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Abstract. A new algorithm dedicated to electrocardiograph telemetry devices is proposed 

which evaluates the quality of electrocardiogram signals acquired in unsupervised 

environments, raises the certainty of the produced diagnoses, and accelerates protective 

actions when necessary. The proposed algorithm is utilized in conditions when 

electrocardiogram signals are highly susceptible to artefacts. The algorithm is based on 

novel QRS detection method and is used in microprocessor-based telemetry devices with 

reduced computing power. The algorithm has been tuned on publicly available databases. 

The results of its exploitation are also presented. 
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1. INTRODUCTION 

The quality of electrocardiogram (ECG) data influences the diagnosis results [1, 2]. 

The same stands for data acquired by ECG telemetry devices [3]. The potential limitation 

of using telemetry devices is measurement artefact immunity and their ability to measure 

discernible QRS and P waveforms in the presence of noise [4]. The very notion that the 

patient executes measurement without supervision often has a detrimental impact on the 

quality of the acquired data, even though the patient will receive training in how to use 

the device [4].  

The ECG telemetry device itself should be able to distinguish ECG signals from 

artefacts. Moreover, the device has to work autonomously and transmit data to doctors 

when a cardiac disorder happens. One approach fulfilling these requirements is proposed 

in this paper. It is our intention to emphasize a novel method for ECG signal quality 

assessment which is applied in the design of an ECG telemetry device. It prevents the 

transmission of ECG data with insufficient signal quality and also enhances detection of 

various cardiac disorders. The algorithm is tuned on publicly available ECG recording 

database [5] and validated on clinical ECG data.  
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2. RELATED WORK 

The ECG signals acquired by ECG devices are not immune to noise contamination. 
Techniques used for noise elimination are numerous [6], [7], [8]. The technique proposed 
in [6] is considered to be inappropriate for implementation in telemetry devices, because 
it requires multiple ECG leads for noise discrimination. Specifically, the structure of 
commercial telemetry devices is simplified. In order to be wearable, many devices measure 
only single ECG lead. The other technique proposed in [7] finds the locations of QRS 
complex and other ECG signal waves to perform an adaptive signal filtering. The technique 
proposed in [8] uses a light-emitting-diode-based sensor to measure the amount of skin 
stretching, and based on sensor outputs, performs the filtering process.  

When ECG signals are contaminated by large artefacts filtering methods are not 

sufficiently successful in recovering the underlying ECG signals. For example, the body 

movement related artefacts are observed in the frequency range of the electrocardiogram, 

and often have similar shapes as QRS complexes. Therefore, the signal and noise 

components cannot be easily discerned [9]. The signal to noise ratio cannot be either 

calculated for ECG signals because the signal components interpreted as ECG signal in 

one application may be interpreted as noise in the other applications [9]. Additionally, as 

a consequence of aging, the amplitude of R wave can be decreased down to noise levels. 

Instead of suppressing artefacts it is preferable to quantify the quality of an ECG signal. 

The assessment of signal quality is not completely solved, especially when focusing on 

telemetry devices with limited processing power [9]. Some approaches use additional 

devices to identify the sections of ECG signal having artefacts. For example, the work in 

[10] proposes an accelerometer sensor for movement detection. The other methods rely 

exclusively on ECG recordings. The paper [11] presents a method which reduces the 

number of false alarms in coronary care units. 

The method for noise assessment presented in [12] requires two ECG leads. First, the 

algorithm calculates the locations of the QRS complexes in signal, and after using neural 

networks, determines whether the signal is a QRS complex or an artefact. In the algorithm 

described in [13], the researchers estimate the level of deviation of the suspected QRS 

complex compared to averaged QRS complex.  

Recently, several algorithms dedicated to smart phone platforms are proposed. Such 

method [14] is based on [13] and focuses on the assessment of ECG signal quality when 

the signal is measured in the unsupervised environments. After applying a filter to 

remove gross movement artefact, the signal quality is estimated in the remaining ECG 

signal [14]. 

The QRS complex detection is a basic step in almost every ECG analysis procedure. 

The performance of subsequent ECG analyses strongly depends on the robustness of the 

QRS detection [15]. Therefore, ECG quality assessment based on QRS detection seems 

to be a practical approach that is suitable for most subsequent ECG analysis algorithms 

[9] and therefore has been adopted also here. 
The QRS detectors have been thoroughly studied and many methods have been 

proposed. The QRS detection method is first described by Nygards and Sornmo [16] and 
is subsequently updated by Pan and Tompkins method [17]. An open-source code [18] 
has been taken as a starting point for a new method for identification of QRS waves, 
proposed in this paper. This algorithm is a modification of Pan and Tompkins method 
[17]; uses adaptive thresholds and has a scan-back procedure which looks back in time if 
no beats have been detected during a certain period.  
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3. THE OPERATION OF TELEMETRY DEVICES  

The telemetry devices have emerged as a technology with a great promise for identifying 

cardiac disorders that are not easily discernible by other ECG diagnostic devices. Compared to 

other ECG recorders, the ECG telemetry devices have the following advantages in: 

 using wireless communications for instantaneous reporting of cardiac disorders  

 having longer recording periods, long enough to capture the arrhythmic episodes 

and pauses in heart rhythm 

 having very small size in order to reduce the obtrusiveness of the recording 

process [4] 

A novel algorithm for ECG signal quality assessment has been implemented in an ECG 

telemetry device. The device uses five conductive electrodes (Fig. 1). The arm electrodes (R 

and L) are placed on spots near right and left shoulders (Fig. 1). The leg electrodes (F and 

N) are placed on abdomen bottom side in the legs direction. One additional precordial 

electrode [19] is placed at one of anatomically referenced landmarks on the anterior chest 

(V1–V6) given in Fig. 1. The precordial landmark V5 is mostly utilized since it provides 

best sensitivity for myocardial ischemia disease detection [1]. The following standard leads 

are acquired: I, II, III, aVR, aVL, aVF and one precordial - the lead V5. 

 

Fig. 1 The data processing chain in an ECG telemetry device 

The processing blocks of an ECG telemetry device are depicted in Fig. 1. The device 

receives analog ECG signals from electrodes through conductive patient cables. A brief 

description of similar amplifier circuits operating in electrocardiograph dedicated to stress 

testing is given in [20], [21]. The analog signals are converted into digital at data rate of 500 

samples per second, and then processed by digital filters. After the filtering operation has 

been completed, the RR (R wave to R wave) intervals representing the time periods 

between two consecutive R waves are calculated for the detection of following cardiac 

disorders: 

 tachycardia (disorders having high heart-rate rhythm) [22],  

 bradycardia (low heart-rate rhythm heart condition),  

 pauses (abnormal delays between QRS waves),  

 arrhythmia (irregular changes in heart-rate rhythm) [23].  

The algorithm for ECG signal noise level estimation which is implemented within a 

telemetry device determines if an ECG recording has acceptable quality for data transmission. 

The noise level estimation algorithm, in conjunction with QRS complex detection method, 

will be described in following sections in detail.  
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4. THE ALGORITHM FOR PEAK DETECTION AND NOISE LEVEL ESTIMATION 

4.1. QRS detection algorithm 

The digital samples of ECG signal are processed at sampling frequency of 250 

samples per second. The operations dedicated to heart beat detection and noise level 

estimation can be divided into following groups:  

 ECG signal pre-processing,  

 peak detection,  

 noise level estimation,  

 QRS waves detection  

The brief description of ECG pre-processing block operations is given in Figure 2. 

The pre-processing block starts with band-pass filtering. Two Finite Impulse Response 

(FIR) filters are used: 

 the low-pass with cut-off frequency of 15Hz  

 high-pass with cut-off frequency 1Hz. 

 

 

Fig. 2 QRS wave detection operations 

The absolute value of the signal's first derivative is calculated and the outcome signal is 

processed by moving the averaging filter. The average value of the input signal is found over a 

96ms timing window. The duration of 96 ms is chosen after a thorough analysis was 

performed using ECG data from database [5]. We initially used the longer interval of 150 ms, 

which is used in [17]. Then, we had to change the value to 96ms because we found that 96ms 

timing window enables better detection of QRS complexes when ventricular tachycardia is 

present in an ECG signal. 

As a result of pre-processing operations each QRS complex produces a knoll at the 

output of moving the average block. The output is denoted with x[n] in Figure 2. 

The Peak detection and Noise level estimation blocks (Figure 2.) are novel and will be 

described in the following sections in detail.  

The block denoted as QRS detection rules in Fig. 2 is taken from [18]. The block 

classifies the peaks found by Peak detection block (Fig. 2.) as QRS complexes or noise, 

using peak height, location (relative to last found QRS complex) and adaptive thresholds. If 

peak is greater than threshold, it is considered as R wave, otherwise it is called noise. 

Besides, all peaks that precede or follow larger peaks by less than time period of 200ms are 

discarded. The outcome of Detection Rules block can be used further for beat classification 

such as detection of arrhythmias.  
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4.2. Peak detection algorithm 

The output signal of pre-processing block, the digital signal x[n], enters the next - 

Peak detection block, at data rate of 250 samples per second. The examples of ECG 

signal ecg[n] and corresponding x[n] are depicted on the top and the middle panels of 

Figure 3 respectively. As one can see from Fig. 3, the QRS complexes in ecg[n] produce 

knolls in signal x[n]. Also, the knolls produced by P and T waves are considerably 

smaller than those created by R waves, and therefore can be successfully distinguished. 

The peak detection algorithm generates at its output two different signals: 

 Peak[n] which is used by QRS detection rules block for the identification of R 

waves. Peak[n] is presented on the top panel of Fig.3.  

 Pulse[n] which is used by Noise level estimation block for artefact detection and 

is presented on the middle panel of Fig. 3. 

 

Fig. 3 Set of signals illustrating the peak detection and noise estimation algorithm. The 

top panel presents signals ecg[n] and Peak[n], the middle panel x[n], oldMin[n], 

oldMax[n], ave[n] and Pulse[n], the bottom panel signal state[n]. 

The algorithm for Peak detection uses adaptive thresholds which are adjusted depending 

on the local minimum and maximum values of signal x[n]. The local minimum and 

maximum values are named with oldMin and oldMax respectively. The variables oldMin, 

oldMax are presented in Fig. 3 on the middle panel. The oldMax is the most distinct value 

within the signal x[n], calculated during the last RR interval (Fig. 3). The oldMin represents 

the minimum value of x[n] found in the same interval. The algorithm calculates additional 

variable ave (given in Fig. 3 on middle panel), which represents the approximation of the 

mean value of signal x[n]. 
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The operation of the peak detection algorithm can be described by a Finite state 

machine (FSM) which is comprised of three states denoted as S0, S1 and S2. The state 

transition diagram of FSM is illustrated in Figure 4. In the example of an ECG signal 

depicted in the Figure 3, the FSM states are included on the bottom panel by signal State. 

 

 

Fig. 4 The Finite state machine states for Peak detection 

A QRS complex is recognized (the pulse is generated on the signal Peak[n]) when a 
state transitions S1->S2 occurs (Fig. 4). During the isoelectric time interval of an ECG 
signal [1] which is positioned before the QRS complex, the FSM resides in state S0. The 
state is changed from S0 to S1 (Fig. 4) when the rising edge of signal x[n] is detected. 
This transition is possible when the condition, given by Eq. (1), is met. 

 ((( [ ] [ 4]) ) (( [ 4] [ 8]) )) ( [ ] )x n x n x n x n x n D            (1) 

The condition given by Eq. (1) consists of two parts. The first part calculates the slope 
of the rising edge of the signal x[n] and checks if it is greater than constant value δ. The δ 
is determined as the slope of signal x[n], produced by an input ECG signal ecg[n] having 
the lowest slew rate. The lowest slew rate for an ECG is estimated by dividing the minimum 
R peak amplitude within the range of 0.5mV to 5mV and dividing it by maximum rise time of 
the QR interval within the range of 17.5 ms to 52.5 ms. [24] This gives a minimum slew rate 
of 0.5mV/52.5ms=0.0095V/s. 

The second part of Eq. (1) checks whether the amplitude of x[n] exceeds the threshold 

D. Note that R peaks should be greater than 0.15mV for a QRS detection. The threshold 

value D is defined as a function of variables ave, oldMin, oldMax and time interval 

measured after the QRS complex has been detected as described in Table 1.  

Motivated by physiological standpoint, the time interval after the QRS complex has 

been detected is referred to as refractory period. The refractory period is greater than 280ms 

[1] and consists of absolute and relative refractory periods. The interval measured from the 

beginning of the QRS complex to the apex of the T wave is referred to as the absolute 

refractory period. The last half of the T wave is referred to as the relative refractory period.  

The absolute refractory interval is started when FSM state is changed from S2 to S0 

and it lasts for 200ms. During this period, the D value is set to the maximum value. The 

absolute refractory period is followed by a relative refractory period lasting at least for 80 

ms, within which the next QRS complex is more possible to happen. The D value, used 

during the relative refractory period, is determined empirically after a thorough analysis 

was performed on ECG data from database [5] and depends on the value of variable ave. 

As relative refractory interval elapses, the D value is decreased according to the equations 

described in Table 1. Because the algorithm is computationally optimized to be executed 

by low-power microcontrollers the multiplicand constants from Table 1 are chosen to 

speed-up the multiplication operations which can be replaced by combination of more 

time efficient shift, add and subtract operations. 
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Table 1 The threshold D value, used in relation (1) for the transition from state S0 to S1  

Timer value [ms] Threshold D 

[0-200) oldMax*0.75 

[200, 240) ave*1.25+oldMin 

[240, 280) ave+oldMin 

[280, +∞) ave*0.875+oldMin 

 

The state S1 of FSM covers the rising edge and the peak of the knoll produced by 

QRS complex (Fig. 3). When the amplitude of x[n] becomes smaller than the threshold 

given by relation (2), the FSM changes its state from S1 to S2 (Fig. 4). 

 [ ] 0.75(max )x n oldMin oldMin    (2) 

The variable Max found in Eq. (2) represents the local maximum of x[n], calculated 

during the state S1. Also, at the moment of transition from S1 to S2, the variable oldMax 

is updated with the Max (Fig. 3). The pulse on signal Peak[n] is generated when the FSM 

state is changed from S1 into S2 (Fig. 3). The Peak[n] is taken later as an input by 

Detection rules block which classifies detected peaks as either QRS waves or noise. 

During the state S2 the falling edge of x[n]occurs. The state is changed from S2 to S0 

if the relation (3) is met: 

 ( [ ] 0.25( )) ( [ ] 2 )x n oldMin oldMax oldMin x n oldMin       (3) 

The transition from S2 to S1 (Fig. 4) is possible and it is caused by artefacts in the 

ECG signal. The state S1 changes into S2 when relation (4) is fulfilled: 

 ( [ ] 0.25( )) ( [ ] 10)x n Min oldMax oldMin x n Min       (4) 

The variable Min found in Eq. (4) stores the local minimum of signal x[n], calculated 

during the state S2. The ave is changed when the state is changed from S2 to S0 to track 

the signal x[n] maximum, obtained by signal oldMax: 

 125.0875.0  oldMaxaveave  (5) 

When FSM is in S0, the value of ave is approximately decreased by half after every 

time period equal to 2 seconds. This is achieved by reducing the signal ave after every 

interval of 120 ms (30 ECG signal samples): 

 
5(1 2 ) 0.96875ave ave ave      (6) 

The multiplicand constant from equation (6) is chosen to speed-up the multiplication 

operations which can be replaced by shift, add and subtract operations. When FSM is 

changed from S2 to S0, the oldMin is initialized with x[n]; at the transition from S2 to S1 

the variables oldMin and Max are initialized with content of variables Min and x[n] 

respectively (Fig. 3).   
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4.3. Noise level estimation algorithm 

The part of the algorithm dedicated to noise estimation is described as follows. The 

signal Pulse[n] which is used for ECG signal artefact detection is updated at FSM's state 

transitions and is depicted on the middle panel of Figure 3. The state transitions during 

which the non-zero values on Pulse [n] are generated and their amplitudes are defined in 

the Table 2. The Pulse[n] is set to the value of one of variables min, oldMin or ave. 

Table 2 The FSM state transitions at which the pulses  

are produced on Pulse[n] and corresponding values  

State transition Amplitude 

S0 -> S1 min 

S1 -> S2 ave 

S2 -> S1 oldMin, if (ave≤20) 

S2 -> S1 min, if (ave>20) 

 

The signal Pulse[n] has to be normalized. The algorithm is executed by a microcontroller 

with limited processing capabilities which does not calculate with fixed-point numbers and the 

value Pulse[n] is multiplied with constant of C=32, which is arbitrarily selected. After these 

numbers are multiplied, the result is divided by signal ave. Normalized signal Pulse2[n] is 

described by Eq. (7). 

 2[ ] 32 [ ]/Pulse n Pulse n ave   (7) 

The result of noise level estimation block is the signal noisy_interval[n] providing the 

information if the ECG signals quality is ‟acceptable‟ or ‟unacceptable‟. The block 

produces noisy_interval[n] equal to 1 when an interval is identified as noisy. 

The borders of noisy intervals are estimated considering amplitudes of non-zero values 

produced by Pulse2[n]. The interval denoted as noisy begins when two consecutive non-zero 

values are detected which are greater than threshold value TH. The noisy interval is finished if 

in the sequence of five adjacent non-zero values of Pulse2[n] there are not consecutive two 

which are greater than TH.  

The TH value is related to the value of constant C and it is determined after extensive 

analysis was performed on ECG data from the database [5].The threshold TH=12 is used 

for the identification of the noisy intervals in which the QRS complexes are often missed or 

false detected by QRS detector. The artefacts within the detected interval include motion 

and poor electrode contact related artefacts. Using lower value TH=6 the sensitivity of noise 

level estimation algorithm is increased and the intervals are classified as noisy even when 

artefacts do not influence a QRS detection, but may distort detection of P or T waves. The 

noise detected using TH=6 originate mostly from 50Hz-related artefacts and electromyography 

signals. 

An example of ECG signals containing noisy segments is given in Figure 5. The ECG 

signal ecg[n] is depicted on the top panel of Figure 5. The middle panel presents the 

signal Pulse2[n]. The signals noisy interval[n] and state[n] are depicted on the bottom 

panel of Figure 5.  
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Fig. 5 The identification of noisy segments in ECG signals. The top panel presents ecg[n], 

the middle panel Pulse2[n] and the bottom panel - state[n] and noisy_interval[n]. 

 

Fig. 6 Noisy segments of ECG signals having ectopic beats. The top panel presents ecg[n], 

the middle - Pulse2[n] and the bottom panel signals state[n] and noisy_interval[n]. 
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Another example of ECG signals which are corrupted by patient's movement is 

depicted on the top panel in Figure 6. The example shows the strength of Peak processing 

algorithm. In the example, regular beats are mixed with ectopic beats having significantly 

larger and wider QRS waves than regular QRS complexes. The middle panel presents the 

signal Pulse2[n]. The noise_interval[n] is shown on the bottom panel. Despite of changes in 

signal morphology between normal and ectopic ECG beats, all QRS complexes are 

correctly identified. This can be observed by signal state[n] which is shown on the bottom 

panel. Besides, the baseline drift does not influence the detection of QRS complexes. 

4. THE ALGORITHM VALIDATION ON PUBLIC ECG RECORD DATABASE 

The algorithm's performance was validated on PhysioNet Challenge database [5]. The 

database is comprised of one thousand 12-lead ECG recordings. The ECG signals are 

sampled at data rate of 500 Hz, with the resolution of 16-bit per sample and 5 μV per bit. 

The duration of each ECG record in database is 10 seconds.  

The ECGs were recorded by nurses, technicians and other volunteers with different 

amounts of training. After the ECG recordings had been recorded, they were interpreted by a 

group of people consisting of three cardiologists, five ECG analysts, ten people without prior 

ECG reading experience and five persons with some previous ECG reading experience [25]. 

In order to estimate the quality of all ECG recordings from set, each ECG recording was 

presented to annotators and all the recordings were scored. 775 of the records were considered 

as acceptable, 223 records as unacceptable and 2 records as undefined. It is worth mentioning 

that records with artefacts have been labelled as acceptable even if the annotators assumed 

that the record quality is satisfactory for medical personnel to make accurate diagnosis [25]. 

The described algorithm for QRS complex detection and noise quality estimation is 

implemented by the program code written in Matlab [26]. One thousand ECG recordings 

from the database [5] were analysed. The noisy signal segments, obtained using different 

thresholds values TH, are detected for all twelve standard leads of an ECG recording.  

The following seven measures are extracted for each ECG lead: 

1. the portion of ‟weak‟ signals in an ECG recording which have the R wave amplitudes 

smaller than 0.15mV. The R waves having low amplitudes are assumed to be 

undetectable 

2. the portion of flat line segments in an ECG recording  

3. the portion of segments in a recording corrupted by high vertical spikes, disabling 

the QRS detection in intervals following spikes 

4. the value obtained by dividing the duration of noisy segments and the duration of 

the ECG recording. The noisy segments, which include motion and poor electrode 

contact related artefacts, are determined by signal noise_interval[n]=1, calculated 

using the threshold value TH=12. 

5. the value obtained by dividing the noisy segments duration and the duration of the 

ECG recording. The noisy segments are determined by noise_interval[n]=1, which is 

calculated using TH=6.The detected noise intervals include artefacts related to 50Hz 

interference and electromyography signals. The ECG signal segments considered by 

previous measure are excluded.  

6. the portion of noisy segments of ECG signal caused by noise sources including 

previous two measures 
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7. the value of RR interval variability, where the square root of the mean of the sum 

of the squares of differences between adjacent RR intervals is calculated, divided 

by mean value of RR intervals, using the following formula: 
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The artificial neural network is used to train the relationships between the calculated 

measures in the presence of ‟acceptable‟ and ‟unacceptable‟ ECG records. The total number 

of measures used in a training process for an ECG record is 84, consisting of seven distinct 

measures for each standard ECG lead. The calculated measures were fed into to a 

Multilayer Perceptron (MLP) artificial neural network. The back-propagation neural 

network (BPNN) was used with three-layer feed-forward structure. The first layer is the 

input layer that has 84 neurons as inputs (seven inputs per each of twelve standard ECG 

leads). The second layer, called the hidden layer, has 10 neurons. One hidden layer has 

been proven as sufficient [27]. The number of hidden neurons was obtained after the 

procedure was applied that is based on methods given in the literature [27], [28]. The output 

layer has only one neuron providing a quality estimate of the ECG record (‟acceptable‟ or 

‟unacceptable‟). In this study, the logistic function is used as activation function for the 

hidden neurons. The weight and bias values in the BPNN are optimized using Levenberg-

Marquardt algorithm [29].  

After the training process of a neural network has been completed, we used the same 

training set to test neural network effectiveness. The neural network correctly identified 

715 recordings of 1000 recordings as being ‟acceptable‟ and 208 recordings as being 

‟unacceptable‟.  

Let TP, TN, FP and FN denote true positives, true negatives, false positives, and false 

negatives, respectively. TP counts correctly classified „unacceptable‟ records, TN - 

correctly classified ‟acceptable‟ records, FP - incorrectly classified ‟unacceptable‟ records) 

and FN - incorrectly classified ‟acceptable‟ records. The following results are obtained 

TP=208, TN=715, FP=17 and FN=58. The results are characterized with sensitivity, 

specificity and accuracy measures, described by following equations: 

 (%)
TP

sensitivity
TP FN




 (9) 
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 (%)
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Sensitivity is equal to 78.19%, specificity is 96.31% and classification accuracy is 92.48%. 
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5. DISCUSSION  

The performances of several QRS detection algorithms including the method from [18] 
is evaluated in [30] and [31]. The method has been developed and improved over the period 
of roughly 15 years, and states that the performance of the classification software is as good 
as or better than the performance reported from other QRS detection algorithms [30]. Also, 
the same algorithm is used as the starting variant of QRS detector in [31], where the 
algorithm has been adapted to operate in high noise and frequent signal losses environments. 

The algorithm described in [18] was significantly improved by the proposed algorithm 
especially when it processes noisy ECG signals. The novel algorithm more efficiently 
identifies QRS waves then the algorithm described in [18], regardless of QRS complex 
amplitude level, width and morphology. For example, the algorithm described in [18] suffered 
from false QRS detections when QRS waves are wide, which was confirmed by simulations 
and also evaluated on real clinical data. The novel algorithm does not produce false detections 
for wide QRS complexes being present in ectopic beats. Furthermore, it discriminates well P 
and T waves of ECG signal, which may have amplitudes as high as R waves.  

The QRS detector [18] should be more robust when detecting signals with low 
amplitudes and frequent artefacts [31]; for a highly noisy signal it fails to detect the peak 
location accurately [30]. One of the contributions of the proposed method is that it 
recognizes QRS complexes better than the algorithm presented in [18], particularly when 
QRS complexes have small amplitudes in the range from 0.15mV to 0.5mV. The 
algorithm can operate at rates up to 250 heart beats per minute. Moreover, the ECG 
signal segments with large amount of artefacts are clearly identified by Noise level 
estimation block, rejecting possible false arrhythmia and tachycardia detections. 

One of the results of the evaluation of proposed algorithm on clinical ECG data is presented 
in Figure 7. The figure shows the detection of QRS complexes in the presence of ventricular 
tachycardia. The ECG signal, presented on the top panel, is acquired by ECG telemetry device 
implementing the algorithm we propose. The QRS complexes are indicated by signal State, 
shown on the bottom panel of Figure 7. The signal noise_interval[n] is equal to zero. 

 

Fig. 7 The detection of ventricular tachycardia (VT). The top panel presents signal 

ecg[n], the bottom panel state[n] indicating QRS detections and noise_interval[n] 
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Several studies were reported on the topic of ECG signal quality assessment [32], [33], 

[25]. The studies returned a simple binary score for an ECG record, which does not quantify 

the amount of artefacts, but just decides if an ECG record is of acceptable quality. These 

ECG signal quality algorithms were validated on PhysioNet Challenge database [6] 

comprised of one thousand 12-lead ECG recordings. We have obtained the  value of 

accuracy of 92.48% which is comparable to those found in [32], [33] and [25]. These 

accuracy values are obtained for the same input ECG dataset. For example, the method 

from [32] was has the accuracy of 93.2%. The [33] is a variant of [22] and has accuracy 

equal to 92.6%. The other studies reported accuracy measures from 83.3 to 92.5% [25]. 

We want to emphasize the potential role of the proposed quality assessment algorithm 

in utility of future ECG diagnostic devices. In particular, we assume that the algorithms 

we propose could improve the performance of ECG telemetry devices. Additionally, the 

quality assessment method could be used in every other kind of ECG recorders to, for 

example, help inexperienced nurses and technicians to record high quality ECG records. 

Besides, in contrast to the algorithms [32], [33] that are computationally demanding and 

were conceived in their original design for smart phone applications, the method that we 

propose is computationally optimized for embedding in low-power microprocessor-based 

ECG diagnostic devices. 

6. CONCLUSION  

The work presented in this paper demonstrates a framework for combining both QRS 

detection and ECG signal quality assessment. Such approach exploits the covariant 

information of the noise and relevant ECG data measured in unsupervised ECG signal 

acquisition environments. A more accurate false alarm reduction system has been developed, 

which is a must in novel wearable ECG telemetry devices. The results from this work clearly 

indicate that the ECG record signal quality can be estimated using QRS complex detection 

method, which is based on the detection of heart refractory time intervals and additionally 

supported by utilization of artificial neural network techniques. It is shown that the algorithm 

has almost the same performance as the known state-of-the-art algorithms with a 

considerable reduction in computational complexity. The ECG telemetry devices can be 

therefore greatly improved with the use of proposed ECG signal analysis routines. 
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