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Abstract. This paper represents an approach for the estimation and forecast of losses 

in a distribution power grid from data which are normally collected by the grid 

operator. The proposed approach utilizes the least squares optimization method in 

order to calculate the coefficients needed for estimation of losses. Besides optimization, 

a machine learning technique is introduced for clustering of coefficients into several 

seasons. The amount of data used in calculations is very large due to the fact that 

electrical energy injected in distribution grid is measured every fifteen minutes. 

Therefore, this approach is classified as the big data analysis. The used data sets are 

available in the Serbian distribution grid operator’s report for the year 2017. Obtained 

results are fairly accurate and can be used for losses classification as well as future 

losses estimation. 
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1. INTRODUCTION 

Big data analysis is rapidly becoming one of the most important tools in many aspects 

of engineering. Data are collected everywhere, and their numbers and collection rates are 

increasing each day. Therefore, various methods for processing of this data have been 

developed in recent years. These methods are efficient not only for extracting valuable 

information from a mass of data and their visualization, but also for developing predictive 

models for various applications. 

Increasingly high amount of data can also be observed in a field of electrical power 

engineering. Electrical power grid is being modernized faster than ever, with large 

number of smart sensors being installed in many points of the grid. These sensors collect 

information about various electrical variables which are important for normal grid 
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operation. These data are used everywhere, from the power generation side management 

to the demand side management. A good overview of many different applications of big 

data in electrical energy management and most common methods for data processing can 

be found in [2]. 

One of the most important usage of big data is prediction of solar and wind power 

generation based on collected weather data. Weather has a major impact on production 

from renewable sources, and therefore it is very important to observe the relationship 

between the two. 

Another, very interesting application of big data is detection of different consumption 

profiles based on measurements of different variables. Example would be [3], where the 

authors have used hourly electricity consumption readings and external temperature 

measurements to compute consumption profiles for residential customers. 

Electrical faults in power grid can present a big problem, especially when the fault 

occurs on a geographically distant part of a network. Fault detection, identification and 

location [4] can also be obtained from the data collected in various measurement points in 

the grid. 

Another big problem for electrical energy suppliers is energy theft. Theft of electrical 

energy can in some places reach astonishingly high values. Therefore, an approach for 

estimating the amount of stolen electrical energy based on smart meter data and least 

squares method for data processing has been developed and proposed in [5]. This topic is 

closely related to this paper, since the energy theft is observed as a non-technical loss 

which is also evaluated here. 

Prediction of losses in distribution network has drawn more attention during the last 

years due to the deregulated energy market conditions, where distribution network operators 

are obliged to procure the energy for covering losses on the open electricity market [6, 7]. 

Increased market deregulation [7, 8] and shares of renewable and intermittent energy 

generation [9], makes line loss prediction difficult. Line losses themselves are also 

influenced by a multitude of factors and non-linear correlations which makes predictions 

model even more complicated. 

Design of line loss prediction models have become a research priority in transmission 

networks as well and several different models have been proposed [10, 11, 12]. Losses 

are allocated using the quadratic expression in [10], formulated explicitly in terms of all 

the transactions in the system [11] with consideration of wind generation and varying loads 

in [12]. However, a majority of these models are mainly designed for line loss allocation 

issues for market applications as opposed to day-ahead predictions for TSO purposes. 

In distribution networks, different methods for the calculation of losses are used, 

including heuristic algorithms [13] and neural networks [14]. The near quadratic relationship 

that exists between load and loss has been used to develop empirical relations for estimation 

of loss [15]. These relationships relate either the loss and load factors [16] or the loss and 

load [17, 18]. In these methods, using simplified feeder models for computation of the loss, 

the coefficients in the quadratic function are determined using a curve fitting approach. 

Although the previous research and studies established satisfactory models for the 

energy losses calculation, they didn’t treat the process of the open market losses 

procurement. The contribution of this paper is therefore the seasonal classification and 

determination of curve fitting parameters for the purchase of energy losses.  Least squares 

optimization method which is used in this paper is very similar to machine learning 
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regression algorithms, but with certain restrictions attached to it. It is suitable for numeric 

data with linear or quadratic relationships of measured (input) and estimated (output) 

values. Least squares regression is a so called “supervised” learning algorithm, which will 

be described further in section 3. However, for experimental purposes, another machine 

learning algorithm was used for model improvement. This is the so-called clustering 

algorithm, which belongs to the “unsupervised” learning category. Even though these 

algorithms are used in various applications in electrical power engineering, to the authors 

knowledge, this is their first application in estimation of losses. 

2. PROBLEM DESCRIPTION 

In this paper, an approach for estimation of losses in distribution grid based on the 

available data analysis is proposed. These losses comprise of two components, namely 

technical losses (TL) and non-technical losses (NTL). The proposed approach is based on 

analysis of losses data collected in year 2017. This data will be used to estimate 

parameters of a predictive model for future losses estimation. 

2.1. Physical Interpretation 

Technical losses can be split into two terms. The first term represents the constant losses. 

These mainly represent the losses in magnetic cores of distribution transformers, but other 

factors, such as losses due to corona, constantly operating measurement equipment, leakage 

currents and losses in dielectrics also contribute. 

The other term is variable losses. They appear mainly in conductors but a small part of these 

losses can also be observed in other current carrying parts, such as switch contact resistances 

and busbars. These losses are proportional to the square of current or, equivalently, to the 

square of active power. 

Non-technical or commercial losses appear due to infrequent or bad reading of 

measurement equipment and electrical power thefts. Therefore, these losses are proportional to 

the active power. 

In distribution power grid of Serbia, electrical energy received from the transmission 

grid is measured every fifteen minutes throughout whole year. On the other hand, energy 

supplied to end users is measured once every month. Total losses represent the difference 

between total energy received from the transmission grid and total energy supplied to end 

users during one month. These data are collected and can be used for future losses 

estimation and losses classification. One method that allows this kind of estimation is 

described in the following section. 

2.2.   Mathematical Model 

There are several ways to model the losses in the distribution grid, but they all need 

information about energy obtained from the transmission grid and distributed sources and 

energy delivered to end users. The model chosen here represents the losses in the 

following polynomial form [19, 20]: 
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where ΔWc,j are the calculated (estimated) total losses for month j, i is the index of fifteen-

minute interval Δti in month j, Pi is an average input power for the that interval, aj 

represents the amount of constant losses in month j, bj is the coefficient associated with 

the commercial losses and is proportional to input power Pi in month j, and finally cj is 

the variable losses coefficient for month j, proportional to the square of power. For now, 

coefficients a and c are considered constant throughout the whole year, while the 

coefficient b varies by month. This assumption will be addressed in the following chapter. 

On the other hand, measured losses, denoted as ΔWm,j are already available as a 

difference between measured input and measured output energy. 

For calculation of coefficients a, b and c, least squares method was used, which means 

that the sum of squared differences between the calculated and measured values of losses 

was minimized. Total number of variables is 36 (twelve for constant losses – coefficients 

aj, twelve for commercial losses for each month – coefficients bj and twelve for variable 

losses – coefficient cj). Some of these variables are considered constant in some 

calculation, so the effective number of variables is lower. General objective function for 

minimization can now be written as: 
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Coefficient values are constrained to a certain range: for coefficient aj: amin ≤ aj ≤ amax, 

for coefficients bj: bmin ≤ bj ≤ bmax and for coefficient cj: cmin ≤ cj ≤ cmax.  Constraints for 

coefficients a, b and c have to be properly selected, based on their physical interpretation 

explained in the following chapter. 

2.3. Restrictions of the Proposed Method 

Proposed method has one drawback, it uses the monthly readings of energy 

consumption. This means that the value of measured losses is prone to errors due to bad or 

untimely readings. For example, in some rural areas, electricity consumption is read only 

every three months. This leads to slight under readings for certain months and slight over 

readings for others and, consecutively, to miscalculation of some parameters. 

Better results would be obtained if the consumption was read with higher frequency, 

preferably the same as the input readings. This would require large number of smart 

meters installed at every point in the grid, which is not yet realized in practice. However, 

smart meters are being installed every day and, in the future, more reliable and accurate 

data will be available for analysis. 

3. MATHEMATICAL MODEL SOLVING METHOD 

As it was mentioned earlier the mathematical problem given with (2) is solved using 

the least square optimization algorithm. This problem is very similar to a linear regression 

problem which exists in the field of machine learning. In linear regression, output values 
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are a linear combination of constant parameters and measured values of features 

(predictors). From (1) it can be observed that in this case, output values would be monthly 

measured values of losses, ΔWc,j, features would be Δti, Pi·Δti and Pi
2
·Δti and their coefficients 

would be a, b and c, respectively. However, since restrictions have been imposed on all 

parameters and some of them are also variable, this problem was reformulated into non-linear 

programming optimization problem, given with (2). 

For solving of this problem, standard mathematical methods were used, in this case the 

interior point algorithm. Input parameters are the fifteen-minute readings of electrical energy 

injected from the transmission grid and distributed sources into distribution grid and the 

monthly measured values of losses in the distribution system. Output consists of the values of 

coefficients a, b and c. 

For easy programing and formulation of problem, an open source optimization platform 

Yalmip [21] was used. Yalmip’s syntax allows easy and intuitive definition of variables, 

objective function, constraints and other options. Yalmip was used with one of Matlab’s 

integrated solvers for performing computations. It can select solver for a problem automatically, 

based on its structure, but also permits users to select the solver they think it fits best.  This 

allows all kinds of problems to be defined in the same way, unlike the case of using each solver 

individually, where user would have to define the problem in a form specific to that particular 

solver. 

The solver used for calculation of coefficients is Matlab’s fmincon nonlinear programming 

solver. This solver utilizes several different algorithms for objective function minimization, 

but the one used here was the interior point algorithm [22]. 

Variables involved in calculations are already denoted aj, bj and cj, with j = 1...12. 

Objective function is given with (2). 

Constraints are chosen based on real data, and the realistic values of coefficients. The 

total nominal iron core losses power of all transformers in the distribution system of 

Serbia is approximately 32 MW. Therefore, the parameter a constriction adopted is 30 ≤ 

a ≤ 40. Commercial losses always exist, but they do not exceed 10 % in Serbian 

distribution grid. Thus, adopted constraint for parameter b is 0.01 ≤ b ≤ 0.1. Unlike the 

previous parameters whose extreme values are relatively easy to estimate, parameter c 

cannot be constrained in such a straight-forward manner. Since it is multiplied by a square 

of power, its value is undoubtedly very small. Based on author’s previous experience, 

adopted constriction for this parameter is 0.00002 ≤ c ≤ 0.00006. As it was mentioned in 

the previous section, for this calculation the coefficients a and c are considered constant, 

while the coefficient b varies by month. This is not to be confused with constraints which 

are simply the minimum and maximum sensible values that can be obtained as calculation 

results. Since the grid topology and number of transformers remains very much the same 

throughout the whole year, it makes sense to keep coefficients a and c constant. On the 

other hand, coefficient b is affected by many external factors and therefore it is 

considered variable. All of these assumptions are used for the first calculation. 

4. NUMERICAL RESULTS 

Obtained results are presented in Table 1 and Fig. 1. Table 1 contains the real values 

of coefficients, while the values of coefficients bj and c in Fig. 1 are scaled. The scaling is 

used only to make all values visible on a chart. After the scaling, coefficients bj are shown 
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in percent, while the coefficient c is now dimensionally equal to W
-1

. Fig. 2 represents the 

comparison between calculated and measured values of losses. 

Table 1 Calculated values for coefficients 

Month 
Coefficient a 

(MW) 

Coefficient b 

(pu) 

Coefficient c 

(MW
-1

) 

January 32.739 0.091499 0.000020609 

February 32.739 0.072052 0.000020609 

March 32.739 0.061105 0.000020609 

April 32.739 0.039002 0.000020609 

May 32.739 0.057862 0.000020609 

June 32.739 0.013125 0.000020609 

July 32.739 0.019671 0.000020609 

August 32.739 0.014427 0.000020609 

September 32.739 0.018085 0.000020609 

October 32.739 0.043728 0.000020609 

November 32.739 0.051645 0.000020609 

December 32.739 0.065777 0.000020609 

It can be observed from Fig. 2 that the computations were done successfully. 

Calculated and measured losses are equal which means that the coefficients are well 

estimated. Statistically speaking, it can be said that the input data, defined in the previous 

chapter are the training data for the model (1). 

 

Fig. 1 Scaled values of the calculated coefficients 
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Fig. 2 Comparison between calculated and measured losses 

From Fig. 2 it is obvious that the model fits the training data well. Now these coefficients 

can be used for future estimation of losses under the previously introduced assumptions. 

5. MODEL IMPROVEMENT 

Distribution companies are procuring the energy for covering losses on the open 

electricity market. In order to simplify the procurement procedure, the whole concept can be 

extended by grouping months into several distinct seasons. The advantage of distinction is 

grouping of coefficients by season instead of having different coefficients for each month 

and potentially better prediction accuracy in the certain season. The accuracy however 

depends on quality of the collected data. Grouped coefficients are less prone to various 

stochastic errors than individual coefficients. Besides that, there are noticeable differences of 

the climate factors, such as external temperature and humidity in the same months during the 

years. Even the reading of electrical energy consumption is not as frequent in winter as it is 

at summer. On the other hand, adopting one set of coefficients for the whole year would 

cause too high error values in future calculation of losses. Therefore, a three-season model 

was adopted, and months were clustered into winter, summer and “transient” seasons. 

Clustering itself is an “unsupervised” machine learning algorithm, which means that, 

unlike regression, it doesn’t have the output data to compare inputs to. Instead, it seeks to 

find similarities among the input measurements. In this case, there are twelve input points 

- twelve months and three features – coefficients a, b and c. This means that there is a 

total of 36 input values among which a clustering algorithm should find similarities. A 

twelve by three matrix was used for convenient storage of these data. In this particular 
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case, that matrix is given in tabular form with Table 2, where rows represent input 

measurements for each month and columns represent features. 

The number of clusters is another input to the clustering algorithm. As explained 

earlier, the number of clusters was chosen to be three, since it was utmost logical to divide 

year into three seasons according to weather conditions. Nevertheless, three different 

number of clusters were examined, ranging from two to four and the clustering results 

were observed for each calculation. Since the results depend on both number of clusters 

and initial (random) clustering [23], there have been several possible solutions, among 

which the one with most sense was chosen. Generally, there is no single “best” way of 

choosing the number of clusters. Rather, a certain expertise in the field that the data 

belong to is required in order to choose the appropriate number [23]. 

Another important issue with clustering is different scaling of data features. Features’ 

scales can be different from each other by several orders of magnitude, such as in Table 2. 

To address this issue, a normalization is required in order to obtain meaningful clustering 

results. 

For this particular case of clustering months into seasons, a somewhat different 

approach than before was used. The previously introduced constrictions still apply, but 

now only coefficient a is considered constant and its value fixed to 32 MW. All the other 

coefficients are considered variable for every month. This way, coefficients are optimized 

so that calculated losses are equal or almost equal to measured losses, similar to the 

previous case, depicted in Fig. 2. These values of coefficients serve as an input data set 

for the process of clustering. Therefore, they will be referred to as the initial coefficients. 

Obtained values of these coefficients are shown in Table 2, while the Fig. 3 shows their 

scaled versions (same scaling as Fig. 1). Comparison of calculated and measured losses is 

shown in Fig. 4. Values of errors i.e. differences from Fig. 4, both in absolute and relative 

units are given in Table 3. 

Table 2 Calculated values for coefficients 

Month 
Coefficient a 

(MW) 

Coefficient b 

(pu) 

Coefficient c 

(MW
-1

) 

January 32 0.0353882 0.00003250295 

February 32 0.0380628 0.00002887427 

March 32 0.0198292 0.00003235119 

April 32 0.0360867 0.00002157678 

May 32 0.0337267 0.00002904083 

June 32 0.0125835 0.00002087766 

July 32 0.0158188 0.00002198364 

August 32 0.0132383 0.00002108569 

September 32 0.0150446 0.00002172672 

October 32 0.039316 0.00002210148 

November 32 0.0455431 0.00002230626 

December 32 0.0357529 0.00002795988 
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Fig. 3 Scaled values of the calculated coefficients after initial optimization 

 

Fig. 4 Comparison between calculated and measured losses after initial optimization 
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Table 3 Absolute and relative differences in calculated  

and measured losses after initial optimization 

Month 
Absolute difference 

(MWh) 

Relative difference  

(%) 

Jan 0.0000 0.0000 % 

Feb 0.0000 0.0000 % 

Mar 0.0000 0.0000 % 

Apr 117.5637 0.0432 % 

May 0.0000 0.0000 % 

Jun 0.0000 0.0000 % 

Jul 0.0000 0.0000 % 

Aug 0.0003 0.0000 % 

Sep 0.0000 0.0000 % 

Oct 784.1185 0.2644 % 

Nov 407.3877 0.1088 % 

Dec 0.0000 0.0000 % 

From Table 2, it can be noted that the values of coefficients bj are different than those 

in Table 1. The reason for this lies in the fact that now all the other coefficients are 

different too (although coefficient a is only slightly different). This means that the 

coefficients bj also had to change in order to achieve the best possible fit to the input data. 

From Fig. 4 and Table 3 it is obvious that coefficients fit the input data almost 

perfectly, since the yellow bars are almost invisible for every month. 

Coefficients b and c are now variable throughout months, and discovering similarities 

among them is the key for clustering of months. This approach theoretically gives better 

results than the approach with two constant parameters because in the former case, the 

clustering is done on the basis of two features (parameters b and c), while in the latter 

case, clustering would have been done on the basis of one feature only (parameter b). This 

theory has also been proven experimentally. Based on these values, months are clustered 

into seasons and clustering results are shown in Table 4. 

Table 4 Clustered months 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Cluster index 1 1 1 3 1 2 2 2 2 3 3 1 

Season Win Win Win Tra Win Sum Sum Sum Sum Tra Tra Win 

Season labels in Table 4 stand for Winter season (cluster 1, label “Win”), Summer 

season (cluster 2, label “Sum”) and Transient season (cluster 3, label “Tra”). From the 

Table 4 it can be observed that months are clustered almost completely as expected. The 

only exception is May, which has been clustered as a winter month. Looking back to the 

previous calculations, one can notice that May does not follow the usual pattern like other 

months. In Fig. 1, all months follow general pattern that coefficient b values get lower 

during summer and higher during winter in characteristic “elbow” shape. However, value 

for May presents an outlier from that pattern since its value is higher than values for the 

surrounding months. There is also a visible difference of parameter c for May in Fig. 3 



 Energy Losses Estimation Using Polynomial Fitting 413 

compared to surrounding months. This value corresponds more to the winter months than 

to other months. The reason for this could be a significant under reading of electrical 

energy consumption in May, untimely data collection and report creation, error in 

statistical processing of data or simply higher energy theft rate in that particular month. 

Final coefficients were calculated as centroids of each cluster from Table 4. Centroid 

of a cluster is a vector of mean values of all features for all points in that cluster. These 

coefficients are shown in Table 5 and their scaled values depicted in Fig. 5 while the 

comparison of calculated and measured losses for each month is shown in Fig. 6 and 

absolute and relative differences given in Table 6. 

Table 5 Grouped coefficients for three seasons 

Cluster index Season Coefficient a 

(MW) 

Coefficient b  

(pu) 

Coefficient c 

(MW
-1

) 

1 Winter 32 0.0350917 0.00002942712 

2 Summer 32 0.0141719 0.00002141825 

3 Transient 32 0.0403153 0.00002199484 

 

 

Fig. 5 Grouped coefficients for the three seasons 
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Fig. 6 Comparison between calculated and measured losses after clustering 

Table 6 Absolute and relative differences in calculated and measured losses  

after initial optimization 

Month 
Absolute difference 

(MWh) 

Relative difference  

(%) 

Jan 48709.5891 7.6852 % 

Feb 697.9128 0.1541 % 

Mar 12719.8945 3.3250 % 

Apr 13128.5232 4.6069 % 

May 4248.3817 1.5425 % 

Jun 6624.1044 3.5945 % 

Jul 7211.0681 3.7413 % 

Aug 4227.7345 2.1589 % 

Sep 3686.2140 2.0147 % 

Oct 2343.3930 0.7859 % 

Nov 16880.7436 4.7272 % 

Dec 17489.1562 3.5188 % 

It can be seen that small error appears in the calculation. This error is a consequence 

of fact that one set of coefficients cannot perfectly fit all months, but seeks to reduce the 

overall error instead. Higher error can only be observed for winter months, due to the fact 

that May once again influenced this calculation. This also reflected to the somewhat 

higher value of coefficient c for winter season. Nevertheless, the overall error value is 

very low compared to values of losses. 
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6. CONCLUSIONS 

In this paper, a new approach for calculation of losses in the electrical distribution grid 

was presented. There are two general classes of losses: technical and non-technical losses. 

Both types are unavoidable, but it is important to know how each type affects the total 

amount of losses, i.e. they have to be classified. This is done by analyzing the data 

available from the distribution grid operator. The data contain the distribution grid input 

energy measurement for every fifteen-minute time interval and the monthly measurements 

of energy delivered to end users. Difference between these two are the real total losses for 

a certain month. On the other hand, a polynomial equation is introduced to calculate that 

same losses based on the grid input power. Coefficients for this equation are computed 

using the least squares method, by minimizing the squared differences between the 

calculated and measured losses. These coefficient values are constrained based on their 

physical interpretation and authors experience. Results show that the minimization was 

successful and that the losses can clearly be classified this way. Additionally, calculated 

coefficients can be used for future estimation of losses. This concept was further 

expanded by introducing clustering of months into seasons. The obtained results show 

expected distinction of months, with the exception of May, which was classified as a 

winter month. This, along with the results of previous calculations, lead to a conclusion 

that there has probably been an error in energy consumption readings in this particular 

month. However, the overall results are very good, and the whole concept can be further 

improved. Future research will be focused on processing the data for the previous few 

years. This could allow the researchers to discover some specific trends and obtain better 

clustering accuracy since some seasons may begin in one year and end in another. 
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