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Abstract. A new type of a microwave permittivity sensor with a short open stub as a 

resonator is introduced. The open stub is realized as a double-sided parallel-strip line 

without a substrate and can be totally immersed into the measured material. It  provides 

high sensitivity of the resonant frequency nearly proportional to the ratio of square roots 

of dielectric constants of the measured materials. The sensor is tested in two different 

frequency ranges and for two different dielectric constant ranges (oils and ethanol-water 

mixture). Its technology is without any additional technological processes such as vias, 

air-bridges or defected ground structures. Presented sensor is designed, fabricated and 

tested showing good agreement between simulations and measurements.  

Key words: Microwave sensor, microstrip, double-sided parallel-strip line, permittivity 
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1. INTRODUCTION 

Microwave sensors are being increasingly used as sensing components in many 

applications [1]. They are sensitive, able to survive overdrives and their signal can be 

directly transmitted over a distance [2]. One type of microwave sensor is a resonant sensor. 

Great advantage of this type of sensor is its principle of operation that is based on the 

resonance frequency and is generally immune to the environmental noise. Besides, the use 

of the planar technology enables an easy, fast and inexpensive fabrication. Advantages of 

the planar microwave fabrication process finds wide application in planar structures such as 

microstrip, CPW and strip line [1,3]. Accordingly, a microwave microstrip resonator is a 

good choice for a sensor [4-9].  

The location of the Material Under Test (MUT) is usually above the microstrip line 

[4,9], under the pattern etched in the microstrip ground plane [5,6] or above the coupling 

area of the coupled microstrip structures [7,8]. However, there is one main problem - the 
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fact that the sensitivity depends on the extent of the field penetration inside the MUT [3]. 

In all three mentioned positions of the MUT only a part of the field lines is inside the 

MUT because the field lines in microstrip are predominantly concentrated within the 

substrate, as presented in Fig. 1. 

 

Fig. 1 Electric (E) and magnetic (H) field lines in microstrip are stronger within the 

substrate. Material under test (MUT) is usually above the substrate in the lower 

field region. Gray areas represent metallization 

It is obvious that locating the MUT inside the substrate results in a higher sensitivity [3]. 

Still, one can insert the MUT (i.e. fluid) through the substrate [10, 11]. This solution is 

inconvenient especially in cases where thin substrates are used and is suitable only for 

microfluids. Another solution can be double-sided parallel-strip line printed on dielectric 

pipes for fluids testing, [12], though it is appropriate for pipes but not for immersing a stub 

into a fluid. Also, the resonance occurs at low frequencies and open stubs are in this case 

too long (around 25 cm). Some analogy with a coaxial open stub is given in [4]. Its 

resonance is also at low frequencies thus an open stub is too long (around 33 cm), and is not 

practical for a number of applications. Besides, it is tested only for high dielectric constants. 

The microstrip sensor for immersing into a fluid is presented in [5]. It has disadvantages in 

the construction and the protection problems during measurements. One solution to 

problems from [5] is in use of Substrate Integrated Waveguide (SIW) technology [13]. 

However, the disadvantage of the solution presented in [13] is great number of vias in the 

SIW technology.  

 In this paper a new type of a modified microstrip /4 - open stub resonant sensor is 

introduced. It is suitable for immersing into a fluid and has a short open stub ( 20 mm). 

The whole structure is in the form of a double-sided parallel-strip line [14,15], i.e. a T-

junction with an open stub without a substrate as a sensing part, Fig. 2. The pair of two 

symmetrical metal strips without a substrate represents the sensing part of the stub. 

Double-sided parallel-strip line technology is chosen in order to obtain such sensing 

structure. The absence of a substrate enables each stub strip to be totally surrounded by 

the MUT. According to this, the total field around the stub strips is inside the MUT and 

naturally produces higher sensitivity. The sensing stub can be simply immersed into the 

MUT without any additional preparation or use of any auxiliary structure like cavity. The 

sharp stopband always exists and the resonant frequency can be clearly measured. 
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Fig. 2 Basic layout of a double-sided parallel-strip line T-junction with an open stub 

without substrate 

An open stub is a well-known resonator. The first resonant frequency of an open shunt 

stub is for the wavelength: 
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where gr is the guided resonant wavelength, 0 is the free space wavelength, ɛreff is the 

effective dielectric constant and L is the length of the open stub, fR is the resonant frequency 

and c is the speed of light. In the microstrip structure ɛreff mainly depends on the dielectric 

constant ɛr of the microstrip dielectric substrate because the field lines of the microstrip are 

predominantly concentrated within the substrate, as presented in Fig. 1. The goal of the 

paper is to use an open stub without a substrate in which case the material under test totally 

fills both the area surrounding the substrate and the area commonly occupied by the 

substrate. In that case ɛreff  ɛrMUT induces high sensitivity. The ideal sensitivity, as the shift 

of the open stub resonant frequency, is equal to the ratio of square roots of dielectric 

constants of the measured materials, eq. (1). 

The proposed sensor is fabricated in microstrip printed planar technology without any 

additional technological process such as vias, air-bridges, defected ground structures (DGS) 

or many vias for substrate integrated waveguide (SIW). The realization of the sensor was 

carried out in an easy way using standard photolithographic procedure. Besides, the sensor 

dimensions are within technological tolerances.  

2. DESIGN AND FABRICATION 

As mentioned previously, the structure is designed in printed planar technology as a 

double-sided parallel-strip line T-junction. The objective of the design was to fabricate the T-

junction with an open stub without a substrate. According to fabrication possibilities, the 

realized structure is somewhat different from the basic ideal model shown in Fig. 2. The 

photos of the both sides of the fabricated structure are displayed in Fig. 3.  

The main part of the proposed structure is realized on CuClad 217 substrate (with relative 

dielectric constant ɛr = 2.17 and thickness h = 1.143 mm) as a double-sided parallel-strip line 

T-junction. Layouts of the bottom and the top parts of the structure are presented in Fig.4 and 

are denoted by gray and black color, respectively. The structure consists of a 4.5 mm wide 

50 Ω-double-sided parallel-strip line with a double-sided parallel-strip line open stub in the 

middle which is 4.75 mm long and 4.5 mm wide as shown in Fig.4. The part of the stub 
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printed on the dielectric substrate serves for bonding the rigid metal strips (A in Fig.3) on both 

sides while the distance between the strips is the same as the thickness of the substrate (1.143 

mm). Since the structure is designed as a symmetrical (balanced) microstrip line, there has to 

be a transition (BAL-UN) to unsymmetrical (conventional) 50 Ω-microstrip line at its both 

ports, [15]. In our case, for the used dielectric substrate, the width of this 50 Ω-line is 3.5 mm. 

Width of the ground plane area at the SMA connector location is 14 mm. 

Rigid metal strips, 20 mm long, 4.5 mm wide and 0.3 mm thick, are bonded (conventional 

eutectic alloy) to the 4.75 mm long stubs (A in Fig.3) on the both sides of the substrate. Free 

parts of the rigid metal strips are forming 15.25 mm long part of the open stub without a 

substrate (B in Fig.3). 

 
a) Bottom side of the proposed microwave sensor  

 
b) Top side of the proposed microwave sensor 

Fig. 3 Photograph of the proposed microwave sensor with SMA connectors. A – Part of 

the metal strip on the substrate; B - Part of the metal strip without the substrate 

 
Fig. 4 Layout of the bottom (gray) and the top (black) side metallization of the proposed 

double-sided parallel-strip line T-junction with a BAL-UN transition to the 

conventional microstrip line at both ports 
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3. SIMULATION 

The main problem is a double segmented open stub. The shorter part of this stub (part 

A in Fig. 5) is printed on the substrate and cannot be immersed in the MUT. It is treated 

like a common double-sided parallel-strip line on a substrate. The part B (Fig. 5) is 

immersed into the MUT so to be totally surrounded by it. 

Simulations were carried out using 3D WIPL-D Microwave Pro program package [16]. 

       
 a) Segments of the open stub b) WIPL-D Pro simulation model                

Fig. 5 Sketch of the open stub resonator and its WIPL-D simulation model. A - Segment 

of the stub printed on the substrate (4.75 mm); B - Segment of the stub without the 

substrate immersed in the MUT (15.25 mm)  

The WIPL-D simulation model is presented in Fig. 5b. Simulation results are obtained 

for two specific ranges of the relative dielectric constants. The first is for r which ranges 

from 1.5 to 3, specific for oils, while the second is for r that ranges from 20 to 80, 
specific for the water-ethanol mixtures. For the mixture water-ethanol the parameters are 

taken from [17]. High imaginary parts ofr are incorporated from [17] to calculate real 
resonant frequency for the measured frequency range (ethanol 70%: 39.5 - i7 and ethanol 

96%: 22 - i11)Relative dielectric constantr-MUT related to the resonant open stub 
frequencies are presented in diagrams in Fig. 6., Fig. 7. and Fig. 11. For the reference air 

(r = 1) simulated resonant frequency is 3.74 GHz. 

 
Fig. 6 Simulated diagrams for the first specific range of the MUT relative dielectric constants 

(1.53.0) vs. the resonant frequencies 
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Fig. 7 Simulated diagrams for the second specific range of the MUT relative dielectric 

constants (2080) vs. the resonant frequencies 

4. MEASUREMENT 

The measurements are performed in the steady state at the temperature around 300 K 

in order to obtain stable results. Measurement setup with the sensing open stub and the 

container with the MUT are presented in Fig. 8. The container, shown in Fig. 8, inserts 

itself a negligible frequency shift. 

Transmission coefficient (S21) of the proposed structure is measured using the Agilent 

Technologies Network Analyzer N5227A. Several materials were tested: air, gasoline 

(medical), paraffin oil and sunflower oil, as well as water and ethanol. The measured S21 

parameters in both cases are presented in Figures 9, 10 and 12, respectively. 

  

Fig. 8 Measurement setup with the sensing open stub and the container. A - Segment of 

the stub printed on the substrate; B - Segment of the stub without the substrate to 

be immersed into the MUT 
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Fig. 9 Measured S21 coefficient of various MUT  

 

Fig. 10 Measured S21 coefficient of water and Ethanol 

 

Fig. 11 Ethanol 96% simulated S21 coefficient (parameters from [17]) 
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Fig. 12 Ethanol 96% measured S21 coefficient 

 According to the diagrams presented in Fig. 6. and Fig. 7. ɛr-MUT values (and measured 

resonant frequencies) are: gasoline-medical (2.755 GHz) ɛr = 1.90; paraffin oil (2.584 GHz) 

ɛr = 2.16; sunflower oil (2.4 GHz) ɛr = 2.5; water (0.449 GHz) ɛr = 73; diluted ethanol 35% 

(0.49 GHz) ɛr =  61; ethanol 70% (Ethanol 70% v/v) (0.629 GHz) ɛr =  37 and ethanol 96% 

(Ethanol 96% v/v) (0.787 GHz) ɛr =  22. For the air (3.74 GHz), ɛr =1. All results reasonably 

match values from the available references [17-21] as shown in Table 1. Agreement 

between simulation and measurement can be tested by comparing S21 parameters for 

ethanol 96% from the simulation in Fig. 11 and from the measurement in Fig. 12.  

 The loss tangent tan(δ) is extracted (-3dB frequency range) according to [22] using the 

relation for the quality factor Q  tan(δ) and contribution of the MUT part in the entire 

electrical length of the open stub. The authors assume that tan(δ) of the CuClad 217 

substrate as well as tan(δ) of the rigid metal strips in the air are negligible comparing to 

the tan(δ) of the MUT. Proposed estimation gives somewhat higher tan(δ) of the MUT 

(conservative version). The tan(δ) of the MUT is estimated from the influence of the 

MUT on the resonator and is  slightly higher than the measured tan(δ) (only the longer 

part of the open stub is in the MUT).  
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Table 1 Results 

 
MUT 

Measured  
           ɛr             ( fR )               tan(δ) 

Reference  
            ɛr (error %)   tan(δ) (error %) 

Gasoline-medical  1.90 ±0.003    (2.755 GHz)       0.015 [18]    2.0   ( 5. %)    0.015   ( 1. %) 
Paraffin oil  2.16 ±0.018    (2.584 GHz)       0.013 [19]    2.2   ( 2. %)         
Sunflower oil  2.50 ±0.005    (2.4 GHz)           0.08 [20]   2.56 ( 3. %)     0.128   (38. %) 
Water # 73.0  ±3.8        (0.449 GHz)       0.05 [21]  76.0   ( 4.%)     0.026   (90. %) 
Ethanol 35%  61.0  ±2.6        (0.49 GHz)         0.064 [17]  58.9   ( 4.%)     0.07     (  9. %) 
Ethanol 70% 37.0  ±1.2        (0.629 GHz)       0.186 [17]  39.5   ( 7. %)    0.177   (  5. %) 
Ethanol 96% 22.0  ±1.0        (0.787 GHz)       0.53 [17]  22.0   ( 1.%)     0.5       (  6. %) 

# Tap water – water from the regular water supply 
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5. DISCUSSION 

The sensor is tested for two dielectric constants and frequency ranges (oils and 
ethanol-water mixture). The frequency shift between two measured materials is close to 
the ratio of square roots of their relative dielectric constants ɛr for both ranges. For 
example, the ratio between the air and the water resonant frequencies is around 8.3 and 
the ratio between square roots of the water and the air dielectric constants is around 8.5. 
For gasoline these ratios are 1.36 and 1.38, respectively. The sensing part of the open 
stub is relatively short (15.25 mm) and can be immersed into a small container.   

The measurement errors are calculated according to the frequency step in the 
measurement process, Table 1. The measurement errors against values in references [17-
21] are given in percentages [%]. The errors are high for tan(δ) of the sunflower oil and 
water due to not so fixed mixture content of the sunflower oil and water from the regular 
water supply (especially for tan(δ)). Relative sensitivity for both dielectric constant 
ranges, (1.5-3.0) and (20-80), are given in Fig. 13 and Fig. 14, respectively. The resolution 
depends on the frequency step and on the dielectric constant range. 

 
Fig. 13 Relative sensitivity for the first specific range of the MUT relative dielectric constants 

(1.53.0) vs. dielectric constant 

 
Fig. 14 Relative sensitivity for the second specific range of the MUT relative dielectric 

constants (2080) vs. dielectric constant 
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 The second group of resonant frequencies in Fig. 10 is from the second resonant 

bandgap from the open stub (3 times the first resonance). The second resonances are 

somewhat shifted and have wider bandgaps. The reason is lower dielectric constant and 

higher tan(δ) for higher frequencies [17, 21]. 

6. CONCLUSION 

The paper introduces the new type of a microwave resonant sensor realized as a T-

junction with an open stub as a sensing part. The sensing part of the stub represents a pair of 

two metal strips in the form of a double-sided parallel-strip line without a substrate. The 

absence of the substrate enables each stub strip to be totally surrounded by the MUT. The 

frequency shift between two measured materials is close to the ratio of the square roots of 

their relative dielectric constants ɛr-MUT. 

The proposed sensor is fabricated in the planar technology without dimension tolerance 

problems: narrowest line width is 3.5 mm that is much wider than typical photolithographic 

manufacturing tolerances (around 30 microns). The sensing open stub is short (15.25 mm), 

but still significantly longer than common tolerances. There are no additional technological 

processes such as vias, air-bridges, defected ground structures (DGS) or great number of 

vias like in substrate integrated waveguide (SIW) technology. The only additional process 

is bonding of the rigid metal strips to the microstrip line on the substrate.  

The sensing stub can be simply immersed into the MUT without any additional 

preparing or use of auxiliary structures like cavity. The sensor is suitable for distinguishing 

the MUT, especially mixture concentrations such as water and ethanol mixture. Presented 

sensor is tested for two dielectric constant ranges: oils (1.5-3) and ethanol-water mixtures 

(20-80), and in two frequency ranges: around 2 GHz and below 1 GHz, respectively. In 

both cases frequency shift between two measured materials is closely proportional to the 

ratio of the square roots of their relative dielectric constants. All results reasonably match 

values from the available references.  
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