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Abstract. Neural model capable to accurately and efficiently predict a propagation 

delay of electromagnetic signal in the ionosphere is proposed in this paper. The model 

performs this prediction for a given geographic location in Europe between 40 (N) 

and 70 (N) latitude and 10 (W) and 30 (E) longitude, according to the following 

parameters: particular day in a year, time during the day and frequency of a signal 

carrier. Architecture of the model consists of four multilayer perceptron (MLP) 

networks with the task to estimate, for the known values of the previously mentioned 

input parameters of the model, the approximate value of free ions concentration in the 

atmosphere along the signal propagation path above the geographic location of the 

receiver. Based on the estimated ions concentration and taking into account the 

considered frequency of the signal carrier, the model calculates the time delay of 

signal propagation in the ionosphere. The developed neural model is applicable on the 

whole territory of Republic of Serbia, for all four weather seasons in the period of low 

solar activity. The results of using the proposed model for the prediction of time delay 

of the GPS (Global Positioning System) signal in the area of city of Niš are provided in 

the paper. 

Key words: neural networks, neural model, ionosphere, total electron content, signal 

delay estimation, global positioning system   

1. INTRODUCTION 

Concentration of ions is much higher in the ionosphere than in any other atmosphere 

layer and, as a result, the parameters of the electromagnetic (EM) signals propagating 

throughout the ionosphere can be significantly affected [1-4]. Signals of modern satellite 

communication systems such as satellite positioning systems, navigation systems, 

broadcasting systems, time service systems and remote sensing systems, propagate 

partially through the ionosphere. Following changes in the propagating signals of these 

systems can appear: the change of trajectory and time delay of the signal, modification of 

the frequency of the signal, variation in the phase of signal carrier and change in the 
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signal polarization [1,3]. These changes may influence the proper operation of the 

aforementioned wireless systems, and the space-time characterization of these changes 

can be of great importance for their design and exploitation.  

Typical examples of how these changes of signal parameters due to its propagation in 

the ionosphere have a negative impact on an operation of satellite systems are: the 

variation of signal propagation delay introduces the error in the determination of the user 

position on Earth using satellite navigation systems (e.g. using GPS), the change in 

frequency due to the additional Doppler effect in the ionosphere interrupts the correct 

operation of Synthetic-Aperture Radar (SAR) system, the Faraday rotation of wave 

propagation and the change of the wave shape of the EM signal interrupts the correct 

work of broadcasting satellites, etc. [2,3]. 

Ions concentration in the ionosphere as well as the distribution of this concentration 

with the altitude (so-called height profile of the ionosphere) contribute strongly to the 

changes of previously mentioned signal characteristics while propagating through the 

ionosphere [1,3]. Therefore, for the description and prediction of previously mentioned 

changes of satellite signals parameters in the ionosphere, it is of very high importance to 

know the distribution of ions concentration along the path of the signal propagation 

through the ionosphere which is represented by the Total Electron Content (TEC) values 

[1,3-8]. TEC is the total number of electrons integrated between two points, along a tube 

of one meter squared cross section which surrounds the path of the signal through the 

ionosphere. The distribution of free ions concentration in the ionosphere, and therefore 

the TEC value, depend on a number of spatial and time parameters, among them the most 

important are: the geographic location of the location above which the height profile of 

the ionosphere is observed, the current weather season, the time during the day and 

intensity of Sun activity within the 11-years solar cycle [1,3-8]. 

A possibility to replace the complex and slow approaches of determining the TEC 

values based on classical vertical ionosphere sounding [1,3] arises with an introduction of 

a system for global positioning. New methods appear capable to determine the current 

value of TEC value in the vertical height profile of the ionosphere above the receiver 

position, by using GPS receiver and receiving signal at two different frequencies. For this 

purpose, the Ionospheric Monitoring and Prediction Center (IMPC) [6] is very important 

today and it uses more than 160 Global Navigation Satellite System (GNSS) receivers for 

real-time TEC measurements, placed all around the world. However, for the design and 

analysis of the operation of satellite communication systems, it is of greater importance to 

know the variation and prediction of TEC values in a longer period of time (so-called 

TEC forecasting) above some specific geographic location rather than obtaining the 

current TEC value above a number of geographic locations that are defined and 

conditioned by the distribution of measurement equipment. Therefore, the development of 

model for the TEC forecasting is in the focus of today’s research. Performing the greater 

number of measurements in a longer period of time for specific locations within some 

monitored geographic area and applying the classification of measured results by using 

the statistical analysis and mathematical interpolation methods, it is possible to develop 

an empirical model of the ionosphere for given geographic area that can perform the 

prediction of TEC values for a specific moment in time and desired location inside the 

considered area [3,4,7,8]. This approach was demonstrated in [7] with the development of 
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TEC forecasting model that uses the Kriging interpolation technique and also in [8] where 

such model was developed by using the spherical harmonic expansion approach. 

Alternative approach for the development of the TEC forecasting model is based on using 

the artificial neural networks (ANNs) to design the model of ionosphere and to predict the TEC 

values. This approach offers a much simpler development of ionosphere model and its easier 

implementation than empirical model based on statistical methods and complex mathematical 

interpolations. Once successfully trained, the neural model avoids, during the exploitation, a 

manipulation with a large number of measurement data organized as tables, graphics or the 

matrix database. Therefore, for the given values of input parameters related to the spatial-time 

location of receiving terminal, the neural model is capable to predict the TEC value in the 

vertical profile of the ionosphere in a very short time interval. In addition to that, thanks to its 

powerful interpolation and generalization capabilities, the neural model provides a better 

accuracy prediction of TEC value in comparison with the classical statistical models in 

geographic areas with a sparse distribution of probe stations in the ionosphere. The mentioned 

characteristics of ANNs for the modelling of the ionosphere and prediction of TEC values were 

demonstrated in [12-18]. In [12] a regional TEC model based on ANN has been designed and 

tested using data sets collected by the Brazilian GPS network covering periods of low and high 

solar activity. In [13] a local specific neural model was proposed for the prediction of TEC 

values above the area in Iran based on MultiLayer Perceptron (MLP) network. Performances of 

that model were compared with the polynomial fitting and Kriging interpolation. Local specific 

wavelet neural model (WNN) for TEC prediction over Azerbaijan was given in [14]. In [15] a 

neural model for TEC value prediction in the vertical profile of ionosphere above the city Parit 

Raja, Johor in Malaysia was presented for low to medium solar activity period. In [16] and [17] 

regional neural models based on MLP networks were suggested to predict the TEC values and 

to perform the calculation of the time delay [16] and the carrier phase advance [17] of the EM 

signal in the ionosphere above the Mediterranean area. Regional neural model for the 

prediction of TEC values above the China, realized by using genetic algorithm-based neural 

network (GA-NN) and measured TEC values from 43 permanent GPS stations in China was 

shown in [18]. 

This paper represents the continuation of the research conducted in [16,17]. By 

modifying the approach in the design of neural model and with further development of the 

neural model architecture from [16,17] and use of the new set of samples in the neural 

model training that covers the territory of the Republic of Serbia, the new neural model is 

here developed and proposed. It performs the prediction of TEC value and calculation of 

time delay of EM signal propagating in the ionosphere for the whole territory of the 

Republic of Serbia and for the all four weather seasons in the period of low solar activity. 

Under the assumption of the low solar activity it is considered the activity of Sun with 

average monthly values below 80 SRFU (10.7 cm solar radio flux (F10.7) units that 

roughly lasts around 4 years and it is repeating every 11 years in average [5]. 

2. NEURAL MODEL OF THE IONOSPHERIC TIME DELAY OF THE EM SIGNAL 

For the development of the proposed neural model we use data of measured TEC 

values provided in [4]. Most of measured results from [4] were obtained by probe stations 

in the ionosphere in order to provide the map of TEC values distribution above the areas 
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that cover the significant part of Europe and Mediterranean. Regarding the area of 

Europe, the measurement of current TEC values was performed during the period of 27 

months. Authors of this paper were directed to use the measured results from [4] due to 

the following reasons. During the neural model development, the new period of low solar 

activity has not yet started and therefore the acquisition of data by IMPC server within a 

period of minimum one year would be possible only in the coming period. Alternative 

was to use a database of measured results for low solar activity periods older than 11 

years. The only database that covers solar minima with a duration longer than 1 year, 

whose measured results can be considered valid for the territory of the Republic of Serbia 

and it was available to the authors of this paper during the model development is the 

database given in [4]. Measured values were classified by geographic regions and 

measured F10.7 solar flux and averaged for all four weather seasons. During the 

measurements it was noticed that TEC value depended on the geographic location for 

which the height profile of atmosphere was monitored, current weather season and the 

time interval during the day as well as intensity of solar flux directly connected with the 

actual period of solar activity. In addition, it was observed that for the locations lying on 

the same latitude and for the measurements taken on same day and exact time during that 

day, the approximately same values of TEC were measured. Therefore, the change of 

TEC values with longitude could be incorporated into a variation of TEC with a local 

time. On the other side, it was shown in [3] that the time delay of signal depended on TEC 

values along the propagation path throughout ionosphere and frequency of the carrier. 

Taking this into account, the proposed neural model of the ionospheric time delay of the 

EM signal has on its input the following variables: date in short format (dd-mm) defining the 

day and month and based on which the appropriate season is selected, latitude of receiver 

station (la), time during 24 hours of local time (h) and frequency of the carrier (f). Neural 

model is developed for the period of low solar activity where fluctuation of solar flux is not 

significant, therefore the dependence of TEC value with a variation of solar flux is not 

considered here. For the development of neural Ionospheric Time Delay (ITD) model, MLP 

network is used so the shortened name of the model is MLP_ITD. 

 

Fig. 1 Architecture of the ionospheric time delay neural model (MLP_ITD model) 
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Architecture of MLP_ITD model is shown in Fig. 1. The model consists of four 

MLP_TEC
(s)

 modules (where s=1,2,3,4; each module corresponds to one season during 

the year), season selection and smoothing (SSS) module and time delay calculation 

(TDC) module. 

Each of MLP_TEC
(s)

 modules has a task to predict the TEC value in the vertical 

profile of ionosphere above the receiver for the specific season, the latitude of the 

receiver (la) and moment in time (h). Therefore, the transfer function of s-th module is of 

the form TEC
(s)

=fMLP_TEC(s)(la,h). SSS module based on the date value selects the 

corresponding outputs of the MLP_TEC
(s)

 networks, uses these values to form the final 

TEC value and forward it to the module that is responsible to find the time delay in the 

ionosphere (TDC module). TDC module, for chosen TEC value and frequency of the 

carrier, calculates the time delay as: 

 TEC
fc

fTECft TDC 
2

3.40
),(  (1) 

where the value of TEC is expressed in units 10
16

 electron/m
2
, c is a speed of light in 

m/sec and f is a frequency of the signal is Hz. In line with this, the processing function of 

TEC_ITD model can be expressed as: 

 )),,((),,,( )(__ fhlfffhlsft asTECMLPTDCaITDMLP   (2) 

2.1. Architecture of the MLP_TEC
(s)

 module 

For the realization of each MLP_TEC
(s)

 module, MLP network with one hidden layer 

is used (Fig. 2). The input layer of neurons is a buffer layer for a vector of input variables 

x = [la h], so it has only two neurons: i1 and i2. The hidden layer has a variable number of 

neurons n1, n2,...nH, where H is a number of hidden neurons. The output layer has only 

one neuron o1 which on its output gives the value of TEC. Outputs of each input neuron 

are forwarded to the input of each neuron in the hidden layer multiplied with a 

corresponding connection weight factor. Also, the outputs of all hidden neurons are sent 

to the input of neuron in the output layer, again multiplied with corresponding connection 

weight factor. 

 

Fig. 2 Architecture of the MLP_TEC
(s)

 module 
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For all neurons in the hidden layer, the hyperbolic tangent sigmoid transfer function is 

chosen as the activation function of neurons: 
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so that the processing function of MLP network and therefore of MLP_TEC
(s)

 module is 

of the form:  
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where input weight matrix is w(1)
(s)

=[wij(1)
(s)

]H2 , layer weight matrix is w(2)
(s)

=[wij(2)
(s)

]1 H 

input bias vector is b(1)
(s)

=[bi(1)
(s)

]H1 and output bias vector b(2)
(s)

=[bi(2)
(s)

]11. Element 

wij(1)
(s)

 represents the weight of the connection between j-th neuron of input layer and i-th 

hidden neuron, wij(2)
(s)

 represents the weight of the connection between j-th neuron of 

hidden layer and i-th output neuron, bi(1)
(s)

 is bias of the i-th hidden neuron and bi(2)
(s)

 is 

bias of the i-th output neuron. The general notation for the architecture of MLP network, 

which has one hidden layer with H neurons in total, is MLP-H, and for the network 

chosen to select the value of TEC for s-th season and incorporated into the MLP_TEC
(s)

 

module is MLP_TEC
(s)

: MLP-H. 

2.2. Architecture of the SSS module 

SSS module has a task to identify the current season based on particular day in the 

month (expressed as dd-mm input), choose appropriate outputs from the MLP_TEC
(s)

 

networks and form final TEC value (Fig. 1) At the same time this module provides 

smooth transitions between neighbouring seasons and avoids the rapid changes of TEC 

values through switching of MLP_TEC
(s)

 networks (Fig. 3). Transition area between two 

neighbouring seasons contains 30 days (the last 15 days of the previous season and the 

first 15 days of the next season). In this transition area a linear smoothing scheme is 

applied by using the algorithm shown in Fig. 3. 

3. TRAINING AND TESTING OF THE MLP_ITD MODEL  

For the training and testing of MLP_ITD model, we used data from [4] which are 

measured TEC values in the ionosphere above the part of Europe, 40(N)-70(N) latitude, 

10(W)-30(E) longitude, so that they basically include the territory of the Republic of 

Serbia. Training and testing of MLP_ITD module represent separate and independent 

training of MLP network for each MLP_TEC
(s)

 module. In order to generate the sets for 

MLP networks training and testing, the measured results of TEC values in the period of 

one year with a low solar activity, with an average solar activity of 75 SRFU, were 

chosen. These results are shown on four plots with TEC iso-contours (Fig 4a-4.d) [4]. 

Each plot shows the dependence of TEC value with the location above which the height 

profile of ionosphere is observed and with local time for an appropriate season (Fig 4.a 

for winter, Fig 4.b for spring, Fig 4.c for summer and Fig 4.d for autumn). For each 

season, the training and test sets were generated by sampling from the plot corresponding 

to that season. For s-th season, the set for the training of neural network is a set of triplets 
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Fig. 3 Season selection algorithm with smoothing scheme at the boundaries of the 

MLP_TEC
(s)

 networks used in the SSS (Season Selection and Smoothing) module 

with a form Ls={(lai,hi,TEC(ref)i
(s)

) | i=1,...Ls}, where TEC(ref)i
(s)

 represents the target value 

of neural network output for i-th combination of input variables lai,hi while Ls is a total 

number of training samples of network for s-th season. Similarly, for s-the season the 

training set of the neural network is a set of triplets of the form Ts={(la
t
i,h

t
i,TEC

t
(ref)i

(s)
) | 

i=1,...Ts}, where index t in superscript means that these values are for testing and not for 

training, while Ts is a number of test samples for s-th season. Each triplet for training and 

testing represents the coordinates of the point on iso-contour plot. Training set was 
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generated by sampling these points from the TEC iso-contour plots for the values of 

latitude la = 40,45,50,55,60,65,70, while the testing set was obtained by sampling 
 

Fig. 4 Contour plots of measured TEC data vs. hours and latitude for (a) winter, (b) 

spring, (c) summer and (d) autumn (TEC units are in10
16

 electron/m
2
). 

Measurements were performed in a period of low solar activity where the average 

solar activity was 75 SRFU [4]. 

these points from the TEC iso-contours for the values of latitude la = 43.4, 52.5, 62.5. As a 

result, the training and testing sets with the following distribution of total number of samples by 

seasons: L1= 109, L2= 117, L3= 132, L4= 112 and T1= 46, T2= 52, T3= 52 and T4= 45 were 

generated. 

The main goal of MLP network training for each MLP_TEC
(s)

 module is to adjust the 

values of connection weight matrices w(1)
(s)

 and w(2)
(s)

, and bias matrices b(1)
(s)

 and b(2)
(s)

 

so that the mean square error of network output TECi
(s)

 with respect to the target value 

TEC(ref)i
(s)

, observed on the whole training set, is equal or lower from the specified 

maximum training error Et: 

(a) (b) 

(c) (d) 
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The model was realized in the MATLAB environment and the Levenberg-Marquartd 

training method was used with a given targeted maximum training error Et =10
-4

.  

In order to quantify the success of the training of each MLP_TEC
(s)

 network and its 

generalization abilities, the testing of training networks was conducted on test sets and the 

following criteria were considered: the worst case error (WCE) value 
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where TEC
t
i
(s)

 is an output of MLP_TEC
(s)

 network on i-th sample, the average test error 

(ATE) value: 
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and the Pearson product-moment correlation value (r
PPM

) 
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where approapriate average values of referent TEC values of test set and average value of 

TEC values representing the output of MLP_TEC
(s)

 network on test set are defined as:  

 
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With the goal to obtain MLP_TEC
(1)

 module with an accuracy as higher as possible 

for each season, the training and testing of different MLP-H networks (2≤H≤20) were 

conducted. 

3.1. Training and testing results of the MLP_TEC
(1)

 networks (case s=1, winter) 

Testing results for six MLP networks, trained and tested for the case s=1 (winter), 

with the highest r
PPM

 value are shown in Table 1. 

MLP-8 network is chosen to be implemented into the MLP_TEC
(1)

 module. Scattering 

diagram for the MLP_TEC
(1)

:MLP-8 network on test set is shown in Fig. 5, where a good 

agreement between the TEC values, provided by MLP network, and the referent values 
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can be observed. The weight and biases values of the MLP TEC
(1)

:MLP-8 network, 

obtained after training, are given in Table 2. 

Table 1 Testing results for six 

MLP networks with the 

highest r
PPM

 value 

(MLP_TEC
(1)

, winter) 

MLP net 
WCE 

[%] 

ACE 

[%] 
rPPM 

MLP-8 8.36 2.44 0.9948 

MLP-14 6.38 2.78 0.9948 

MLP-6 7.70 2.65 0.9935 

MLP-9 8.34 2.59 0.9933 

MLP-13 7.81 3.06 0.9929 

MLP-5 9.33 3.01 0.9917 
 

 

Fig. 5 Scattering diagram for MLP_TEC
(1)

:MLP-8 

network (winter, test set) 
 

Table 2 Weight and bias values of the MLP_TEC
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3.2. Training and testing results of the MLP_TEC
(2)

 networks (case s=2, spring) 

Testing results for six MLP networks, trained and tested for the case s=2 (spring), with 

the highest r
PPM

 value are shown in Table 3. MLP-9 network is chosen to be implemented 

into the MLP_TEC
(2)

 module.  

Scattering diagram for the MLP_TEC
(2)

:MLP-9 network on test set is shown in  

Fig. 6. Again, a good agreement between the TEC values, provided by MLP network, and 

the referent values can be observed The weight and biases values of the MLP 

TEC
(2)

:MLP-9 network, obtained after training, are given in Table 4. 
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Table 3 Testing results for six 

MLP networks with the 

highest r
PPM

 value 

(MLP_TEC
(2)

, spring) 

MLP net 
WCE 

[%] 

ACE 

[%] 
rPPM 

MLP-9 7.29 2.59 0.9940 

MLP-7 7.93 2.58 0.9937 

MLP-15 8.64 2.67 0.9937 

MLP-13 8.32 2.38 0.9934 

MLP-11 8.19 2.51 0.9933 

MLP-4 7.70 2.71 0.9931 
 

 

Fig. 6 Scattering diagram for MLP_TEC
(2)

:MLP-9 

network (spring, test set) 

Table 4 Weight and bias values of the MLP_TEC
(2)

:MLP-9 network 

Input layer - Hidden layer connection Hidden layer – Output layer connection 
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3.3. Training and testing results of the MLP_TEC
(3)

 networks (case s=3, summer) 

As in previous two cases, in the case s=3 (summer), after the training, the testing of 

network on the test set corresponding to this season is performed. The testing results for 

six MLP networks with the highest r
PPM

 value, are given in Table 5 and, as a result, the 

MLP-12 network is selected to be used in the MLP_TEC
(3)

 module. Scattering diagram 

for the MLP_TEC
(3)

:MLP-13 network on test set is shown in Fig. 7. 

TEC values provided by MLP network are very close to the referent values, as seen 

from Fig. 7. Table 6 contains the weight and biases values of the MLP_TEC
(3)

:MLP-13 

network. 



298 Z. STANKOVIC, N. DONCOV 

Table 5 Testing results for six 

MLP networks with the 

highest r
PPM

 value 

(MLP_TEC
(3)

, summer) 

MLP net 
WCE 

[%] 

ACE 

[%] 
rPPM 

MLP-13 8.90 3.12 0.9868 

MLP-12 11.66 3.68 0.9835 

MLP-9 19.62 3.49 0.9833 

MLP-7 11.23 3.71 0.9832 

MLP-8 11.35 4.08 0.9794 

MLP-6 13.48 3.87 0.9781 
 

 

Fig. 7 Scattering diagram for MLP_TEC
(3)

:MLP-13 

network (summer, test set) 

Table 6 Weight and bias values of the MLP_TEC
(3)

:MLP-13 network 

Input layer - Hidden layer connection Hidden layer – Output layer connection 
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3.4. Training and testing results of the MLP_TEC
(4)

 networks (case s=4, autumn) 

The same testing and training procedures are conducted for the case s=4 (autumn). 

The testing results for six MLP networks with the highest r
PPM

 value, trained for this 

season, are presented in Table 7. For the implementation into the MLP_TEC
(4)

 module, 

MLP-8 network is chosen. Scattering diagram for the MLP_TEC
(4)

:MLP-8 network on 

test set (Fig. 8) shows a good agreement between the TEC values provided by MLP 
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network and the referent values. Table 8 contains the weight and biases values of the 

MLP_TEC
(4)

:MLP-8 network. 

 

Table 7 Testing results for six 

MLP networks with the 

highest r
ppm

 value 

(MLP_TEC
(4)

, autumn) 

MLP net 
WCE 

[%] 

ACE 

[%] 
rPPM 

MLP-8 8.25 2.42 0.9945 

MLP-10 15.95 2.62 0.9923 

MLP-11 12.11 2.66 0.9920 

MLP-9 11.52 2.73 0.9915 

MLP-18 9.11 3.07 0.9905 

MLP-5 8.79 3.20 0.9905 
 

 

Fig. 8 Scattering diagram for MLP_TEC
(4)

:MLP-8 

network (autumn, test set) 
 

Table 8 Weight and bias values of the MLP_TEC
(4)

:MLP-8  network 

Input layer - Hidden layer connection Hidden layer – Output layer connection 
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4. SIMULATION RESULTS OF THE MLP_ITD MODEL IN THE AREA OF THE CITY OF NIŠ 

MATLAB environment was used to realize, train and test MLP networks intended for 

the creation of the appropriate MLP_TEC
(s)

 module. After that, in the same environment, 

we created MLP_TEC
(s)

 modules together with the SSS module and the TDC module 

which, based on output of selected MLP_TEC
(s)

 module, performs the time delay of the 

signal. As a final step the integration of all functional parts into the MLP_ITD model was 

done. This model is able to perform 24-hours prediction of the time delay of EM signal in 

the ionosphere for the period of low solar activity on the part of Europe that also covers 

the territory of the Republic of Serbia.  
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Proposed MLP_ITD model is used for the prediction of GPS signal delay above the 

area of the City of Niš caused by impact on the ionosphere on signal trajectory for the 

period of low solar activity. Signals on two frequencies belonging to the L-band and used 

by GPS service, f1= 1575.42 MHz (L1) and f2 = 1227.60 MHz (L2), are observed. 

Comparison of the results for the delay, obtained by prediction from the MLP_ITD 

model, and the referent values, obtained based on measured TEC values from [4], is 

shown in Figs. 9.a, Fig. 9.b, Fig. 9.c and Fig. 9.d for the cases when a day during which 

prediction is performed belongs to the winter, spring, summer and autumn (March 20, 

May 20, July 20 and November 20 respectively). A good agreement between results 

obtained by MLP_ITD model and referent values can be observed.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 9 Prediction of GPS signal delay obtained by using the MLP_ITD model on the 

territory of the city of Niš (latitude 43.3 N) during 24 h period and comparison of 

the estimated values with the referent values obtained by measurement for one day 

in (a) winter: March 20, (b) spring: May 20, (c) summer: July 20 and (d) autumn: 

November 20. Prediction is valid for the period of low solar activity. 
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4. CONCLUSION 

Due to high concentration of ions, the ionosphere represents a specific EM medium 

that can change the signal characteristics of satellite communication systems that 

propagate through this atmospheric layer. One of the most significant changes, which 

affects the operation of these systems is a time delay of signal depending on current 

concentrations of free electrons (TEC) along the propagation path through the ionosphere. 

The current TEC value is a function of a number of parameters, among them the key 

parameters are: geographic location, local time, weather season and index of solar 

activity. This function is very complex and most researches are dedicated to the modelling 

of this dependence and prediction of TEC values. Due to parallel data processing and fast 

input-output propagation of signal, neural network modelling of TEC forecasting is in 

focus of today research. Neural models for TEC forecasting in the literature are of local 

specific nature and they can not be applied directly on the territory of the Republic of 

Serbia. In this paper, the neural model, based on MLP network, is proposed for an 

efficient prediction of TEC value and time delay of satellite signal in the ionosphere, 

applicable on the whole territory of the Republic of Serbia in the period of low solar 

activity. The results of using this model for the prediction of satellite signal delay in the 

area of the city of Niš, during 24 hours and for all four weather seasons, are in good 

agreement with the referent values obtained from measurements and therefore justify the 

researches regarding the application of MLP network for TEC forecasting. 

Future researches will be directed towards further development and enhancement of 

architecture of MLP_ITD model aiming to achieve even better accuracy in prediction of 

TEC value and delay of satellite signal in the periods of low solar activity. Improvement 

of neural model accuracy will be conducted through: 

 finer incorporation of TEC values variation within season depending of the day in 

year (achievable by including the day of year as additional input for the MLP_TEC 

networks). 

 finer incorporation of longitudinal variation of TEC values that will take into 

account, besides local time effect as largest contributor to longitudinal variations, 

an interactions/coupling activities between the lower-middle-upper atmosphere 

layers, as well as the fact that the geomagnetic latitude lines are not parallel to the 

geographic latitude lines. 

In order to collect data needed for the development of such enhanced TEC neural 

model, the acquisition of TEC values will be performed during 2019 by using the IMPC 

free service allowing to read the results of GNSS monitoring on a daily basis. This time 

interval is chosen as 2019 will be the first year that completely belongs to the period of 

low solar activity. 
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