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Abstract. There has been apprehension about the possible adverse health effects resulting 

from exposure to power frequency magnetic field, especially in the overhead power lines 

vicinity. Research work on the biological effects of magnetic field has been substantial in 

recent decades. Various international regulations and safety guidelines, aimed at the 

protection of human beings, have been issued. Numerous measurements are performed and 

different numerical algorithms for computation of the magnetic field, based on the Biot-

Savart law, are developed. In this paper, a previously developed 3D quasistatic numerical 

algorithm for computation of the magnetic field (i.e. magnetic flux density) produced by 

overhead power lines has been improved in such a way that cylindrical segments of passive 

conductors are also taken into account. These segments of passive conductors form the 

conductive passive contours, which can be natural or equivalent, and they substitute 

conductive passive parts of the overhead power lines and towers. Although, their influence 

on the magnetic flux density distribution and on the total effective values of magnetic flux 

density is small, it is quantified in a numerical example, based on a theoretical background 

that was developed and presented in this paper. 
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mutual potential coefficients, self and mutual impedances 

1. INTRODUCTION  

Extremely high-voltage overhead power lines are among the most significant sources of 

extremely low-frequency (ELF) electric and magnetic fields. These fields change very 

slowly over time and are therefore considered quasistatic [1, 2]. Hence, electric and 

magnetic fields are computed separately. Potential long-term health effects of exposure 

arising from the power distribution system including overhead power lines, due to their 

proximity to residential areas and field levels they emit, have been extensively studied over 
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the last few decades [3–6]. Epidemiological studies have suggested that long-term low-level 

exposure to ELF (50-60 Hz) magnetic field might be associated with an increased risk of 

childhood leukaemia. However, there is no firm evidence of such adverse health effects 

related to prolonged exposure to ELF magnetic field. The International Commission on 

Non-Ionizing Radiation Protection (ICNIRP) recommends the exposure limits related to 

short-effects, called basic restrictions in their guidelines [7]. The exposure limits outside the 

body, called reference levels, are set to 1000 μT for occupational exposure and to 200 μT for 

general public exposure for 50 Hz magnetic flux density. The assessment of human exposure 

to the magnetic field originating from overhead power lines is based on measurements or 

computations. Measurements are performed in accordance with international standards [8–

10]. Various methods for computation of ELF magnetic field, such as method of moments 

(MoM), finite-difference time-domain method (FDTD), finite element method (FEM), 

charge simulation method (CSM) and surface charge simulation method (SCSM), are well-

known [11]. 

The magnetic field of the overhead power lines is computed using the Biot-Savart law. 

In simplified two-dimensional (2D) numerical algorithms [12–14] overhead power line 

conductors are infinitely long straight thin-wire horizontal lines parallel to the flat Earth’s 

surface. The number of line sources equals the number of overhead power line phase 

conductors and shield wires, and the contribution of each of them is taken into account. In 

three-dimensional (3D) numerical algorithms [15–19] the catenary form of the overhead 

power line conductors can be taken into account and therefore, more accurate computation 

results can be obtained. 

The basis of this paper is a previously developed 3D algorithm for computation of the 

magnetic field (i.e. magnetic flux density) produced by overhead power lines. The catenary 

conductors are approximated by a set of straight thin-wire cylindrical conductor segments. 

Moreover, the cylindrical segments of passive conductors are also taken into account using 

closed current contours, which substitute conductive passive parts of the overhead power 

lines and towers. Because of the currents induced in them, they may have the influence on 

the magnetic flux density distribution. As anticipated, the influence is not as pronounced as 

in computation of the electric field intensity, especially in close vicinity of the towers and 

other passive parts that strongly distort the electric field. Therefore, many researchers ignore 

their effect, but nevertheless, a theoretical background for taking into account conductive 

passive parts and their effect on the magnetic flux density distribution is developed herein. 

Moreover, this influence has been quantified for the first time so far. Expressions for self 

and mutual potential coefficients of cylindrical conductor segments are given. Equations for 

self and mutual impedances per unit length of the conductive passive contours are derived 

and included in the system of linear equations for computation of currents in natural and 

equivalent conductive passive contours. Finally, the sum of the contributions of cylindrical 

segments of active and passive conductors is taken into account for computation of the 

magnetic flux density. In the numerical example, two different cases are observed, the first 

where conductive passive parts (CPPs) are neglected and the second where they are taken 

into account. The obtained results of the magnetic flux density distribution are shown and 

compared with available results from the literature. 
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2. CONDUCTIVE PASSIVE PARTS OF THE OVERHEAD POWER LINES 

The magnetic flux density distribution at the arbitrary field point T (x, y, z) in the air 

of a two-layer medium can be computed using the well-known Biot-Savart law. One of 

the advanced 3D numerical algorithms for computation, sufficiently accurate as 

computation module HIFREQ of the CDEGS software package, is presented in detail in 

[19]. In addition to the cylindrical segments of active conductors with known currents, 

the cylindrical segments of passive conductors can also be taken into account. In these 

cylindrical segments of passive conductors (i.e. current contours), the currents are 

induced and therefore, they have influence on the magnetic flux density distribution.  

Conductive passive parts of the overhead power lines and towers can be described using 

closed current contours, approximated by a set of cylindrical conductor segments. The 

contours can be natural (Fig. 1) or equivalent, that substitute parts of conductive passive 

surfaces. Examples of conductive passive surfaces are overhead power line towers, fences 

or any other conductive passive parts in high-voltage substations, which can be modelled 

using straight thin-wire cylindrical conductor segments or using subparametric spatial 2D 

finite elements, as in [20]. Hence, a network model of conductive passive surfaces is used 

herein. The cylindrical conductor segments, that form the conductive passive contours, are 

oriented from the start to the end point of the segment. The unit vector 0s


 is assigned to 

each cylindrical segment. 

 

Fig. 1 Closed passive contour approximated with 5 cylindrical conductor segments 

2.1. Currents of the Conductive Passive Contours 

The system of linear equations for computation of currents in conductive passive 

contours, written in matrix form, can be expressed as follows: 
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where NK  is the total number of conductive passive contours, NS  is the total number of 

active cylindrical conductor segments, K

ikI  is the phasor of the ik-th conductive passive 
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contour current, S

kI  is the phasor of the k-th active cylindrical conductor segment current, 
KK

jkikZ ,  is the mutual impedance of the ik-th and jk-th conductive passive contour, KS

kikZ ,  is the 

mutual impedance of the ik-th conductive passive contour and k-th cylindrical segment of 

active conductor. 

Self impedance of the ik-th conductive passive contour is described by: 
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where ikNS  is the total number of segments of the ik-th conductive passive contour, 
iku

isZ ,1  is the internal impedance per unit length of the is-th cylindrical conductor segment 

of the ik-th conductive passive contour, ik

is  is the length of the is-th cylindrical conductor 

segment of the ik-th conductive passive contour, ikik

isisL ,

,  is the external inductance of the 

is-th cylindrical conductor segment of the ik-th conductive passive contour, ikik

jsisL ,

,  is the 

mutual inductance of the is-th and js-th cylindrical conductor segments of the ik-th 

conductive passive contour,   is the circular frequency and j is the imaginary unit. 

The internal impedance per unit length of the cylindrical conductor segment of the 

natural conductive passive contour is described by following expression [21, 22]: 
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where k  is the complex wave number, 
0

r  is the radius of the cylindrical conductor 

segment, v  is the electrical conductivity of the cylindrical conductor segment, 
0 0
( )J k r  

is the complex Bessel function of the first kind of order zero, 
01( )J k r  is the complex 

Bessel function of the first kind of order one. 

The complex wave number k  is defined by the following equation: 

 )4/(exp2  jfk vv  (4) 

where  is the magnetic permeability of the cylindrical conductor segment, f is the time-

harmonic current frequency.  

The complex Bessel function of the first kind of order Nn can be written as [23, 24]: 
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Conductive passive surface can be replaced by a contour formed by a set of equivalent 

cylindrical conductor segments. Radius of these segments is equal to [23]: 
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where d is the skin depth of the wave into the conductive surface. 
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Internal impedance per unit length of these conductor segments can be described using 

the following expression:  
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where vZ  is the wave impedance of the medium from which the conductive passive surface 

is made, vE  is the phasor of electric field intensity on the surface of the conductor, vH  is the 

phasor of magnetic field intensity on the surface of the conductor, p  is the magnetic 

permeability of the surface. 

Mutual impedance of the ik-th and the jk-th conductive passive contour is described by 

the following equation: 
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where jkNS  is the total number of segments of the jk-th conductive passive contour, 
jkik

jsisL ,

,  is the mutual inductance of the is-th cylindrical conductor segment of the ik-th 

conductive passive contour and js-th cylindrical conductor segment of the jk-th 

conductive passive contour.  

Mutual impedance of the ik-th conductive passive contour and k-th cylindrical segment 

of active conductor is defined by the following expression: 
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where ik

kisL ,  is the mutual inductance of the is-th cylindrical conductor segment of the ik-

th conductive passive contour and k-th cylindrical segment of active conductor. 

2.2. Self and Mutual Inductances of the Cylindrical Conductor Segments 

Self inductance of the cylindrical conductor segment is described by the following 

expression: 

 isis

un
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where isis

un

PSS ,  is the self potential coefficient of the is-th cylindrical conductor segment 

in homogeneous unbounded dielectric medium with permittivity 
0
 , which can be 

computed as described in detail in chapter 3. 

Mutual inductance of the is-th and js-th cylindrical conductor segment, which can be 

cylindrical segment of active conductor or part of conductive passive contour, is 

described using the following expressions: 
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where iss0


 is the unit vector of the is-th cylindrical conductor segment, jss0


 is the unit 

vector of the js-th cylindrical conductor segment, jsis

un

PSS ,  are the mutual potential 
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coefficients of the is-th and js-th cylindrical conductor segments in homogeneous 

unbounded dielectric medium with permittivity 0 , which can be computed as described 

in detail in chapter 3. 

3. SELF AND MUTUAL POTENTIAL COEFFICIENTS  

OF THE CYLINDRICAL CONDUCTOR SEGMENTS 

Self potential coefficients of the cylindrical conductor segments in homogeneous 

unbounded dielectric medium are described by the following expression: 
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where auxiliary function P is defined [25] as: 
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According to [26], two cylindrical conductor segments can be parallel or nonparallel. 

Two parallel cylindrical conductor segments, i-th and j-th, in homogeneous unbounded 

dielectric medium are shown in Fig. 2. Further, i-th cylindrical conductor segment with 

endpoints T1 (u1, vi) and T2 (u2, vi) is observed in the local coordinate system (u, v) of the 

j-th cylindrical conductor segment.  

 

Fig. 2 Two parallel cylindrical conductor segments in homogeneous unbounded dielectric 

medium 

Mutual potential coefficients of two parallel cylindrical conductor segments, i-th and 

j-th segment, in homogeneous unbounded dielectric medium can be obtained from the 

following expression: 

 1 2 3 4 0( ) / 4
un
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where auxiliary function Ck (k = 1, 2, 3, 4) is described by: 
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 2/21 juw   (16) 

 2/12 juw   (17) 

 2/13 juw   (18) 

 2/24 juw   (19) 

In a case of two nonparallel cylindrical conductor segments, there is always one and 

only one pair of parallel planes, 1 and 2 in which these segments lie (Fig. 3). In a 

limiting case, these two planes overlap and then, nonparallel segments lie on intersecting 

straight lines. 

 

Fig. 3 Two nonparallel cylindrical conductor segments in homogeneous unbounded 

dielectric medium 

Mutual potential coefficients of two nonparallel cylindrical conductor segments in 

homogeneous unbounded dielectric medium, defined by using the Galerkin-Bubnov method, 

are described by: 
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where the mutual distance between points on the axes of the segments is equal to: 

  cos2222 DRij  (21) 

where D is the distance between the parallel planes on which segments lie,  is the angle 

between lines on which the segments lie,  is the distance of the observed point on the 

axis of the i-th segment and the start point O1,  is the distance of the observed point on 

the axis of the j-th segment and the start point O2. 
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After the double integration in (20) is carried out, the following expression, known as 

Cejtlin’s formula [25], can be obtained: 
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Self potential coefficients of the i-th cylindrical conductor segment, with linear charge 

density iλ  approximated by a constant, in the air of the two-layer medium (Fig. 4) can be 

computed, using the well-known image method: 
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where sii

un

PSS  is the mutual potential coefficient of the i-th cylindrical conductor 

segment and its image in homogeneous unbounded dielectric medium with permittivity 

0, whereas rk  is the reflection coefficient derived for a point current source [23, 27, 28] 

which can be approximated to high accuracy by 1rk  for power line frequencies as a 

consequence of assumption that the Earth’s conductivity is infinite. 

 

Fig. 4 Cylindrical conductor segment in the air of the two-layer medium and its image 

If i-th and j-th cylindrical conductor segments are in the air of the observed two-layer 

medium (Fig. 5), their mutual potential coefficient can be expressed by image method: 
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where sij

un

PSS  is the mutual potential coefficient of the i-th cylindrical conductor segment 

and image of the j-th cylindrical conductor segment in homogeneous unbounded dielectric 

medium with permittivity .0  
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Fig. 5 Two cylindrical conductor segments and the image from one of them 

4. NUMERICAL EXAMPLE 

In order to estimate the influence of conductive passive parts on the magnetic flux 

density distribution, a computer program was developed, in which these passive parts can 

be considered on the basis of the presented theory.  

In the numerical example, two spans between three identical towers of a typical 400 kV 

overhead power line, each carrying three phases with two conductors in the bundle per 

phase and two shield wires are observed (Fig. 6). Detailed input data concerning the tower 

geometry, the maximum and minimum heights of all conductors and sags, radii of all phase 

conductors and shield wires, the length of the overhead power line span, as well as electrical 

input data are given in [20]. The maximum allowed symmetrical currents for cross section 

of the chosen phase conductors and symmetrical operating conditions have been assumed. 

Two different cases are observed. In the first case, only phase conductors and shield 

wires (16 catenaries, each approximated using 60 thin-wire cylindrical segments of active 

and passive conductors) are taken into account, whereas conductive passive parts (CPPs) 

are neglected. In the second case, in addition to aforementioned catenaries, a central 

tower is approximated using 68 thin-wire cylindrical segments of passive conductors and 

40 conductive passive contours are taken into account. The electrical conductivity of the 

cylindrical conductor segments  is equal to 7 MS/m, while the magnetic permeability 

of the cylindrical conductor segments  is equal to 500. Computation of the magnetic 

flux density distribution is carried out at height of 1 m above the Earth’s surface in the 

close vicinity of a central tower along observed x- and y-axes in a total of 500 points.  

 

Fig. 6 Simplified representation of the overhead power line 
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Figures 7–10 present computed effective (rms) values of the total magnetic flux density 

and its components along x-axis, whereas Figures 11–14 present computed effective (rms) 

values of the total magnetic flux density and its components along y-axis for the 

aforementioned two cases. 

Maximum absolute deviations of the computed total magnetic flux density distribution 

along x- and y-axes for two cases in the chosen example are equal to 0.15 % and 0.89 %, 

respectively. As expected, according to well-known parameters affecting the magnetic flux 

density distribution, these absolute deviations due to conductive passive parts are small. 

Nevertheless, they have not been quantified so far. The maximum computed value of the 

magnetic flux density, obtained in this example, in the close vicinity of a central tower (Fig. 

7) is equal to 16.84 μT, as well as the maximum computed value obtained under the 

midspan of the overhead power lines, which is equal to 31.83 μT, are substantially less than 

the exposure limits given in [7].  

 

Fig. 7 Distribution of the total magnetic flux density along x-axis 

 

Fig. 8 Magnetic flux density x-component along x-axis 
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Fig. 9 Magnetic flux density y-component along x-axis 

 

Fig. 10 Magnetic flux density z-component along x-axis 

 

Fig. 11 Distribution of the total magnetic flux density along y-axis 
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Fig. 12 Magnetic flux density x-component along y-axis 

 

Fig. 13 Magnetic flux density y-component along y-axis 

 

Fig. 14 Magnetic flux density z-component along y-axis 
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In order to verify the accuracy of the presented algorithm, the magnetic flux density 

results computed by EFC-400EP software [29] are shown in several points are compared to 

computed results obtained by numerical algorithm given herein (Fig. 15) and a very good 

agreement can be seen. Detailed input data of a 400 kV overhead power line are given in 

[29]. 

 

Fig. 15 Comparison of computed magnetic flux density results obtained by presented 

algorithm with results computed by EFC-400EP software 

Table 1 shows percent errors (p.e.) of magnetic flux density results obtained by 

presented algorithm with respect to results computed by EFC-400EP software, in chosen 

points, given in Fig. 15, along observed x-axis. 

Table 1 Percent errors of magnetic flux density results obtained by presented algorithm 

with respect to results computed by EFC-400EP software 

x (m) p.e. (%) 

0 3.276 

2.5 3.033 

5.0 2.727 

7.5 0.995 

10.0 0.389 

12.5 2.021 

15.0 2.541 

17.5 3.317 

20.0 1.588 

22.5 3.503 

25.0 4.807 

5. CONCLUSION 

In this paper, a 3D quasistatic numerical model for taking into account conductive 

passive parts of the overhead power lines and their effect on the computation of the 

magnetic flux density distribution is presented. The catenary conductors of the overhead 
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power line span are approximated by a set of straight thin-wire cylindrical conductor 

segments. Besides cylindrical segments of active conductors, the cylindrical segments of 

passive conductors are also taken into account using closed current contours, which can 

be natural or equivalent. These conductive passive parts have small influence on the 

magnetic flux density distribution, which has been quantified herein. Primarily, it is due 

to extremely low-frequency of the magnetic flux density produced by overhead power 

lines. An originally developed theoretical background is described in detail, including 

expressions for self and mutual potential coefficients of cylindrical conductor segments 

and expressions for self and mutual impedances per unit length of the conductive passive 

contours. An influence of conductive passive parts on the magnetic flux density is shown 

and quantified in the chosen numerical example of a typical 400 kV overhead power line.  
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