the proposed CIC FIR filter functions 

with N = 7 (solid lines). 
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a) Number of cascades is  = 5 (corresponding to L = 1 for the proposed filter) 
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b) Number of cascades is  = 8 (corresponding to L = 2 for the proposed filter) 
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c) Number of cascades is  = 11 (corresponding to L = 3 for the proposed filter) 

Fig. 7 Details of comparison shown in Fig.6, with enlarged sections of interest and 

specific values shown. Characteristics of the classical CIC filters are shown using 

dashed lines, and those of the proposed filter are in solid lines. 



72 D. N. MILIĆ, V. D. PAVLOVIĆ 

In Fig. 8 we show an example of filter attenuation for odd filter order: N - 1 = 7 

(N = 8). The figure looks very similar to previous example shown in Fig. 6, but there are a 

few points worth taking notice. Firstly, there are no fundamental differences visible 

between even and odd filter orders. Secondly, attenuation improvement is not linear, but 

depends on complex interplay of zeroes locations and multiplicities. Actually, in Fig. 8.a 

we have a slightly lower improvement than in Fig. 6.a. 
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a) Number of cascades is  = 5 (corresponding to L = 1 for the proposed filter) 
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b) Number of cascades is  = 8 (corresponding to L = 2 for the proposed filter) 
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c) Number of cascades is  = 11 (corresponding to L = 3 for the proposed filter) 

Fig. 8 Comparison of normalized magnitude response characteristics in dB for classical 

CIC filter with N = 8 (dashed lines), and the proposed CIC FIR filter functions with 

N = 8 (solid lines). 
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a) Number of cascades is  = 5 (corresponding to L = 1 for the proposed filter) 

134.66 dB

102.38 dB

0.68294

0.63347

0.6 0.8 1.0 1.2
90

100

110

120

130

140

150

Angular frequency , [ ]

A
tt
e

n
u

a
ti
o

n
 [
d

B
]

 

b) Number of cascades is  = 8 (corresponding to L = 2 for the proposed filter) 
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c) Number of cascades is  = 11 (corresponding to L = 3 for the proposed filter) 

Fig. 9 Details of comparison shown in Fig.8, with enlarged sections of interest and 

specific values shown. Characteristics of the classical CIC filters are shown using 

dashed lines, and those of the proposed filter are in solid lines. 
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Fig. 10 Stopband attenuation improvement versus parameter N. 

For higher number of cascades, the attenuation valleys are more uniformly distributed 

in terms of their attenuation values, and this is an indication that the filter has finer 

balance and better stopband characteristics. Numerical values of stopband attenuation, as 

well as stopband cut-off values are shown in the Fig. 9, which shows zoomed areas of 

interest from the Fig. 8. The stopband improvement here ranges again from about 19 dB 

for L = 1, over 32 dB for L = 2, up to 42 dB for L = 3. 

As we have noticed, because of the complex nature of interplay between the zeroes, it 

is hard to predict the exact values of stopband attenuation improvement, and these can be 

efficiently calculated and tabulated only after the actual characteristics comparison. 

Therefore, we have performed detailed calculations for different filter orders and number 

of cascades, and we summarize the results in Fig. 10. The results indicate that the best 

results in improving attenuation in the stopband can be obtained when N = 8, for L = 2 

and L = 3. When L = 1, most improvement is obtained for N = 7. As the filter order 

increases beyond its optimal value, attenuation improvement becomes consistently lower.  

In order to compare the filter function to a similar one presented in [7], we have 

calculated the stopband attenuation improvement in dBs and normalized it by the total 

group delay (10), therefore showing how efficient is the filter function in improving the 

stopband attenuation with increasing number of delay elements. The results shown in 

Fig. 11 indicate that the proposed filter function is more efficient in this regard than the 

one presented in [7]. We note that L = 2 from [7] corresponds to the same delays as for 

L = 4 in this paper. 
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Fig. 11 Stopband attenuation improvement normalized by group delay. 
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4. CONCLUSION 

This paper describes a new class of selective CIC filter functions in recursive and 

nonrecursive form. We have illustrated examples of the proposed filter function class, and 

shown details of the response characteristics for wide range of filter orders. We have 

highlighted the common points and differences in relation to classical CIC filters. Results 

show that normalization constant, and span of integer filter coefficients are lower than that 

of corresponding classical CIC filters, while the stopband characteristics are significantly 

improved.  

Detailed comparison of response characteristics with classical CIC filters is given. The 

results indicate that the proposed class of CIC filter functions can have significant 

stopband attenuation improvement for the same digital filter complexity. Further research 

will be directed towards passband droop compensation while keeping the proposed 

technique for stopband improvement. 
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