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Abstract. RF MEMS switches have been efficiently exploited in various applications in 

communication systems. As the dimensions of the switch bridge influence the switch 

behaviour, during the design of a switch it is necessary to perform inverse modeling, 

i.e. to determine the bridge dimensions to ensure the desired switch characteristics, 

such as the resonant frequency. In this paper a novel inverse modeling approach based 

on combination of artificial neural networks and a lumped element circuit model has 

been considered. This approach allows determination of the bridge fingered part length 

for the given resonant frequency and the bridge solid part length, generating at the 

same time values of the elements of the switch lumped element model. Validity of the 

model is demonstrated by appropriate numerical examples. 

Key words: Artificial neural networks, inverse modeling, lumped element model, RF 

MEMS switch. 

1. INTRODUCTION 

Radio-Frequency Micro-Electro-Mechanical Systems (RF MEMS) components have 

been proven to be of a great importance for RF circuits and subsystems, as they possess 

characteristics that may surpass characteristics of conventional, purely electrical 

components. RF MEMS devices consist of moving sub-millimeter-sized parts that 

provide radio frequency functionality. They are of high linearity, low insertion loss and 

extremely good intermodulation performance. MEMS devices have the ability to sense, 

control and actuate on micro scale, and generate effects on macro scale. According to 

variety and diversity of RF MEMS technology functionalities, they have wide applicability 

for the new generation of communication system components, like switches and varactors 

(variable capacitors), resonators, complex networks, reconfigurable filters, phase shifters, 

impedance matching tuners and programmable step attenuators [1-9]. In the recent time, 

the RF MEMS technology has found applications for Internet of Things (IoT), Internet of 

Everything (IoE), Tactile Internet and 5G telecommunications [10-12]. Design of the 
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circuits containing RF MEMS switches requires repeated simulations and/or optimizations 

of the switch characteristics. Therefore, there is a need for reliable RF MEMS models. 

Switch electrical characteristics can be accurately determined in full-wave electromagnetic 

simulators [13-15]. However, as the simulation models are quite complex and the simulations 

consume a significant amount of time, a common option to overcome these problems is 

usage of lumped models in the circuit simulators [16, 17]. The lumped element models based 

on the equivalent circuits are faster than the full-wave ones. However, if differently sized 

bridges are analyzed, the procedures for obtaining the equivalent circuit elements have to be 

repeated, which is a time-consuming process. To make the lumped element model scalable 

with the dimensions, artificial neural networks (ANNs) were proposed to model the 

dependence of the lumped element model on the switch bridge dimensions [18]. The switch 

bridge dimensions determine the electromagnetic characteristics of the switch. Therefore 

during the design of a switch, it is necessary to determine the bridge dimensions to ensure the 

desired switch characteristics, such as resonant frequency, i.e. to perform the inverse 

modeling of the switch. The authors of this work proposed earlier a black-box inverse 

modeling of the RF MEMS capacitive switches where the bridge lateral dimensions were 

determined for given electrical or mechanical switches [19-25]. In this work, the neural 

based inverse modeling approach is extended in a way that the novel approach provides not 

only determination of the bridge dimensions but also the values of the corresponding lumped 

model elements, resulting in a lumped element model ready to be used for further 

simulations of the circuits containing the considered switch. 

The paper is organized as follows: after Introduction, a description of the considered 

RF MEMS switch is given in Section 2. The proposed modeling approach is described in 

Section 3. Details of the model development and validation and the most illustrative 

numerical results are given is Section 4. Section 5 contains the conclusions. 

2. RF MEMS CAPACITIVE SWITCHES  

 

MEMS are integrated devices consisting of micromechanical and electronic components. 

RF MEMS switches are the specific micromechanical switches that are designed to operate 

at RF to mm-wave frequencies. RF MEMS switches use mechanical movements of the 

bridge to achieve a closed or open circuit in the RF transmission lines. RF MEMS 

classification depends on the type of actuation, deflection axis, contact type, circuit 

configuration, and structure configuration. The considered device is a Coplanar waveguide 

(CPW) based RF MEMS capacitive shunt switch (Fig. 1(a)) designed at Fondazione Bruno 

Kessler (FBK) in Trento in an 8 layer Silicon micromachining process [26-28]. 

The device is fabricated on silicon substrate and silicon dioxide (SiO2) as insulator. 

The bridge is a thin gold (Au) membrane connecting both sides of the ground plane with 

defined lateral dimensions (length of the fingered part - Lf and length of solid part – Ls).  

The signal line is a thin aluminum layer, placed below the bridge. On the opposite 

sides of the signal line, the DC actuation pads made of polysilicon are placed. Applying 

the actuation voltage on electrodes, electrostatic force becomes superior over mechanical 

restoring force, causes membrane to pull down towards the ground plane switching the 

circuit [26].  
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a)  b)   

Fig. 1 (a) Top-view of the realized switch and schematic of the cross-section [26] and  

(b) equivalent circuit of the RF MEMS switch RLC lumped element model 

The inductance of the bridge and the fixed capacitance between signal line and bridge 

create a resonant circuit to the ground. The resonant frequency can be adjusted by 

varying the length of the bridge lateral dimensions. At the series resonance, the circuit 

acts as a short circuit to the ground. In a certain frequency band around the resonant 

frequency the transmission of the signal is suppressed. 

An RF MEMS switch can be represented by a simplified equivalent circuit model, as 

shown in Fig. 1(b). It consists of the resistance R, the inductance L and the capacitance C. 

Two coplanar waveguide lines, CPW1 and CPW2, are added with the aim of matching 

the obtained S-parameters with the S-parameters obtained by a full-wave analysis, having 

in mind that the reference planes for simulation and measurement are usually not defined 

directly at the membrane but a distance apart from it [26].  

The switch resonant frequency is  

 
1

2
resf

LC
 . (1) 

The switch capacitance in the membrane down-state case, considered in this case, is 

calculated from the layout using the following expression [3]: 

 
d
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where 0 is the dielectric permittivity, r is the relative dielectric permittivity, td is the 

distance between the two plates forming the capacitor and A is the surface of the plates. 

The capacitance is constant, because it does not depend on the bridge lateral dimensions. 

The other two elements, R and L, depend on the bridge lateral dimensions Ls and Lf. They 

can be obtained simultaneously by optimizations in a circuit simulator aimed to achieve 

the desired values of the equivalent circuit S-parameters. Alternatively, the inductance 

can be determined from the given resonance frequency as:  

 
Cf

L
res

224

1


 , (3) 

and then only the resistance is to be obtained by optimization in a circuit simulator. It 

should be noted that once the capacitance is determined, the extraction of the resistance 
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and the inductance should be repeated for each considered combination of bridge 

dimensions, which always requires new full-wave simulations to provide inputs for 

optimization. Following the approach proposed in [26], the lumped element scalability with 

the bridge lateral dimensions can be introduced by means of artificial neural networks, as 

will be described in the next section. 

3. PROPOSED INVERSE MODELING APPROACH 

To determine the switch lateral dimensions for the desired resonant frequency, and 

simultaneously to determine the corresponding equivalent circuit elements, a new inverse 

modeling approach is proposed in this work. The proposed approach is a hybrid approach 

combining neural modeling with a lumped element equivalent circuit. In other words, it is 

a combination of the black-box neural inverse modeling approach [19-21] and a 

modification of the scalable lumped element model proposed in [18]. Schematic diagram 

of proposed model is shown in Fig. 2. The aim of the first ANN (ANN 1) is to determine 

the length of the fingered part Lf for the desired resonant frequency [19, 20, 22].  

As described in the previous work, due to the fact that different combinations of the 

bridge solid and fingered parts’ lengths may lead to the same resonant frequency value, it 

is not possible to use this approach to determine Ls and Lf simultaneously. Instead, the 

length of the solid part is considered as the inverse model input beside the resonant 

frequency. The second ANN (ANN 2) is used for modeling the relationship between the 

resistance and the bridge lateral dimensions Ls and Lf. Unlike the model considered in 

[18] where the inductance dependence on the dimensions is modeled also by the ANN, 

having in mind that in the considered case the resonant frequency is known, it is possible 

to calculate the inductance by using the Eq. 3, assuming that the capacitance, which is 

constant and does not depend on the bridge lateral dimensions, has been determined 

previously. Therefore the value calculated by Eq. 2 is directly assigned to the capacitor in 

the equivalent circuit.  

 

Fig. 2 Proposed inverse modeling approach 

 

The used ANNs are multilayered ANNs having one input layer, one output layer and 

one or more hidden layers [1]. Both ANNs have two input neurons and one output neuron. 

The inputs of the ANN 1 correspond to the bridge solid part length Ls and resonant 

frequency fres, and the output corresponds to the bridge fingered part Lf. For the training and 
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validation of ANN 1 it is necessary to have a set of samples consisting of a combination of 

dimensions and the corresponding values of the resonant frequency. That implies that 

simulations of the S-parameters in a full-wave simulator should be performed for each 

combination of the dimensions and the resonance frequency is determined as the frequency 

corresponding to the minimum value of the S21 magnitude. The ANN 2 inputs correspond to 

the bridge lateral dimensions Ls and Lf , whereas the output corresponds to the equivalent 

circuit resistance R. The training samples consist of the two considered lateral dimension 

combinations and corresponding resistances. Values of the resistance used for training are 

determined by optimization in a circuit simulator for the previously calculated capacitance 

and inductance, as described in Section 2. The flow chart describing the development of the 

proposed model is shown in Fig. 3. The optimization goal is to match the simulated 

resonant frequency (i.e. all scattering parameters) and the resonant frequency simulated in 

the full-wave simulator for the given combination of the dimensions. 

 The implementation of ANNs in the equivalent circuit is done as follows. Each ANN 

is represented by a set of mathematical expressions describing the ANN transfer function. 

The expressions corresponding to the developed ANNs are implemented by means of a 

variable and equation blocks (VAR) on the equivalent circuit schematic. A VAR block 

inputs and outputs are the same as the inputs and outputs of the corresponding ANN. The 

output of the VAR block corresponding to the ANN 1 is led to the input of the VAR 

block corresponding to the ANN 2, whose output is further assigned to the resistance of 

the equivalent circuit.  

Fig. 3 Model development flow chart 

 

The developed inverse model does not require additional simulations in the full-wave 

simulator or additional optimizations. For the desired resonant frequency and a given value 

of the bridge solid part length, by running the S-parameter simulations, it is possible to 

Simulate in EM full-wave simulator the 

S-parameters for several combinations of 

the lateral dimensions 

Find the resonant frequency for each 
combination of the lateral dimensions 

Build the ANN 1 training and test sets  

(Ls, fres, Lf) 

For each of the combination of the 

lateral dimensions determine in a circuit 
simulator the resistance R 

Calculate the capacitance C (eq. 2)  

and the inductance L (eq. 3) 

Build the ANN 2 training and test sets  

(Ls, Lf, R) 

Train the ANN 1 (networks with 

different number of hidden neurons) and 
find the ANN with the best accuracy 

Train the ANN 2 (networks with 

different number of hidden neurons) and 

find the ANN with the best accuracy. 

Create mathematical expressions 
describing ANN 1 and ANN 2 

Implement the expressions on the 

equivalent circuit schematic. 
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simultaneously calculate the length of the fingered part, determine the corresponding 

elements of the equivalent circuit and simulate the S-parameters over the desired frequency 

range. As all the operations are performed in the circuit simulator, the whole process is 

done within seconds, which is significantly faster than performing optimizations in a full-

wave simulator for determining the dimension and optimizations in a circuit simulator to 

determine the resistance. 

4. NUMERICAL RESULTS 

The proposed inverse model was developed for the following ranges of the switch 

geometrical parameters: Ls from 50 µm to 500 µm, and Lf from 0 µm to 100 µm. To 

prepare the data for the model development, the equivalent circuit elements R, L and C 

were determined for several different combinations of the lateral dimensions Ls and Lf. 

The relative permittivity of Silicon dioxide is 3.9 and the dimensions contributing to the 

capacitance value in the down-state are A = 13000 μm
2
 and td = 0.1 μm. Therefore, by 

using Eq. 2, the calculated capacitance in the down-state is 4.48695 pF. For each 

combination of Ls and Lf, first the S-parameters were determined by full-wave simulations 

in Advanced Design System (ADS) Momentum software [29] and the resonant frequency 

was determined as the minimum of the S21 parameter magnitude. Further, the combinations 

of the lateral dimensions and the resonant frequencies obtained by ADS simulations were 

used for training the ANN 1. The available dataset was divided into the training set used 

for the development of the ANNs and the test set used for the model validation. ANNs 

with different number of hidden neurons in one or two hidden layers were trained, 

because a prior determination of number of hidden neurons is not possible. The networks 

with the best test results were chosen as the final model. In this paper, the following 

notation of ANNs is used: ANN denoted with N-H1-H2-M, has N input neurons, H1 and 

H2 neurons in the first and second hidden layer, respectively, and M output neurons. In 

the Table 1, there are test results obtained by the best ANN 1 (2-15-15-1) for the input 

combinations whose values did not appear in the training set [19, 22].  

Table 1 RF MEMS switch inverse modeling results: Lf 

Ls 

(m) 

fres 

(GHz) 

Lf (target) 

(m) 

Lf 

(from ANN 1) 

(m) 

Lf  

Abs. error 

(m) 

Lf 

Relative error 

(%) 

    5 22.78 25 24.9 0.1 0.4 
  75 19.17 65 65.4 0.4 0.6 
  75 17.92 85 85.3 0.3 0.3 
100 17.5   75 73.6 1.4 1.9 

200 13.13 85 86.8 1.8 2.1 
350 11.67 25 23.4 1.6 6.4 
350 10.83 65 62.2 2.8 4.3 
400 10     85 87.4 2.4 2.9 

The relative errors are in most cases less than 3%. However, the absolute difference of 

the predicted and expected values is less than 3 µm, which is already close to fabrication 

tolerances. More details about the development and validation of the mentioned inverse 

model can be found in [19, 22]. 
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Further, the resonant frequency and the capacitance were used to determine the 

inductance for each combination of Ls and Lf. The inductance is calculated by using Eq. 3 

and achieved results are presented in Table 2.  

In next step, the neural model for determining the resistance for the given dimensions 

(ANN 2) was developed. The target resistance values were obtained by optimization of the 

resistance value for each considered combination of the dimensions. CPWs of 50  were 

used. Among the trained ANNs with different numbers of hidden neurons, the best results 

were obtained by ANN which has the structure 2-4-8-1. The resistance obtained by ANN 2 

for the eight test combinations not used for the network training are shown in Table 2.  

Table 2 Extracted equivalent circuit elements 

Ls 

(m) 

Lf 

(from ANN 1) 

(m) 

C 

(pF) 
fres 

(GHz) 

L 

(pH) 

R 

(from ANN 2) 

(mΩ) 

  75 24.9 4.48695 22.78 10.879 638.05 

  75 65.4 4.48695 19.17 15.363 739.45 

  75 85.3 4.48695 17.92 17.581 763.26 

100 73.6 4.48695 17.5   18.435 764.92 

200 86.8 4.48695 13.13 32.748 857.68 

350 23.4 4.48695 11.67 41.455 908.49 

350 62.2 4.48695 10.83 48.135 946.07 

400 87.4 4.48695 10      56.457 977.75 

To validate further the proposed hybrid inverse modeling approach, for the test 

combinations of the bridge dimensions, the calculated C, L and R were assigned to the 

corresponding equivalent circuit elements, and used for the S-parameter simulation.  

The comparison of RF MEMS switch S-parameters simulated by the equivalent 

circuit and the S-parameters determined by the ADS momentum simulations shows a 

very good match. As an illustration, in Fig. 4 and Fig. 5 the insertion loss (|S21| in dB) and 

the return loss (|S11| in dB) are shown for two devices with different lateral dimensions: 

the first one having Ls = 100 µm and Lf = 75 µm, and the second device with Ls = 350 µm 
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Fig. 4 S11 and S21 of RF MEMS switch for Ls = 100 µm and Lf = 75 µm 

(RLC model - red solid line, full-wave simulations – blue dashed line) 
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Fig. 5 S11 and S21 of RF MEMS switch for Ls = 350 µm and Lf = 25 µm 

(RLC model - red solid line, full-wave simulations – blue dashed line) 

and Lf = 25 µm. As can be seen, in both cases the response of the equivalent circuit is 

almost identical to the reference response obtained by the full wave simulations, confirming 

the accuracy of the proposed approach. The results referring to the bridge with lateral 

dimensions Ls = 350 µm and Lf = 25 µm have been shown with the aim to show the results 

for the case where ANN 1 exhibits the biggest deviation between modeled and reference 

values. Even in that case, the circuit responses are almost identical and very close to the 

target values obtained by the full-wave simulations. 

5. CONCLUSION 

In this paper, a new approach to RF MEMS capacitive switch inverse modeling has 

been proposed. It is a hybrid approach combining artificial neural networks and a lumped 

element equivalent circuit model. The inverse approach proposed earlier by the authors 

aimed only to determine switch dimensions for the given resonant frequency. The inverse 

modeling approach proposed in this paper can be used to determine not only the 

necessary length of the bridge fingered part to achieve the given resonant frequency for 

the given value of the bridge solid part length, but also to determine the elements of the 

switch equivalent circuit in a full-wave simulator. After the ANNs composing the model 

have been developed, determination of the bridge fingered part length and the elements of 

the equivalent circuit are done straightforwardly without additional optimizations, making 

the process of inverse modeling very time-efficient. According to the obtained results, the 

accuracy of the determination of the bridge fingered part is within the fabrication 

tolerances. Moreover, the S-parameters simulated by using the equivalent circuit elements 

obtained by this approach match well the S-parameters obtained by full-wave simulations, 

confirming the accuracy of the equivalent circuit parameter extraction. 
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