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Abstract. The paper proposes a new method of identifying the linear model of a DC 

motor. The parameter estimation is based on the closed-loop step response of the DC 

motor under a proportional controller. For the application of the method, a deliberate 

delay of the measured speed was introduced. The paper considers the speed regulation 

of the direct current motor with negligible inductance by applying 1-DOF and 2-DOF, 

proportional integral retarded controllers. The proportional and integral gain of the PI 

retarded controllers was received by using a pole placement method on the identified 

model. The Lambert W function was applied for the identification and in designing the 

controller with the purpose of finding the rightmost poles of the closed-loop as well as 

the boundary conditions for selecting the gain of the PI controller. The robustness of 

the calculated controllers was considered under the effect of an disturbance, 

uncertainty in each of the DC motor parameters as well as perturbations in time delay. 
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1. INTRODUCTION 

DC motors have a vast usage range: starting with children’s toys, through house 

appliances, computer equipment, to the automobile industry - for example [2]. It is well 

known that the dynamic behavior of the direct current (DC) motor can be approximated by 

a linear model and that there are multiple ways of its control [3], such as robust speed 

control [4], predictive control [5], optimal control [6], the application of the integral 

retarded algorithm [7], etc. The proportional integral (PI) system for controlling the speed of 

a DC motor communicated by TCP/IP and the Ethernet network is presented and analyzed 

in [8], wherefrom it can be seen that delay affects the stability of the system.  
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For the purpose of designing a controller, it is necessary that the DC motor model 

represents the dynamics of a real motor as accurately as possible. For this reason, the motor 

parameters established by the manufacturer are verified by means of various methods of 

identification and depending on the identified model, the controller of the desired type is 

then designed. There exist various different procedures for the identification of DC motor 

parameters among which are: the parameter estimation of the linear models and using step 

signals [9], the method for closed-loop identification of position-controlled dc 

servomechanisms [10], the procedure of parameter identification of DC motor model using 

a method of recursive least squares [11], parameters are estimated using the proposed 

reduced-order recursive least square parameter identification and discrete-time disturbance 

observer in [12] and Linear Elman Neural Network based Genetic algorithm are used to 

find parameters in [13].  

This paper suggests a new method of estimating linear DC motor model parameters. 

The method is based on a closed-loop step response to a DC motor with a proportional 

controller, with the known delay being considered in the measurement of velocity. Mean 

absolute error (MAE) and root mean squared error (RMSE) index are used to validate the 

obtained model.  

The paper explores the methods of the proportional-integrative controller tuning for 

speed regulation of the DC motor with negligible inductance. The synthesis of the PI 

controller was performed by using a pole placement method with the features of the 

Lambert W function [14]. Using the analytical solution form in terms of the matrix 

Lambert W function (LWF) [15]-[19] and the limitations of the matrix-like Lambert W 

function provided in [20], the characteristic system equation for the desired rightmost 

poles of the closed-loop system was solved and the PI controller parameters were set. 

The proposed method of controlling the speed of the DC motor was developed for one 

degree of freedom (1-DOF) and two degrees of freedom (2-DOF) PI controller. This 

parametric PI controller can be used for the proportional-derivative (PD) controller in the 

sense of controlling the position of the DC motor shaft.  

The paper considers two controller synthesis methods. With the first method, during the 

process of designing the PI controller, the possibility of time delay in the feedback branch 

[1] is taken into account. Considering that the proposed procedure takes into account the 

possible time delay, the received characteristic system equation is transcendent and has 

infinite solutions. The equation can also be solved by means of the Lambert W function [1], 

[21]-[22]. Apart from the above-mentioned methods, literature also recognizes other methods 

of PI controller configuration as well as DC motor control system stability analyses. For 

example: a nonsmooth optimization based stabilization method has been used to design PV 

and PI controllers for a DC motor system with a pointwise time-delay in the feedback loop in 

[23], a theoretical method has been used to compute the delay margin values for stability for 

various values of the PI controller gains for a DC motor speed control system that contains 

time delays in feedback and feedforward parts in [24], the possibility of designing PI 

controllers to optimize given performance criteria is given with a characterization of the 

complete set of stabilizing PI controllers for a FOPTD system in [25].  

It is well known that a time delay can produce that a feedback system becomes 

unstable, as well as that introduction of a delay for control purposes may stabilize an 

unstable system [26]. The added delay to the control law can be treated as an additional 

control parameter, as mentioned in [27], where the delay was added to stabilize the open-
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loop unstable system. A second method was designed in accordance to this idea and it 

was based on the deliberate introduction of time-delays (h) into the systems for control 

purposes (PI retarded controller). The processes of designing both controllers are identical. 

There exist several methods for determining the stabilizing set of (Kp, Ki) values, 

including the extension Hermite-Biehler Theorem to quasipolynomials which is based on 

the work of Pontryagin given in [25]. In this paper, the boundary conditions for selecting 

the PI controller parameters are determined using the Lambert W function. 

Identification of a linear DC motor model provided by the suggested algorithm is 

shown on the example of the DC motor with the parameters given in [13]. This linear 

model was used in order to design the controller. The control laws are validated for the 

DC motor with parameters given in [13] by simulation. Boundary conditions for selecting 

desired poles of the closed-loop system, boundary values of the PI controller gain as well 

as the parameters necessary for determining them are confirmed as well. The robustness 

of the received controllers was taken into account for disturbance, uncertainty in each of 

the DC motor parameters as well as perturbations in time delay. 

The paper is organized in the following way: In Chapter 2, the basic properties of the 

Lambert W function were presented. In Chapter 3 the linear model of a DC motor is 

presented. Identification of a linear DC motor model is presented in Chapter 4. The design 

of 1-DOF and 2-DOF PI retarded controllers for speed regulation of a DC motor was 

explained in Chapter 5. Boundary conditions for selecting the desired poles of the closed-

loop system as well as boundary values of the PI controller gain are presented in this 

chapter. Simulation examples of the identification and design of the controller, as well as 

the robustness analysis, are provided in Chapter 6. Chapter 7 provides the conclusion with 

the suggestion for further analysis.  

2. LAMBERT W FUNCTION 

Introduced in the eighteenth century by Lambert and Euler [14], the Lambert W 

function W(z) is a solution of the following equation 

 ( )( ) , .W zW z e z z C   (1) 

The Lambert W function is a complex value, with a complex argument. Considering 

the fact that z belongs to a set of complex numbers C, Lambert W function has an infinite 

number of solutions and an infinite number of branches Wk(z) where k ϵ (∞,∞). If z 

belongs to a set of real numbers R, only the Principal branch W0(z) for k = 0 and branch 

W-1(z) for k = 1, assume the real values Fig. 1.  

Principal branch W0(z) is analytic at the point of zero, which ensues from the 

Lagrange’s inversion theorem which provides the series expansion with the radius of 

convergence e1. 
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Fig. 1 The graph of Wk(z), for zϵR and kϵ(-1,0). 

Lambert W functions have been implemented in the various commercial software 

packages, such as Maple and Matlab. A more detail explanation can be found in [14]. 

3. LINEAR MODEL OF A DC MOTOR 

With respect to armature current and shaft speed, the dynamics of a DC motor can be 

described by electrical and mechanical first order differential equation  
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 (3) 

where: L – armature inductance, J – the moment of inertia of the moving parts, R – the 

resistance of armature winding, β – the damping coefficient due to viscous friction, Ke – 

the back EMF constant, Km – the motor torque constant, u(t) – the input voltage, i(t) – the 

armature current and ω(t) – the angular velocity of the rotor.  

It is rather known that the linear model of the direct current motor with negligible 

inductance [28], can be described by using a differential first-order equation of an inertial 

system (4), where Tm and Ksm are the motor time constant and the motor gain, respectively, 

received from the manufacturer and checked by the process of identification.  
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    (4) 

The motor time constant Tm and the motor gain Ksm have the following values 
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If the dimensionless control signal is the scaled input voltage u(t) = ν(t) / νmax, the 

admissible controls must satisfy the inequality |u(t)| < 1.  

With respect to Ks = Ksmνmax and Ts = Tm, the velocity (speed) transfer function Gmv(s) 
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of the DC motor and angular (position) transfer function Gma(s) of the DC motor, 

received from (4), respectively are 
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where the angle α represents the position of the motor shaft.  

4. PROPOSED METHOD PARAMETER ESTIMATION OF THE LINEAR DC MOTOR MODEL 

The Control system, for the suggested parameter estimation approach of the linear DC 

motor model with the negligible inductance, is shown in Fig. 2, where Gmv(s) is the 

velocity transfer function of the DC motor (6) with the parameters that need to be 

estimated, Gc(s) = Kp is the transfer function of the P controller, Ktg is the tachogenerator 

constant, ω(t) is a controlled speed, ωr(t) = uref(t) / Ktg is the desired rotational speed and 

e(t) is the tracking error where h is the known time delay.  

 

Fig. 2 Control system of a DC motor with a retarded controller. 

The selection of the controller gain needs to be undertaken in such a way so that the 

underdamped system with the closed-loop transfer function given in (7) is received. 
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If in equation (7), time delay from a denominator is approximated by a Padé approximant, 

the output of the closed-loop system can be written down in the following form 

 0

2 2

( 1)
( ) ( )

2
r

n n

K s
s s

s s

 
  

  
 (8) 

Thus, the observed system can be considered as the second order plus time delay 

system with dynamic numerators, where ωn is the natural frequency, ξ is the damping 
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ratio, ωd is the damping frequency, τ0 is time constant defining zero of the closed-loop 

transfer function and K is gain. 

A typical closed-loop step response of the system is shown in Fig. 3, where ωss – is 

the steady state value, t1 – is the time required for the output to reach its first maximum 

value, ω1 – is the first maximum value of output, t2 – is the time required for the output to 

reach its first minimum value and ω2 – is the first minimum value of the output. 

 

Fig. 3 Closed-loop step response of a DC motor with a proportional retarded controller. 

The gain of the velocity transfer function Gmv(s), can be found from 
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Overshoot (OS) can be calculated approximately in the following way 
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The damping ratio ξ received from (10) is 
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The damped frequency can be calculated from 
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therefore the natural frequency is 
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The characteristic equation of the system described by equation (8) has conjugate-

complex poles whose values are 

 1/2 n ds j     (14) 

The characteristic equation of the closed-loop transfer function of a DC motor stabilized 

by retarded P controller (7) 

 1 0hs

s s p tgT s K K K e    (15) 

has an infinite number of solutions  
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where k stands for an ordinal number of the Lambert W function branch. 

Considering that (8) is an approximation of the closed-loop transfer function (7), it is 

clear that the poles from (14) are also the rightmost poles of the (15). These poles can be 

calculated from (16) by using the principal branch W0(z) and W1(z). This means that the 

solutions (16) assume a form of 
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For the known poles (14), the unknown DC motor time constant Ts and time delay h, are 

received by solving a system of two equations (17) whereby all the parameters of the 

linear model of the DC motor with transfer function Gmv(s) have been estimated.  

The MAE and RMSE index are used to validate the model obtained, where ω is the 

real the angular velocity of the rotor and ωm is the angular velocity produced by the 

identified model. MAE and RMSE index of 0 indicates a perfect model. 

 2
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5. PI RETARDED CONTROLLER PROJECTION FOR DC MOTOR SPEED REGULATION  

5.1. 1-DOF PI retarded controller tuning 

The transfer function of the PI controller, where Kp and Ki are the gain of the 

proportional and the integral part of the controller is 

 ( ) .i
PI p

K
G s K

s
   (19) 

The Control system for speed regulation of a DC motor with a PI retarded controller 

is shown in Fig. 2, where Gmv(s) is the identified velocity transfer function of the DC 

motor, Gc(s) = GPI(s) is the transfer function of the PI controller.  
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In time domain control law can be represented by 

 ( ) ( ) ( ) .p iu t K e t K e t dt    (20) 

The closed-loop transfer function of the received control system is 
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wherefrom the characteristic system equation is 

 2 ( ) 0.hs
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The characteristic equation for the closed-loop system is transcendent and has infinite 

solutions. It can be seen it its matrix form in the following manner 

 0.khS

k dS A A e


    (23) 

where A and Ad are real matrices with the dimensions of 2x2 whose values are  
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The solution of the characteristic equation (23) is a complex matrix SkϵC2x2 where k 

denotes the branch of Lambert W function which can be formulated in the following way 
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 (25) 

where λ1 and λ2  represent the desired poles of the closed-loop system.  

In order to convert the characteristic system equation (23) into the Lambert W form, 

it is necessary [20] to add an unknown matrix QkϵC2x2 which has to fit into the equation 

 ( ( ) )
( ) .k d kW A hQ Ah

k d k dW A hQ e A h


  (26) 

The solution of the characteristic equation (23) is obtained through the application of the 

following equation 

 
1

( ) .k k d kS W A hQ A
h

   (27) 

For the desired poles [1], by solving a system of two equations (26) and (27), by 

using the Lambert W_DDE Toolbox in Matlab [18], the unknown matrix Qk is received, 

and the PI retarded controller parameters are set.  

The proposed method provides the opportunity of choosing the desired real and 

conjugate-complex poles. The selection of the desired poles, in the infinite spectrum of 

poles, is reduced to the selection of the rightmost poles (the closest to the imaginary axis 

from the complex plane), and in [16] it was shown that these could be obtained by 

solving (27) only for k = 0 or k = –1, which guarantees dominance.  
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5.2. 2-DOF PI controller tuning  

In time domain control law of the 2-DOF PI controller control system, where γ is 

tuning parameter and γ ϵ (0,1), can be represented by 

 ( ) (1 ) ( ) ( ) ( ) ( ) .p r p i r iu t K t K t h K t dt K t h dt              (28) 

The closed-loop transfer function in the case of a 2-DOF PI controller is 
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It is obvious that the closed-loop transfer functions obtained by using the 1-DOF PI 

controller (21) and the 2-DOF PI controller (29) differ only in the numerator, which 

means that the characteristic equations of both systems are identical and equal (22). In order 

to design the 2-DOF PI controller, the already described process of designing the 1-DOF PI 

controller can be used, taking into account that both equations (22)-(27) are identical.  

Considering (29) we can conclude that γ = 0, 2-DOF PI controller control system 

becomes 1-DOF PI retarded controller control system Fig. 3 with the control law (20), 

for γ = 1, this control system becomes the so-called I-P retarded controller control system 

with a control law 

 ( ) ( ) ( ) ( ) .p i r iu t K t h K t dt K t h dt           (30) 

Tuning parameter γ regulates the hight of the overshoot of the set-point response and the 

letter is chosen depending on its range γϵ(0,1). 

5.3. Boundary range for selection of the desired poles 

If the desired poles are λd = Re{λd} ± jIm{λd} where d ϵ (1,2), for Re{λ1} = Re{λ2} and 

Im{λ1} = Im{λ2}, the poles are complex conjugate. For Im{λ1} = Im{λ2} = 0 the poles are 

real.  

Let the unknown matrix be Qk 

 
11 12

21 22

.k

q q
Q

q q

 
  
 

 (31) 

Regardless of the value of the unknown matrix Qk,, taking into account the value of 

the matrix Ad (24), the result AdhQk will always be in the form of 

 
21 22

0 0
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m m

 
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 
 (32) 

From (27) it can be concluded that 

 ( ) ( ) ( ).k k d k k kh S A W A hQ W M    (33) 

Substituting the values of matrices A and Sk from (24) and (25) as well as the value of the 

matrix Mk from (32) in (33) the following is received 
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 (34) 

Taking into account the values of poles λ1 and λ2 as well as the values of h and Ts, we 

can conclude that all matrix coefficients on the left side of (34) are real numbers, 

wherefrom we can conclude that wk(m22) is a real number. Depending on the value of 

wk(m22) from Fig. 1, the same corresponds to the branch k = 0 for 1 < wk(m22) or the 

branch k = 1 if wk(m22) < 1. In order for the closed-loop system to be stable the 

condition of Re{λ1} < 0 and Re{λ2} < 0 has to be met. Taking into account the principal 

branch of the Lambert W function ie. k = 0, from (34) we get an additional boundary 

condition for the selection of real parts of the desired poles. 

 1 2

1 1
{ } { } 0e e

s

R R
T h

        (35) 

In case that the desired poles are complex conjugated, statement (35) looks as following 
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R
T h
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It is known that the solution to an equation is satisfactory for the equation itself. 

Substituting the complex conjugated pole λd = Re{λd} + jIm{λd} = σ + jω into a 

characteristic equation (22) and also dividing it into its real and imaginary parts, the 

following is received 

 

2 2
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 (37) 

From (37) we can conclude that for the chosen part of the real pole σ = Re{λd}, which 

fulfills the condition (36), there exists an imaginary pole part ωi = Im{λd}, where the 

integral gain of the PI controller is Ki  0. The integral gain Ki = 0, if the imaginary pole 

part fulfills the condition 

  
 

 1

Im
tan( Im )

( ) Re

d

d

s d

h
T 

 
 

 
 (38) 

If a higher value of the imaginary pole part is taken than ωi = Im{λd} received from (38), 

for the real value of the pole σ = Re{λd} the closed-loop system will be unstable.  

Substituting the desired complex conjugated poles λd = Re{λd} + jIm{λd} = σ ± jω, 

where ω < ωi, in (25) as well as solving the system of two equations (26) and (27) the PI 

controller gain is received. With the obtained controller parameters it is necessary to 

check whether all the poles of the infinite pole specter are located on the left side from 

the desired poles on the complex s plane.  

From (37), it can also be seen that for the selected part of the real pole σ = Re{λd}, 

which fulfills condition (36), there exists an imaginary part of the pole ω = Im{λd}, for 

which the proportional PI controller gain Kp  0. Proportional gain Kp = 0, only if the 

imaginary part of the desired pole satisfies the condition 
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  
   
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The closed-loop system is on the boundary of stability only if there are poles whose real 

parts are equal to zero i.e. they have only the imaginary part, and all the other poles from the 

infinite pole spectrum are located on the left half-plane of the complex s plane. Substituting 

σ = Re{λd} = 0 in (38) the boundary value ωgr = Im{λd} is received where Ki = 0. Substituting 

the received poles λ1 = jωgr and λ2 = jωgr in (34), the following is received 
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From (40) it can be concluded that m22 doesn’t depend on the boundary value of the 

imaginary part of the pole, which is not the case with m21. Substituting λ1 = jωgr and 

λ2 = jωgr in (25) as well as solving the system of two equations (26) and (27) the 

boundary value of the proportional gain Kpgr is received.  

The proportional gain of the PI controller is located in the following range 

 1( )s tg p pgrK K K K    (41) 

6. SIMULATION EXAMPLE 

A DC motor with the parameters from [13] is being taken into account: the moment 

of inertia J = 0.052 kg/m2, the motor torque constant Km = 0.66 N.m/A, the back EMF 

constant Ke = 0.64 V/rad/s, the armature resistance R = 2.3Ω, the armature inductance 

L = 0.0345 H, the damping coefficient due to viscous friction β = 0.002 N.m/rad/s. The 

tachogenerator constant Ktg = 0.06685 V/rad/s. 

6.1. Parameter estimation of the linear DC motor model 

For the application of the parameter estimation method of the linear DC motor model, 

described in chapter 4, it is necessary that an underdamped closed-loop system is created. 

This method is applicable for several different values of the proportional gain Kp as well 

as the delay in the return branch h in order to identify the model which most accurately 

represents the dynamic of the DC motor in question. The paper shows the best possible 

result. For parameter estimation the proportional gain Kp = 5 is used, time delay in the 

feedback branch h = 0.5 s with the referent speed of the rotor rotation ωr = 30 πrad/s. For 

this simulation the program package Matlab/Simulink was used with the following 

parameters: the duration of the simulation t=10s, solver ODE5, fixed step Ts=0.01s. 

From the closed-loop step response the following values were measured: 

ωss = 32.1053 rad/s, ω1 = 42.5769 rad/s, t1 = 0.61 s, ω2 = 29.2832 rad/s and t2 = 1.4 s.  

With the usage of (9) the gain of the velocity transfer function, Ks = 1.5457 was 

calculated. Substituting ωss, ω1 and ω2 in (10) the overshoot OS = 0.2695 was calculated, 

based on which and the application of (11) the damping ratio ξ = 0.3852 was calculated. 

The damped frequency was calculated by substituting t1 and t2 in (12), ωd = 3.9767 rad/s. 

By substituting the new values in (13) the natural frequency ωn = 4.3092 rad/s was 
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calculated. Applying (14) closed-loop poles s1/2 = 1.6597 ± 3.9767j were calculated. 

Substituting the newly calculated values in (17) resulted in the time constant of the DC 

motor Ts = 0.2715 s and the time delay h = 0.5134 s.  

The linear model transfer function of the considered DC motor is 

 
( ) 1.5457

( )
( ) 0.2715 1

mv

s
G s

u s s


 


 (45) 

Time domain response of a DC motor and identified model is shown in Fig. 4. The 

frequency response of a DC motor and identified model is given in Fig. 5. 

 

Fig. 4 Response of the angular speed of a DC motor and Identified Model. 

 

Fig. 5 Frequency response of a DC motor and Identified Model. 

The result of the application of (18) revealed the following quality indicators of the 

suggested identification process, MAE = 0.0494 and MRSE = 0.2552.  

According to these indicators (the MAE index and RMSE index, the response of the 

DC motor and the model obtained by the usage of the suggested identification process in 
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Fig. 4, the frequency response in Fig. 5 from which it is clear that the deviation of the 

frequency characteristics occurs at irrelevant high frequencies), it can be concluded that 

the DC motor is adequately identified by the suggested method. 

6.2. Designing the controller 

The project requirements are: the referent rotation speed of the rotor 200rad/s, the 

rotor settling time is shorter than 1.3s and the maximum amplitude overshoot of the rotor 

rotation speed is less than 10%. 

Substituting the calculated values Ks and Ts (45), as well as the tachogenerator Ktg in 

(24), results in matrices A and Ad with the function of enhancing the PI controller. It is 

well known that measuring tools i.e. sensors, as well as communication lines, cause 

delays. Let us suppose there exist measurement and communication delays between the 

regulated output and the controller [24]. For the purpose of designing the 1-DOF PI 

retarded controller, the delay of the measured rotation speed of the rotor of h=0.2s is 

introduced. The suggested controller designing method was applied to the desired real 

and conjugate-complex poles of the closed-loop system  λ1 and λ2.  

Solving (38) for σ = Re{λd} = 0, within the range π / (2h) < Im{λd} < π / h, 

ωgr = Im{λd}= 9.6733 is received. Substituting λ1 = 9.6733j and λ2 = 9.6733j in (25) as 

well as solving the system of two equations (26) and (27), the boundary values of the 

proportional gain  Kpgr = 27.1936 and Ki = 0 are received. For these parameter values of 

the PI controller, the system is within the borders of stability. From (41) it can be 

concluded that 9.6779 < Kp < 27.1936. 

From (35) and (36) condition are met for selecting the real parts of the closed-loop poles: 

Re{λ1} + Re{λ2} > 8.6838, Re{λ1} < 0, Re{λ2} < 0, i.e. Re{λ1/2} > 4.3419 for the principal 

branch. For the principal branch, the Lambert W function, wk(m22) > 1. Therefore, with the 

conjugate-complex poles Re{λ1/2} = 1 / (2Ts) = 1.8419, wk(m22) = 0, m22 = 0. If 4.3419 < 

Re{λ1/2} < 1.8419, wk(m22) < 0 and m22 < 0 while 1.8419 < Re{λ1/2} < 0, wk(m22) > 0 and 

m22 > 0. The paper considers both cases. 

The method of designing a controller was applied to the complex conjugate poles with 

Re{λ1/2} = 4, which suits the case of wk(m22) < 0. Applying substitution and solving (38) 

Im{λd}gr = 7.6474 is received. If the desired poles are λ1/2 = 4 ± 7.6474j, Ki = 0, 

Kp = 9.0351. The PI controller is functioning as a proportional controller, meaning that there 

will be an offset outgoing signal i.e. there will be a deviation of the rotor velocity compared 

to the previously entered reference velocity. For higher values of the imaginary part of the 

pole, the system will be unstable because Ki < 0, i.e. from the infinite pole spectrum there 

exists a pole that is located in the right half-plane of the s-plain. For example, λ1/2 = 4 ± 8j, 

Ki = 6.4883, Kp = 9.1043, λ3 = 0.3194. For the values of the imaginary pole part that are 

lower than the boundary value, the closed-loop system is stable, while both gains are 

positive. For example, λ1/2 = 4 ± 2j, Ki = 20.2919, Kp = 5.3215.  

Displacing the desired poles onto the right side Re{λ1/2} = 1, the case of wk(m22) > 0 

is taken into consideration. Substituting Re{λ1/2} = 1 in (38), Im{λd}gr = 9.2639 is received, 

while substitution in (39) results in the boundary value of the imaginary pole part where 

Kp = 0, Im{λd}0 = 2.2692. If the desired value of the imaginary pole parts is lower than 

Im{λd}0, then Kp < 0 and Ki > 0. For example, for λ1/2 = 1 ± 2j, Kp = 0.5367, Ki = 15.5265. 
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Since the confirmation results of the boundary conditions are received for the 

identified DC motor model, the angular velocity of the identified model with the received 

PI controllers is shown in Fig. 6. wherefrom the confirmation of the boundary conditions 

for the selection of the desired poles can be seen. 

 

Fig. 6 Response of the angular speed of the Identified Model with different PI retarded 

controllers and time delay h = 0.2 s. 

To evaluate the output control performance the integral absolute error (IAE) of the 

controll error ωr(t)  ω(t) and the integral square error (ISE) of the controll error ωr(t)  ω(t) 

is used. 
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    (46) 
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The small values of IAE and ISE show good closed-loop performance.  

Table 1 contains the values of the proportional and integral gain of the PI retarded 

controller obtained for different values of the desired closed-loop poles and time delay 

h=0.2.  To evaluate the closed-loop performance, we considered a step set-point change 

of amplitude 200 and a step input (load) disturbance of amplitude 10. In order to 

quantitatively present the results, the integral absolute error (IAE) and the integral square 

error (ISE) for the set-point and load disturbance as well as for settling time (Ts) and the 

percentage of the overshoot (OS) of the closed-loop system response are also given in 

Table 1.  



 The Usage of Lambert W Function for Identification and Speed Control of a DC Motor 595 

Table 1 Parameters of the PI controller for different values of the desired rightmost poles 

of the closed-loop system. Values of settling time, the percentage of the 

overshoot, IAE and ISE value for set-point and load disturbance 

Poles λ1/2 Kp Ki Ts [s] OS [%] 
Set-point 

IAE          ISE 

Load 

disturbance 

IAE           ISE 

-4±2j 5.3215 20.2919 0.71 1.66 58.75     7271 25.69         670 

-4±3j 5.9237 22.6005 1.13 4.50 53.93     6530 23.17         605 

-3±3j 5.7552 24.7598 1.28 9.94 58.84     6567 22.92         590 

-3.5±4.3j 7.2219 27.4642 1.02 12.7 51.17     5567 19.89         507 

-4 and -4.5 4.8600 17.9475 0.99     0.00 67.84     8151 29.05         745 

 

Since the values of IAE and ISE in Table 1 are given for a step set-point change of 

amplitude 200 and a step load disturbance of amplitude 10, it can be said that the closed-

loop system has good performances.  

Figure 7 depicts the response of the angular speed of a DC motor under the effect of 

torque disturbance of the shape of the step function of amplitude 10 happening at the 

interval t = 5 s by the regulated usage of the 1-DOF PI retarded controller with the 

parameters given in Table 1. The response of angular speed of a DC motor with 1-DOF 

PI retarded controller with Kp = 7.2219, Ki = 27.4642 is not given in Fig. 7. The reason 

being that with the application of this controller one of the projection conditions isn’t met 

-that the maximum amplitude overshoot of the rotor rotation speed is less than 10%. 

It is clear from Fig. 7. that by using the 1-DOF PI retarded controller designed for the 

desired complex conjugate poles λ1/2 = 3 ± 3j, a system is formed with a better disturbance 

compensation and also with a higher set-point response overshoot.  

 

Fig. 7 The response of a DC motor with different 1-DOF PI retarded controller with the 

parameters given in Table 1 and time delay h=0.2s. 

The 2-DOF PI retarded controller is used for the overshoot elimination with γ being 

the tuning parameter and control law given in (28). Instead of the 1-DOF PI retarded 

controller which fulfill the projection conditions, using the controller with two degrees of 
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freedom is not necessary. The same controller can be used to lower the overshoot. For 

example, γ = 0.35 being the tuning parameter for 1-DOF PI retarded controller with 

parameters obtained for λ1/2 = 4 ± 2j. An overshoot of the amplitude of the rotor rotation 

speed doesn’t exist for 1-DOF PI retarded controller design for real poles, resulting in 

tuning parameter γ = 0 within the control law of the 2-DOF controller.  

The influence of the tuning parameter γ on the angular velocity of the DC motor with 

2-DOF PI retarded controller is considered in the case that the closed-loop system with 1-

DOF PI retarded controller doesn’t fulfill the projecting conditions. Table 1 shows that 

the conditions aren’t met using the controller with parameters Kp = 7.2219 and Ki = 27.4642 

because the overshoot is higher than 10%. It also shows that using this controller the lowest 

values of indexes IAE and ISE are received. The response of angular velocity of a DC 

motor under the effect of torque disturbance of the shape of the step function of amplitude 

10 happening at the interval t = 5 s with 2-DOF PI retarded controller with the gain 

Kp = 7.2219 and Ki = 27.4642 and different tuning parameter γ = 0, γ = 0.15 and γ = 0.3 is 

shown in Fig. 8. 

Response of the angular speed of a DC motor for γ = 0 is equal to the respone received 

using the1-DOF PI retarded controller. Fig. 8 clearly shows that an increase of γ lowers the 

overshoot where: for γ = 0.15, OS = 8.9%, for set-point IAE=52.15 and ISE = 6067, while 

for γ = 0.3, OS = 5.9%, for set-point IAE = 54.84 and ISE = 6742. In both cases 

IAE = 19.89 and ISE=507 for load disturbance.  

 

Fig. 8 Response of the angular speed of a DC motor with 2-DOF PI retarded controller 

with the parameters Kp=7.2219, Ki=27.4642, time delay h=0.2s, and different γ. 

Considering the fact that there was no analysis of the influence on the uncertainty in 

paper [1], perturbations of ±20% in the DC motor parameters J, Km, Ke, R, L and β are 

considered. Response of the angular speed of a DC motor with PI retarded controller 

with the parameters Ki = 20.2919, Kp = 5.3215, time delay h = 0.2 s, and perturbations of 

±20% in the DC motor parameters J, Km, Ke, R, L and β is shown in Fig. 9. 
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Fig. 9 Response of the angular speed of a DC motor with 1-DOF PI retarded controller 

with the parameters Ki = 20.2919, Kp = 5.3215, time delay h = 0.2 s, and perturbations 

of ±20% in the DC motor parameters J, Km, Ke, R, L and β. 

It can be observed that the change of the parameters affects the response of the 

feedback system, but also that the same remains stable, for example for the closed-loop 

system with the PI controller Ki = 17.9475, Kp = 4.8600, perturbation of +20% in all DC 

motor parameters increase IAE for 32% and ISE for 23%, Ts = 1.54 s, OS=0% while 

perturbation of 20%, decrease IAE for 22% and ISE for 20%, Ts = 0.924 s, OS = 3.66%. 

For the closed-loop system with PI controller Ki = 20.2919, Kp = 5.3215 and perturbation 

of +20% in all DC motor parameters, settling time Ts = 1.12 s, OS = 0.01%, IAE = 74.50 

and ISE = 8877 for set-point, while for perturbation of 20%, Ts = 1.08 s, OS = 8.93%, 

IAE = 51.50 and ISE = 5902. 

The results received were compared to the results received with the usage of a 

standard PI controller (PIs) which was projected without the assumption that delay can 

occur in the return branch. For the desired poles λ1/2 = 4 ± 2j, the PIs controller parameters 

are Kis = 52.5429, Kps = 11.3392. For the desired real poles λ1 = 4 and λ2 = 4.5, PIs 

controller parameters are Kis = 47.2886, Kps = 12.6528. For the same perturbation in all DC 

motor parameters, better results are received using the PIs controller as opposed to the 

suggested  PI retarded controller. 

The influence of changing the time delay (Td) in the return branch on the angular 

velocity of the DC motor is considered in case the suggested PI controller and the 

standard PIs controller are used. Parameters of the controllers are received for real poles 

where the suggested PI controller: Ki = 17.9475, Kp = 4.8600 without the intentionally 

added delay of the motor speed measured value i.e. h = 0 s, and PIs controller: 

Kis = 47.2886, Kps = 12.6528. The response of angular velocity of the DC motor for a 

different value of time delay Td in measured speed for the control system with the 

proposed PI controller and standard PIs controller is shown in Fig. 10.  
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Fig. 10 Response of angular velocity of a DC motor with the proposed PI controller and 

standard PIs controller for a different value of time delay Td in measured speed. 

Based on the results shown in Fig. 10, it can be concluded that for the delay in the 

return branch Td  > 0.3 s the system regulated with the PIs controller will become unstable, 

which is not the case with the usage of the suggested PI controller. The closed-loop system 

with the proposed PI controller becomes unstable for Td > 0.8 s. The suggested PI controller 

shows a considerably better result as opposed to the standard PIs controller if there exists a 

time delay in the return branch. The same result can be observed with the usage of 

controllers designed for the desired complex-conjugated poles. [1]. 

6. CONCLUSION 

The linear DC motor model obtained by applying the proposed new method of parameter 

estimation using the Lambert W functions possesses characteristics which slightly differ from 

the characteristics of a DC motor in the fields of time and frequency. For this reason, the 

model can be used for the purpose of designing various types of controllers not only for 

managing the speed of a DC motor rotor, but also its position. Controlling the rotation speed 

of the DC motor rotor using the PI controller with the adjusted measuring velocity delay in 

the suggested manner leads to a robust system with adequate disturbance compensation.  

Within the following period the usage of this process of identification of the linear 

DC motor model it is possible to design models that could be used for the purpose of 

designing other types of speed and rotor positioning DC motor controllers. 
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