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Abstract. Characteristic parameters of a covered microstrip line with ground planes of 

finite width are determined using hybrid boundary element method (HBEM). This 

method, developed at the Faculty of Electronic Engineering of Niš is based on the 

combination of equivalent electrodes method (EEM) and boundary element method 

(BEM). Results for the characteristic impedance of the observed microstrip line are 

compared with the corresponding ones obtained by the finite element method. 
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1. INTRODUCTION 

Over the years, many authors have analyzed microstrip lines with finite width di-

electric substrate using numerical and analytical methods [1]-[14]. The variational method 

[5, 7], the boundary element method/method of moments (BEM/MoM) [1], [9]-[11], the 

conformal mapping and the moving perfect electric wall methods [12]-[13], etc. are some 

of the commonly used procedures for microstrip lines analysis.  

On the other side, the problem of the finite width microstrip ground plane has not been 

so often researched, although these forms of microstrips are typical in practice. In [4] and 

[14]-[15] the microstrip line with finite-width dielectric and ground plane was analyzed. 

A moving perfect electric wall method (MPEW) was applied in [12]. This method is used 

in combination with the conformal mapping method (CMM). The author obtained simple 

analytical relations for quasi TEM parameters of microstrip lines. The calculation was 

performed with the assumption that the conductor thickness is zero. 
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In [6] the authors present an efficient numerical technique for characteristic para-

meters determination of multiconductor transmission lines with homogeneous dielectrics. 

The influence of finite width ground plane was also investigated. The system of integral 

equations resulting from the method is solved using Galerkin’s method with a pulse 

approximation. The technique applied in this paper is an improvement of the procedure 

presented in [8], in the sense of better efficiency and accuracy of the obtained results. 

Analysis of structures with ground planes of finite width as well as finite conductor 

thickness is also possible using the hybrid boundary element method (HBEM) [15]. This 

method is applied for the microstrip characteristic parameters determination in [15] and 

[16]. In [17] and [18] the symmetrically coupled microstrip lines with finite and infinite 

width ground plane are analyzed using the HBEM. Both modes (even and odd) are 

considered.  

Covered coupled microstrip lines parameters are calculated in [19]. The structure that 

has not been analyzed using HBEM until now is a covered single microstrip line with 

ground planes of finite width and finite conductor thickness. The analysis of such 

structure will be presented in this paper. Results obtained for the characteristic impedance 

will be shown in tables and graphically, as equipotential contours. The main assumption 

in this analysis involves quasi TEM propagation in the microstrip line. 

In order to validate the HBEM values obtained for the characteristic impedance, in 

terms of accuracy, they have been compared with the corresponding ones obtained by the 

finite element method (FEM). That method is very useful for application in software for 

electromagnetic problems solving, including the microwave analysis. Some of this type of 

software is FEMM [20] or COMSOL [21]. The first one will be applied in this paper for 

results comparison. 

2. THEORETICAL BACKGROUND 

The HBEM has been  applied, until now, for electromagnetic field determination in 

the vicinity of cable terminations [22], calculation of magnetic force between permanent 

magnets as well as for microstrip lines parameters determination [23].  

A generalization of the HBEM, which is applied in this paper for microstrip lines 

analysis, was described in detail in [15] and [16]. This method presents a combination of 

the BEM/MoM, the equivalent electrodes method (EEM) [24] and the point-matching 

method (PMM).  

The main idea of the HBEM is in discretizing each arbitrarily shaped surface of the 

perfect electric conductor (PEC) electrode as well as an arbitrarily shaped boundary 

surface between any two dielectric layers. The boundary surfaces are divided into a large 

number of segments. Each of those segments on PEC electrode is replaced by equivalent 

electrodes (EEs) placed at their centers. The potential of equivalent electrodes obtained in 

this manner is the same as the potential of PECs themselves. The segments at any 

boundary surfaces between the two layers are replaced by discrete equivalent total 

charges. Those charges are placed in the air [15, 16]. The equivalent electrodes are line 

charges whose radius is determined in [24].  

The Green’s function for the electric scalar potential of the charges is used. 
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Applying the point-matching method (PMM) for the potential of the perfect electric 

conductor (PEC) electrodes and for the normal component of the electric field at the 

boundary surface between any two dielectric layers, the system of linear equations is 

formed. 

Increasing the number of the EEs the distances between them becomes smaller. In 

order to keep stability of the formed system of equations it is necessary that the distances 

between EEs be larger than their radius. The formed quadratic system of linear equations 

is well-conditioned. The system matrix always has the greatest values at the main 

diagonal.  

After solving the system of equations, according to [15], it is possible to calculate the 

capacitance per unit length of the microstrip line, as well as the characteristic impedance 

and effective relative permittivity. 

This method will be described in detail in the following section for characteristic 

parameters determination of covered microstrip line with the ground planes of finite width 

and finite conductor thickness. 

3. HBEM APPLICATION 

Geometry of the covered microstrip line, with finite width dielectric substrate placed 

between two ground planes of finite width, is shown in Fig. 1.  

 

 

Fig. 1 Problem geometry 

The HBEM, based on discretization of boundary surfaces between any two dielectric 

layers and replacement of those segments with total charges per unit length, is applied.  

It should be mentioned that the free surface charges do not exist on boundary surfaces 

layer 1 - layer 2, so the total surface charges placed between dielectric layers are only 

surface polarization charges. The equivalent HBEM model is shown in Fig. 2.  
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 Indices “d”, “a” and “t” denote the charges per unit length placed in dielectric 

(“d”) and air (“a”) as well as total (“t”) charges per unit length, respectively. 

 Mi (i = 1,2) is the number of EEs on PECs, with line charges q'd im (m = 1,...,Mi), 

placed in the layer 2; 

 Mj ( j = 3,...,5) is the number of EEs on PECs, with line charges q'a jm (m = 1,...,Mj), 

placed in the layer 1; 

 Ni (i = 1,...4) is the number of EEs on boundary surfaces layer 1 – layer 2, with 

line charges q't in, placed in the air (n = 1,...,Ni); 

 ),( dd imim yx , ),( aa imim yx , ),( tt inin yx  are the positions of the EEs. 

 

Fig. 2 HBEM model 

The electric scalar potential of the system from Fig. 2, is given in Eq. (1). 

 

2
2 2dim

0 dim dim

1 1 2

5
2 2a

a a

3 1 1

4
2 2t

t t

1 1 0

ln ( ) ( )
2

ln ( ) ( )
2

ln ( ) ( ) ,
2

i

i

i

M

i m

M

im
im im

i m

N

in
in in

i n

q
x x y y

q
x x y y

q
x x y y

 






 

 

 


     


    


   

 

 

 

 (1) 

where 0  is unknown additive constant, which depends on the chosen referent point for 

the electric scalar potential.  

The procedure for determining the number of unknowns is the following: in order to 

avoid placing an arbitrary number of unknowns on each boundary surface, an initial 

parameter Np is introduced. The number of unknowns is determined as  
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The electric field is obtained using )grad(E .  

A relation between the normal component of the electric field and the total surface 

charges is given with Eq. (2). 
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where in̂  ( xnynynxn ˆˆ,ˆˆ,ˆˆ,ˆˆ 4321  ) are unit normal vectors oriented from the 

layer 2 into layer 1. 

Applying the procedure described in the previous section, the system of linear 

equation is formed using the PMM for the potential of the perfect electric conductor given 

in (1) and the PMM for the normal component of the electric field (2). The unknown free 

charges per unit length on conductors, and total charges per unit length on the boundary 

surfaces between two dielectric layers is determined after solving the system of equations.  

In order to satisfy the necessary condition of electrical neutrality of the whole covered 

microstrip line, equation (3) is added: 
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In that way, a quadratic system of linear equations is formed. The unknown values are 

free charges of PECs, total charges per unit length at boundary surfaces between dielectric 

layers, and unknown additive constant 0.  

The capacitance per unit length of the observed microstrip line is: 
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The characteristic impedance is given in (5) 

c c0 / eff

rZ Z  ,   (5) 
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where r
eff

 = C'/C'0 is the effective relative permittivity of the microstrip line, and  Zc0 is the 

characteristic impedance of the microstrip line placed in the air. Also, with C'0 the capacitance 

per unit length of the microstrip line without dielectrics (free space) is denoted.  

In order to validate and compare the obtained results for the characteristic impedance, 

the software FEMM [20] is used. 

4. NUMERICAL RESULTS 

A computer code based on the procedure described in previous section, is written in 

Mathematica [25]. All calculations were performed on computer with dual core INTEL 

processor 2.8 GHz and 4 GB of RAM. 

The results convergence and the computation time are shown in Table 1. The values of 

the effective relative permittivity, the characteristic impedance are determined for: r1 = 1, 

r2 = 3, w1/d = 1.0, t1/w1 = 0.05, w2/d = 3.0, t2/w2 = 0.1, h/d = 0.5 and s/d = 2.0.  

Table 1 Convergence of the results and computation time 

Np Ntot r
eff

 Zc[] t(s)  

5 66 1.7008 44.665 0.3 

10 98 1.8648 42.234 0.4 

15 134 1.7107 44.228 0.7 

20 166 1.7825 43.544 1.0 

50 376 1.8559 43.328 4.5 

75 550 1.8707 43.343 9.6 

85 618 1.8744 43.346 12.1 

100 722 1.8786 43.349 16.5 

125 894 1.8836 43.350 25.2 

135 964 1.8846 43.356 29.3 

150 1068 1.8866 43.355 36.0 

160 1136 1.8877 43.355 41.3 

170 1242 1.8887 43.356 49.3 

200 1414 1.8908 43.356 64.5 

250 1760 1.8935 43.356 100.5 

300 2106 1.8953 43.356 143.2 

325 2278 1.8963 43.356 171.0 

The “computation time” is the time spent for determining the number of unknowns, 

their positioning, forming a matrix elements, solving the system of equations, the 

characteristic parameters calculation. Most of the calculation time is spent on matrix fill. 

For example, when the totN =1068, the time for determining the number of unknowns and 

their positioning is 0.2 s and for the matrix fill 32 s. For solving the system of linear 

equation is spent 3.3 s and for the capacitance, characteristic impedance and effective 

dielectric permittivity calculation 0.5 s. 

From Table 1 is evident that a good convergence of the results is achieved in a short 

computation time. Sufficient accuracy is obtained for 1242 unknowns, so there is no need 

to increase the number of EEs. 
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Equipotential contours are shown in Fig. 3, for: Np = 150, r1 = 1, r2 = 3, w1/d = 1.0, 

t1/w1 = 0.05, w2/d = 3.0, t2/w2 = 0.1, h/d = 0.5 and s/d = 2.0.  

 

Fig. 3 Equipotential contours 

In order to verify the obtained HBEM values, a comparison of HBEM and FEMM 

results for the effective dielectric permittivity and the characteristic impedance versus h/d 

is given in Table 2.  

The discrepancy of these results is less than 0.6 %. It should be mentioned that the 

classical comparison of results does not make sense here. These methods (HBEM and 

FEM) are applied under different conditions. The number of unknowns in the HBEM 

application was about 1100. On the other hand, the corresponding FEMM model was 

created with a few thousand finite elements. Increasing the number of finite elements, 

accuracy of FEMM increases too, so it is possible to “compare” and verify the HBEM 

results. 

Table 2 Verification of results for effective dielectric permittivity and characteristic 

impedance of microstrip line versus h/d for parameters: Np = 150, r1 = 1, r2 = 3, 

w1/d = 1.0, t1/w1 = 0.05, w2/d = 3.0,  t2/w2 = 0.1 and s/d =2.0 

 

h/d 

HBEM FEM 

r
eff

 Zc[] r
eff

 Zc[] 
0.2 2.3745 27.897 2.3740 28.056 

0.3 2.2007 35.847 2.2089 35.895 

0.4 2.0424 40.946 2.0568 40.883 

0.5 1.8866 43.355 1.9068 43.208 

0.6 1.7286 42.904 1.7530 42.702 

0.7 1.5588 39.030 1.5898 38.812 

0.8 1.3685 30.462 1.4072 30.320 
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Distributions of characteristic impedance versus different parameters are shown in the 

following figures. Fig. 4 shows the influence of ground plane thickness on the 

characteristic impedance of microstrip line.  

The input data are: Np = 150, r1 = 1, r2 = 3, w1/d = 1.0, t1/w1 = 0.05, w2/d = 3.0 and  

s/d = 2.0.  

From this figure it is evident that for corresponding input data, the characteristic 

impedance does not depend on the ground planes thickness. The characteristic impedance 

depends on the conductor’s distance from the planes (parameter h/d). Increasing this 

parameter, the characteristic impedance first increases, and then decreases. The maximum 

value is when the conductor is equidistant from the ground planes. 

 

Fig. 4 Distribution of characteristic impedance versus t2/w2 for different values of parameter h/d 

Distribution of characteristic impedance versus w1/d and s/d is shown in Fig. 5. Also, 

there are given values for characteristic impedance of microstrip line with parallel ground 

planes of infinite width [7]. 

The influence of dielectric substrate width as well as ground planes width is given in 

Fig. 6. Increasing the substrate width, the characteristic impedance decreases. The 

influence of planes width on characteristic impedance exists, but it can be neglected.  

Increasing the substrate height, the characteristic impedance first increases first, then 

decreases as the conductor approaches the upper plane, Fig. 7. The dielectric permittivity 

of substrate  has also the influence on the characteristic impedance value. Increasing the 

substrate permittivity, the characteristic impedance values decrease. 
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Fig. 5 Distribution of characteristic impedance versus s/d for different values  

of parameter w1/d 

 

Fig. 6 Distribution of characteristic impedance versus s/d for different values of 

parameter w2/d 
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Fig. 7 Distribution of characteristic impedance versus h/d for different values of parameter r2 

Distribution of polarization charges per unit length along boundary surface is shown in 

Fig. 8. 

 

Fig. 8 Distribution of polarization charges per unit length along boundary surface 

5. CONCLUSION 

The aim of this paper is to apply a very efficient HBEM, based on a combination of 

EEM and BEM, for determining the characteristic impedance of the covered microstrip 

line with ground planes of finite width. That configuration has not been analyzed so far 

using HBEM.  

The quasi TEM analysis is applied. The main advantage of this method is the 

possibility to solve arbitrarily shaped, multilayered configuration of microstrip lines, with 

finite dimension of ground planes and conductor thickness, without any numerical 

integration. Of course, there are other methods that can analyze this structure, but the 

HBEM is simple and accurate procedure. The convergence of the results is good and the 

computation time is very short. 
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The analysis of this microstrip was performed for different values of microstrip para-

meters. The influence of permittivity of layer 2 on the characteristic impedance is evident. 

Also, the results show that for w2/w1 > 2.5 the influence of finite width of ground planes 

on the characteristic impedance values can be neglected. 
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