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Abstract. In this work we propose several ways of the CMOS implementation of a
circuit for the multiplication of matrices. We mainly focus on parallel and asynchronous
solutions, however serial and mixed approaches are also discussed for the comparison.
Practical applications are the motivation behind our investigations. They include fast
Kalman filtering commonly used in automotive active safety functions, for example.
In such filters, numerous time-consuming operations on matrices are performed. An
additional problem is the growing amount of data to be processed. It results from the
growing number of sensors in the vehicle as fully autonomous driving is developed.
Software solutions may prove themselves to be insuffucient in the nearest future. That
is why hardware coprocessors are in the area of our interests as they could take over
some of the most time-consuming operations. The paper presents possible solutions,
tailored to specific problems (sizes of multiplied matrices, number of bits in signals,
etc.). The estimates of the performance made on the basis of selected simulation
and measurement results show that multiplication of 33 matrices with data rate of
20 100 MSps is achievable in the CMOS 130 nm technology.
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1 INTRODUCTION

An increasing number of systems and applications requires advanced math-
ematical computation as well as processing of large amounts of data. Such
a situation happens even in the areas which traditionally formerly were not
associated with such topics as artificial intelligence (AT), signal processing or
data mining. For example, in the automotive industry, widely understood
signal processing became one of the key development areas in algorithms
used in Advanced Driver Assistance Systems (ADAS) in Active Safety (AS)
area [1-3].

An observed rapid development of the AS systems towards more complex
solutions related to autonomous driving causes several problems. One of
them is the computing power required to process increasing amount of data
from the vehicle’s environment. A second problem is how to minimize the
energy consumed by the increasing number of the applied computing devices.
Yet another problem is also the so-called business case, i.e. the necessity to
reduce costs of the overall system. This leads to trade-offs between the
computation power, that has to be sufficient to process increasing amount of
data collected by vehicle on-board sensors [4] and the price of the devices, in
which the computing algorithms are implemented.

An additional challenge, common in ADAS functions, is the real time
data processing [5]. New data scans, for example from radar and camera
sensors, are provided to the AS system every 30-50 ms. The overall signal
processing, as well as the decision (control strategy) made on the basis of
the output signals from the ADAS functions have to be completed in this
short period of time due to safety reasons and general system performance,
for example. One of the issues in real-time operating systems (RTOSs) in
vehicles equipped with the AS functions, is how to effectively manage the
computational power [6]. Depending on the complexity of the performed
operations, the overall signal processing scheme may be divided into blocks.
Some tasks can then be implemented on a set of supporting devices. One can
also consider developing specialized integrated circuits (ASIC — application
specific integrated circuit), optimized for selected tasks. This is the topic of
this work.

Since 1960 when R.E. Kalman published his well-known paper [7], his
filter (named Kalman) has gained large popularity. This recursive solution
to discrete data linear filtering problem has become the subject of numerous
investigations due to its wide application in digital computing. Because of
its properties, the algorithm is widely used in different areas that include, for
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example, speech enhancement [8], noise reduction in autopilot in autonomous
boats [9] or in enhancement of robot path [10]. It is worth to mention that
Kalman filter is frequently applied in the localization and map building prob-
lem (SLAM) [11].

In the automotive AS applications one of the basic operations is tracking
objects present in the vicinity of the moving vehicle [12]. The role of the
tracker is to build an image of a real object on the basis of collected radar
and vision data. The image means such features as the type of the object
(pedestrian, bicycle, another vehicle), its size, position, spatial trajectory,
velocity, etc. The Kalman filters are commonly used in such algorithms
[13]. The operation which consumes the most computational power in such
filters is the multiplication of matrices. For this reason, this work focuses
on hardware realizations of the circuits that may speed up such operations.
The circuits of this type have to be flexible. This means that they should be
scalable and thus suitable for different sizes of the multiplied matrices. In
our opinion, fully parallel and fully asynchronous data processing is difficult
to achieve. However, a combination of parallel and serial methods leads to
the best results in terms of data rate and the circuit complexity.

The paper is organized as follows. In the next section state-of-the-art
study in the related topics is presented. In the following section the pro-
posed solutions are introduced and briefly discussed in the context of specific
values of other parameters. Then, verification of selected circuits (simula-
tions and measurements) is demonstrated. Conclusions are formulated in the
last section.

2  STATE-OF-THE-ART

In this section two aspects of the presented problem are described. One
of them is a brief review of selected solutions for Kalman filtering and the
complexity of matrix multiplication operations required in a given case. Such
a study is necessary to estimate the requirements for the structure of the
ASIC coprocessor for matrix multiplication, if this solution is to be a flexible
one.

2.1 Matrix multiplication

Matrix multiplication is one of the important stages in many applications.
In numerical algebra a lot of problems come down to the matrix multipli-
cation [14]. Even in complex structures such as multi-core systems the ma-
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trix multiplication plays an important role [15]. Exemplary investigations in
which the matrix multiplication is applied are presented in [16]. Authors of
this publication propose a distributed computing accelerator based on paral-
lel random access memory (RRAM) crossbar for the matrix multiplication.
The main idea is to use the matrix vector multiplication to multiple inner op-
erations of two vectors. Each of these operations is produced by one RRAM
crossbar. These studies revealed that the binary matrix multiplication can
be done with smaller memory sizes, lower computing delay and higher energy
efficiency using this approach.

The operations of the matrix multiplication are in common use in Kalman
filtering. This type of filter has numerous applications which include speech
enhancement [8], noise reduction in autopilot in autonomous boats [9], and
creating and tracking of objects on the basis of radar scans [17]. The last
feature is more and more frequently used in the automotive industry in Ad-
vanced Driver Assistance Systems (ADAS). Kalman filter plays an important
role in creation of objects on the basis of radar data reflections provided
as a set of pairs of the azimuth and the range values. The objects (tracks)
become an input to numerous active safety functions. They include, for
example, adaptive cruise control (ACC), in which crucial aim is to obtain
nearly perfect tracking algorithm performance. Otherwise, the system could
mislead the end user or even not be able to protect from an accident.

The presented examples of the application of the matrix multiplication
lead to a question of an efficient implementation of such operations. One of
the important aspects here is the flexibility which means the possibility of
reconfiguration of the circuit. Other important factors include the compu-
tation speed, the power dissipation and the chip area. The last feature is
relevant in the case of CMOS realizations in the form of application specific
integrated circuits (ASIC) [18]. Such implementations as well counterpart
realizations in Field Programmable Gate Arrays (FPGA) [19,20] allow for
massive parallel data processing. This is crucial in overcoming the shortage
of the computational power in advanced active safety functions.

FPGA platforms are frequently used in such applications that require
parallel data processing and where a reconfiguration of the in virtually ev-
ery moment. In the case of ASIC specialized systems, it is not possible to
change the layout topology after their physical implementation. However,
the undoubted advantage is the possibility of obtaining better technical pa-
rameters, such as reduction of energy consumption, increase of work speed,
construction of any atypical asynchronous blocks, etc. All these advantages
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cause that these systems are also often used for the implementation of various
complex, demanding fast and energy-saving algorithm work [18].

In the literature several solutions in which matrix multiplication is re-
alized as ASIC are described. Ome of them can be found in [21]. This is
a processor working in real time with a dynamically reconfigured 4x4 out-
put matrix. Particular elements of this matrix are calculated in parallel
by means of 16 multiplication circuits. However, particular elements of the
output matrix are calculated sequentially. In subsequent clock cycles a sin-
gle multiplication and accumulation operation is performed for each of the
multipliers.

A similar approach as in [21] can be found in [22]|. The circuit was tested
in the CMOS 90 nm technology. Following elements of the input matrices
are provided to the inputs through a multiplexer. Then, they are multiplied
by themselves and accumulated. In this approach, an improvement in the
achieved data rates was possible by rearranging the matrix element into a
2-dimensional array of processed elements interconnected as a mesh. The
edges of each row and column are interconnected in a torus structure.

In 23] a partially analog solution with a vector-by-matrix computation
technique implemented in the 55 nm technology is proposed. In this case,
multi-bit input and output signals are represented by time-encoded digital
signals, while multi-bit matrix weights are realized with current sources. One
of the important advantages of this solution is compact peripheral circuits
which allow for energy savings. As a case study, the authors of [23] real-
ized a multilayer perceptron, based on two layers of 10x10 four-quadrant
multipliers.

Another circuit with partially analog signal processing has been reported
in [24]. It is a charge-mode parallel structure which allows for vector by ma-
trix multiplication. The presented solution has internally analog and exter-
nally digital architecture. A unit cell used here combines single-bit dynamic
random-access memory and a charge injection device binary multiplier as
well as an analog accumulator.

A more detailed comparison of described ASIC solutions is presented in
Table 2.1.

2.2 Kalman filtering in automotive applications in brief

The Kalman filter is an example of a tool which predicts the future state of
a system basing on the estimate of its current state. It is modeled by the
following state equations:
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Table 1: Comparison of selected matrix multiplication circuits realized
in the CMOS technology, at the transistor level

Ref | CMOS sizes NBI Speed Power or energy
[21] | 0.25 pum 4x4 16 18.8ns NA
[22] | 90 nm 4x4 4 2 ps 3.12 mW

[23] | 55 nm | 10x10 6 150-10° OP/J 7£] /) OP*
[24] | 0.5 um | 512x128 | 8 | 2x 102 MAPS | 0.5pJ / MA

MAPS multiply-accumulation operations per second
MA — multiply-accumulation operation (OP)
*) for the sizes of matrices > 200
x(n+1) = Ax(n) + Bu(n) + v(n), (1)
y(n+1) = Cx(n) +w(n), (2)

where: n are discrete time moments (following samples)

A is the state transition matrix, applied to a previous state (x(n))
B is the control input matrix

C is the output matrix

v is the processing noise vector

w is the measurement noise vector

y is the measurement vector

The calculation scheme in the Kalman filter requires multiplication of
matrices and vectors. Equations (1) and (2) do not contain all required
operations. The additional operations may include the calculation of various
covariance matrices [25] and their number depends on the problem to be
solved.

3 PROPOSED MATRIX MULTIPLICATION SOLUTIONS

At the transistor level, the operation of the matrix multiplication may be
implemented in various ways. They include parallel and serial solutions, op-
erating in parallel or in serial fashion. Data processing may be performed
asynchronously or sequentially. In practice, the optimization of the struc-
ture of the matrix multiplication circuit will largely depend on the sizes of
the input signals (matrices), the resolution of the multiplied numbers (the
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Fig. 1: Diagram of an exemplary parallel matrix multiplication circuit.
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Fig. 2: The MAC circuit applied for the matrix multiplication.

number of bits), the required data rate and the importance of low energy
consumption. Such factors as the number of external pads available may
also impact the implementation approach. Depending on these parameters,
various mixed approaches may be proposed.

In principle, the sequential (serial) approach corresponds to the imple-
mentations found in software systems. In general, it uses a single multiplier
and an accumulator (ACU) and calculates particular elements of the output
matrix in several nested loops. Similarly, the matrix multiplication can be
also realized at the transistor level using a multiphase clocks and an appropri-
ate commutation field composed of switches or logic gates. In this case, the
speed of the circuit, understood as the rate of generating the whole resultant
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matrix at its output, depends inversely on the sizes of the input matrices.
Therefore, a fully serial approach is not optimal in terms of performance,
however, it is essentially optimal in terms of the circuit complexity, i.e. the
number of used transistors. In this approach, the circuit complexity depends
on the sizes of the input matrices to a relatively small extent.

Parallel matrix multiplication, which is the subject of this work, can be
implemented in various ways. Generally, multiplication of two-dimensional
matrices Ay, ar, and By vy returns a two-dimensional matrix Cng, a, at
the circuit output. Indices Na, Ma, N, Mg, Nc, Mg are the sizes of
particular matrices, where N and M denote rows and columns, respectively.
The following relations occur between these parameters: My — Ng — K,
Nc = Np, Mc = Mp

Each of the elements of the C' matrix (¢,,,,) is the sum of a given number
(K) of the products of respective components of the input matrices A and B.
In the iterative approach, all elements of the output matrix C are calculated
on the basis of the accumulation of products in subsequent steps of the loop.
In this situation, the parallelism can be understood as simultaneous calcula-
tion of all elements of the output matrix. However, particular multiplication
and accumulation operations for each output element c,,, are sequentially
performed in a given number of iterations, K, where K = Ms = Npg. Such a
solution is illustrated in Fig. 1, for the multiplication operation of exemplary
matrices Az 4 and Byo — C39:

b1 bi2
a1 a2 a3 a4 b b c11 c12
21 bao

az1 a2z Q23 24| X = |co1 €22 (3)

b31 b3
as1 aszy asz as4 b b €31 €32
41 ba

The main component in the described parallel-iterative approach is the
multiplication-accumulation channel (MAC). A general structure of this cir-
cuit is shown in Fig. 2. The circuit is composed of a multiplication circuit
and an ACU block. Possible realizations of the MAC circuit are presented
in more detail below. In an exemplary case given by 3, the output matrix
C consists of 6 elements ¢y, where n and m denote the position of a given
element (row, column) in matrix C. In this case, six MACs are used, while
the computation of particular elements of the output C matrix requires 4
multiplication-accumulation iterations.

It is worth to notice that the parameters Ma and Np can theoretically
have any value > 1 for a given number of MACs and their arrangement at
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the circuit output. For the exemplary matrix C39 as above, the following
operation may be performed:

bir b1
ai; a2 a3 ... QIMy b b C11 C12

21 22 | 4
a1 A22 a23 ... Q20 | X = |C21 (22 ()
a31 as2 a3z ... A30Mp b b C31 €32

Ngl ONg2

In practice, the values of the Ma and Np parameters are limited by
the resolution of the ACU and the structure of the clock generator, i.e. the
number of clock phases. The number of bits in the ACU should be sufficiently
large so that the product of two largest numbers of the same sign can be
accumulated and the ACU overflow can be avoided.

3.1 Components of the MAC block

In generak, the MAC circuit is composed of three subcircuits. Two of them

a multi-bit full adder (MBFA) and the memory block are parts of the
ACU block. The third one, the multiplier, may be a separate circuit or it
may also be integrated with the ACU in some situationcs. Selected solutions
for these components are presented below.

3.1.1 Multi-bit full adder

The MBFA is an asynchronous circuit, composed of a chain of 1-bit full
adders (1BFA) [26] coupled through the carry in and carry out terminals.
Various 1BFAs circuits have been proposed in the literature [27-29]. For this
reason, the 1IBFA and the MBFA circuits are treated as standard blocks and
are not described in more detail in this work.

The required size of the MBFA depends on the signal resolution at the
output of the multiplier (NBM) as well as the assumed number of iterations
K, and can be expressed as follows:

NBA = NBM + log, K + d, (5)

where d equals 0 for K € {2, 4, 8, 16, ...} and 1, otherwise. The value of
NBM equals 2-NBI, where NBI is the number of bits in the input a and b
signals.
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3.1.2 Memory block

The memory block may be realized in several ways. Fig. 2 presents one of
the possible solutions, in which two switches and two NOT gates are used
per a single bit of the signal stored in the ACU. In this case, the values of
particular bits are stored in parasitic gate-to-source capacitances Cgg of the
NOT gates. The overall memory block is controlled by a two-phases clock,
which updates the memory after the summation operation and provides the
resultant value to one of the inputs of the MBFA. In an alternative approach,
a block of D-flip flops (DFF) instead of NOT gates and switches may me used.

Both these solutions offer some advantages. The first approach requires
a smaller number of transistors and consumes much less energy. Since the
switches are realized as transmission gates composed of the PMOS and
NMOS devices, a single bit in the memory requires only 8 transistors. By
comparison, a typical DFF is built of 26 transistors (6 NAND gates in a chain
of RS latches). On the other hand, the Cgg capacitances, used in the first ap-
proach, are short-range memory cells which may lose the stored information
if the clock frequency is too small due to the leakage effect. By comparison,
the DFFs offer theoretically infinite storage time. For this reason, the second
approach is more suitable for low data rates.

In the prototype chip designed by us, in which the MAC block is one
of the components, the first approach was used consciously. The aim was
to check this concept as we also implemented a 10-phases control clock [30]
which works on a similar basis. In the clock circuit, the chain of the NOT
gates and the switches was much longer than in the described memory (20
NOT gates and 20 switches). This approach allowed to limit the energy
consumption to a level of only about 5 % of the energy that would have been
consumed in the case of using the DFFs. In short lines like in the memory
described above, the second option seems to be a better solution, because it
requires only a 1-phase clock.

3.1.3 Multiplication operation

The way in which the multiplication circuit is implemented impacts the com-
plexity of the structure of the MAC block and the controlling clock genera-
tor, as well as the speed of the overall circuit. Let us consider two possible
approaches. The first one corresponds to a conventional shift-and-add oper-
ation which is similar to the ACU circuit described above to some extent.
It is composed of a single MBFA, a shift register, a memory block and a
set of AND gates. One of the input signals is shifted along the register in
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subsequent clock cycles. It can be thought of as increasing the marker of the
position of this signal in the register by 1 in each clock phase. Then, the
resultant signal is added (or not) to the ACU, depending on the values of
corresponding bits of the second input signal. These bits mask the signal in
the register throughout the AND gates.

In the second approach, a fully asynchronous multiplier is realized as a
binary tree composed of a larger number of MBFAs of different sizes. This so-
lution is also based on the shift-and-add principle. However, particular shift-
ing and summing operations are performed in a parallel and asynchronous
manner without the use of the controlling clock generator in this case.

Both these approaches offer some unique advantages and suffer from some
limitations. The first one requires smaller number of transistors, as only one
MBFA is needed. However, the maximum data rate is inversely proportional
to the signal resolution. The asynchronous approach, on the other hand, is
much faster as the duration of the overall multiplication operation results
only from delays introduced by asynchronous MBFAs at particular layers of
the tree. The number of layers (Npgry,) increases only moderately with the
number of bits of particular input signals (NBI), which is an assest. Assuming
that NBI belongs to a set of powers of the number 2 (NBI € {2, 4, 8, 16,
...}), the Nprr, factor equals:

NBTL = log2 NBI. (6)

For exemplary signal resolutions of 8, 16, 32 bits, the number of layers
equals 3, 4 and 5, respectively. For the circuit implemented in the CMOS
130 nm technology, the multiplication time does not exceed 5, 7 and 9 ns,
respectively, i.e. it increases only moderately. Moreover, the asynchronous
approach does not need an additional clock circuit to control the multiplier.
Higher circuit complexity is the price for these advantages.

One of the advantages of the first approach is the possibility of using a
single MBFA and a single memory block, which additionally simplifies the
structure of the MAC. The overall circuit may be controlled by a single clock
generator but with a substantially more complex structure. In this case,
the number of clock phases is NBI times larger than for the asynchronous
approach:

N = NBI - k. (7)

This solution requires an appropriate commutation field which supplies
particular elements of the input matrices A and B to appropriate inputs of
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the ACU block. One of the technical problems is the fact that the marker
of the position has to be shifted to the beginning of the shift register after
every subsequent k clock phase. This is due to the fact that new elements of
the input matrices are provided at these time instants to the inputs of the
ACU, with one of them uploaded in the register.

At the level of a single MAC block, various mixed solutions can be in-
troduced. To show one of them, the calculation of a single element of the C
matrix is considered. To simplify the explanation, let us consider the multi-
plication operation of vectors A and B, as below. In this example N = M is
formally assumed:

T
[C}:[al as az ... aM]X[lh bg b3 bN] . (8)
In a more general form is may be expressed as:
K
Cnm = Z Afm - bnk (9)
k=1

It is assumed that the numbers shifted in the register are elements of the
A vector, while the masking signals are particular bits of the corresponding
elements of the B vector. A single element, b,, of the B vector can be
expressed as follows:

bn = 20 . bn,l + 21 : bn,2 + 22 : bn,3 + -+ 2L_1 : bn,Lv (10)

where b, ; are following bits of this element. The b, 1 and b, 1, values are the
least significant and the most significant bits (LSB and MSB), respectively.
On the basis of 10 the operation 8 can be expressed as follows:

[ = 2°-a;-bii+2"ar-bio+--+2"arbig
20-a2-b271+21~a2'6272+'~—|—2]r1-ag-bZL (11)
20-aM-bN,1+21~aM-bN,2—|—~-+2L_1-aM-bN7L

Equation 11 can be reorganized as follows:
[C] = 20. (a1 . b1,1 + as - b271 + -t ap - bN,l)—F
2L (a1 -bia+tag -bos+---+an-bya)+
22 (a1 -big+as bos+- - +an-bns)t (12)

+
2L=L (ay by p+az-bop+- - +an - byr)
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After replacing the multiplication operation (2! factors) with the bit-shifting
operations, as in the shift-and-add circuit, formula 12 can be expressed as
follows:

(] = (a1-bip+ag-ba1+---+an-byy) « 0+
(a1 -bia+ag-byo+---+an-bnpo) « 1+
(a1 . 51,3 + as - b2’3 + - tap - bN,g) « 2+ (13)

(a1 -bip+az-bop+---+anm-bnp) « L

In this approach, the summation operations in the particular lines of 13
above may be performed asynchronously, e.g. in a binary tree. Only the
results of this summation are uploaded to the register. The number of clock
phases can thus be reduced to NBI. The circuit is also around K times faster
than in the first (fully sequential) approach.

3.2 Summary

To facilitate the discussion let us denote particular solutions as follows:

Solution 1 (S1): Sequential (serial) approach with a single MAC: (S1.a)
serial multiplication circuit, (S1.b) parallel and asynchronous multiplication
circuit based on a binary tree.

Solution 2 (S2): Parallel approach with the number of the MACs equals
the number of elements in the matrix C: (S2.a) serial multiplication circuit,
(S2.b) parallel and asynchronous multiplication circuit based on a binary
tree.

Solution 3 (S3): Various mixed approaches.

4 VERIFICATION OF THE PROPOSED SOLUTIONS

Selected results showing the performance of the proposed circuits are pre-
sented in this section. It has been shown that the parallel matrix multipli-
cation can be decomposed into computational channels, in which the values
of particular elements of the output matrix C' are determined independently.
For this reason, here we focus on the operation of a single MAC block. The
performance assessed in this way can then be used to determine the param-
eters of the overall circuit.

In the previous section, two approaches to the implementation of the
memory and the ACU blocks were presented. In the first on a block of
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Fig. 3: Selected simulation results: (a) selected input signals aj,, and by
from Table 4.1, (b) binary outputs of the asynchronous multiplier,
(c) binary outputs of the MBFA that is also the output signal of the

overall MAC, and (d) the supply current.

the chains of the NOT logic gates and the switches is used, while in the
second one the memory is realized using D flip-flops. The first solution was
implemented in a prototype integrated circuit fabricated in 130 nm CMOS
technology and verified by both simulations and measurements. The second
approach was verified by simulations in the HSpice environment in TSMC

CMOS 180 nm technology.

An asynchronous and parallel multiplier were used in both cases.
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Fig. 4: Zoomed view of a selected computation cycle (a single multiplication-
accumulation operation), shown in Fig. 3: (a) selected input signals
a1 and b,y from Table 4.1, (b) outputs of the multiplier, (¢) outputs
of the MBFA | and (d) the supply current.

4.1 Simulation results

To illustrate the performance of the proposed circuit, two exemplary matrices
Az 4 and Byo were selected to get the matrix C3 2 at the output. Selected
elements of those two matrices, required to compute a single element ¢y
of the C matrix are shown in Table 4.1. To facilitate the illustration of
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Table 2: Selected input values used in a single MAC circuit

It. | a1m value | b1 value | c11
2 a2 6 (0110) | boy | 5 (0101) | 57
3 ayz | 12 (1100) | bs1 | 3 (0011) | 93
4 a4 8 (1000) | by | 2 (0010) | 109

the results, the input signals are 4-bit numbers in this case. Any extension
toward higher resolutions requires only increasing the sizes of the MBFAs
and the memory block in the MAC.

The following elements of the input matrices were sequentially provided
to particular inputs of the matrix multiplication circuit shown in Fig. 1 with
data rate up to 100 Msamples/s. Selected simulation results for a single
MAC are presented in Fig. 3.

Fig. 3 (a) presents waveforms of the input signals from Table 4.1. Di-
agram (b) of Fig. 3 shows waveforms of particular bits of the multiplier
output, while the diagram (c) presents the computed output signal ¢17. The
energy consumption is assessed on the basis of the supply current, Ipp, as
shown in the diagram (d), and the supply voltage equals 1.8 V in this case.
As can be observed, immediately after providing a new pair of elements a,
and by, the Ipp current rises and then drops after less than 2 ns. This
shows that a single multiplication-accumulation cycle lasts about 2-3 ns. In
the parallel approach, in which each element of the C' matrix is computed
using a separate MAC, the overall multiplication operation for four iterations
is completed within 12 ns (the worst case). An average value of Ipp equals
about 0.8 mA, so the energy consumption per single iteration equals approxi-
mately 4.3 pJ. These results are presented for the CMOS 180 nm technology.
A substantially shorter computation time is expected in newer processes.

4.2 Laboratory measurement verification

The measurements were carried out in a prototype chip designed in the
130 nm CMOS technology. The chip contains a circuit whose structure cor-
responds to the structure of a single asynchronous MAC with the memory
consisting of NOT gates and switches controlled by a 2-phases clock. Due
to the limited number of digital inputs of the chip (11), it was possible to
multiply only 4-bit signals (8 inputs). One of the remaining inputs allows
for switching between the programming and regular work modes over the
chip [30]. The remaining two inputs are used to provide control clock signals
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to the MAC. It is also possible to reset the ACU block, which is done by
setting both clock inputs simultaneously into the logic value of ‘1’.

The laboratory tests were also performed for the input signals collected
in Table 4.1 for the comparison. The measurement results recorded by the
MyRio measurement card working under the control of the LabView envi-
ronment are available in the xls file (after some elaboration). At the level
of the logic signals, the circuit works identically to the simulations. For this
reason, these results are not presented graphically.

Since the circuit is a part of a larger digital block, it is not possible to
demonstrate the measured supply current separately for this block. Another
parameter which was also verified in laboratory tests was the minimum data
rate needed to avoid visible impact of the leakage phenomenon on the data
stored in the memory block. Its value equals 26 ksamples/s. However, the
minimal sizes of transistors in the NOT gates were used, which caused the
parasitic capacitance Cgg to have a minimal value. Therefore, the informa-
tion storage time can be easily improved, without significant increase of the
circuit area by increasing the sizes of the transistors in the NOT gates.

5 DISCUSSION OF RESULTS

Basing on the obtained results as well as on the details of the structures of
particular solutions, more general parameters of these circuits can be esti-
mated, including the data rate and the chip area.

5.1 Circuit complexity and performance analysis

Let us consider an exemplary case of the MAC of 16-bit resolution, and
K = 16 (range in eq. 9). In the asynchronous approach, the number of
transistors in the multiplier equals approximately 9000 and the number of
layers in the tree equals 4, while the number of MBFAs equals 15. The
resolution (in bits) at the outputs of particular MBFAs varies in between 17
and 32, so the total number of 1BFAs equals approximately 300. A single
1BFA is composed of 28 transistors. To ensure that the output resolution of
the multiplier at the level of 16 bits equals the resolution of the input signal,
the 16 least significant bits can be omitted. In this case, the MBFA used
in the ACU with the resolution of 20 bits and the corresponding memory
require additionally about 1000 transistors (10000 in total).

The serial solution requires only one 32-bit MBFA with the 32-bit memory
block, so the total number of transistors equals approximately 1300. This
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number embraces ¢. 900 transistors in the MBFA and 256 in the memory
block realized as a chain of the NOT gates and the switches. In the case
of using DFFs in the memory block, the number of transistors equals about
1700. As a result, the complexity of the serial circuit is between 5.8 and 7.7
times smaller than the complexity of the parallel-asynchronous one. A 20
times smaller data rate is the price for this advantage.

In the optimization process of the circuit, the values of particular com-
ponents of the A and B matrices can be also taken into account. If one of
these elements is zero, the multiplication and accumulation can be omitted
in order to save the calculation time and the consumed energy.

The accumulation operation has to work in two directions increment
and decrement — as particular elements of the A and B matrices can be
negative. Since the signals are coded in the two’s complement code, only the
summing circuit is used in the ACU.

An analysis of the simulation results presented in the previous section
allows to assess the performance of the MAC circuit as well as the overall
circuit for the matrix multiplication. The performance includes the data rate
and the energy consumption. For an exemplary case of the resolution of 16
bits, the data rate for the parallel and the serial approach, respectively, may
be expressed as follows:

fp = K(51+20) |Gsamples/s| (14)
fs = m [Gsamples/s| (15)

The factor 5 in (14) is the time (in [ns|) which results from the delay of
the asynchronous multiplication circuit, while the factor 20 in 14 and 15 is
the time (in [ns]) needed for a single accumulation. For the resolution of 16
bits and K = 16 fp = 2.5 Msamples/s, while fg = 0.195 ksamples/s. This
means that the parallel circuit is about 13 times faster than the serial one.

5.2 In the context of existing state-of-the-art solutions

Exemplary realizations of the matrix multiplication operation are provided
in Table 2.1. The processed matrices differ significantly in sizes in particular
cases (between 4x4 and 512x128). Additionally, they differ in the resolution
of the input signals. Taking this into account, different approaches from
those presented in section 3 may be applied in each of these cases.
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In [21] and [22], for example, the sizes of the matrices allow to apply the
parallel approach with 16 MAC circuits. In [22] where the signal resolution
equals 4, one can use an asynchronous multiplier with two layers (solution
S2.b). In [21] where the signal resolution equals 16, one can use an asyn-
chronous multiplier with four layers (S2.b) or synchronous approach with a
single MBFA in the MAC (solution S2.a). In the second approach, the total
number of accumulation iterations equals 64 (4-16). Assuming that the sizes
of the matrices are fixed, one can also use the mixed approach (solution S3)
described by Eq. 13, with a single MAC, a 2-layer BT at the input and 16
clock iterations.

In [23] 10x10 matrices are processed. In the case of applying the S2.b
solution, the number of MACs would equal 100, while the number of the clock
iterations — 10. For the signal resolution of 6 bits the minimum number of
layers would equal 3. For the memory base on the DFF, the number of
transistors in a single MAC would approximately equal 45-30 (BT) + 12-30
(MBFA) + 1226 (ACU) ~ 2000, and 200,000 in the overall circuit (for 100
MACs). Applying the S2.a solution would allow to reduce the number of
transistors to about 700 (a single MAC) at the expense of increasing the
number of clock iterations to 60 (6 in case S2.b). In this case the mixed
approach can also be used. However, the BT at the input would be more
complex than in the previous case, described above. In this case, for K = 10,
the BT with four layers would have to be used.

The most complex situation is the one reported in [24]. Fully parallel
approach is rather not optimal, as it would require more than 65,000 MAC
circuits. In this situation a compromise between the full parallelism and the
circuit complexity is a better option. One of the options could involve ap-
plying for example 128 MACs working in parallel, and computing particular
columns of the output matrix C' in parallel.

5.3 Impact on the overall Kalman filter

Equations 14, 15 and a factor N¢ - M allow the assessment of the overall
performance of the Kalman filter. In many applications reported in the liter-
ature, the sizes of the matrices do not exceed 4 5 [10]. In the tracker used
in many AS functions, the sizes of the matrices A, B as well as the vectors
v, w do not exceed 3x3. In Egs. (1) and (2) three operations of matrix
multiplication are required, so the total number of the MACs (in a fully par-
allel approach) equals 27. In the case of using the parallel and asynchronous
MAC:s, the calculation time of the overall circuit equals 75 ns, while the total
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number of transistors equals approximately 300.000 (1.5 mm?). Even under
the worst case conditions (according to process, voltage and temperature
variation) this time does not exceed 150 ns. The question is, if the data
rate at the level of 6.5 Msamples/s is necessary in this case. A better option
might be to apply the serial MAC in this case. For the resolution of 16-bits,
the achievable data rate will drop to about 0.5 Msamples/s (in the worst
case), which is sufficient in the tracker application. On the other hand, the
complexity of the resultant circuit will be much smaller in this case (about
45.000 transistors only).

6 CONCLUSIONS

The paper presents selected methods suitable for fully digital implementation
of the operation of matrix multiplication. The main objective of this work
was to achieve as much parallel signal processing as possible taking into ac-
count various trade-offs. The literature study shows that in some applications
the sizes of the matrices are very large. In such cases, using mixed solutions
which introduce serial data processing at selected computation stages of the
overall multiplication operation is a more reasonable approach.

The motivation behind this work was the possibility of implementing fast
Kalman filters, in which operations on matrices are commonly performed.
In the automotive applications, in many active safety functions, the sizes
of the matrices are not very large. This enables an approach in which all
elements of the output matrix are calculated in parallel. Simulation as well as
measurement tests carried out have shown that it is possible to achieve data
rates exceeding 10 Msamples/s, where one sample means full multiplication of
two matrices. As data samples (images, radar scans) in the AS functions are
provided with rather small rates, considerable amount of computing power
remains available. This allows for applying a solution in which a single circuit
is multiplexed and shared between various tasks.

The obtained data rates at the level of 2-30 Msamples/s depend on the
approach. In comparison to other solutions of this type, average energy
consumption at the level of 100 pJ (for 16 bits of the resolution) is promising.

The work presents several practical solutions/approaches. The most in-
teresting are the ones that offer parallel data processing to the highest extent.
In many situations, however, various mixed solutions may be optimal, which
is also discussed in the paper. One of the effects of the optimization of the
core matrix multiplier itself is the reduction of the complexity of the control
clock system, which is also an important feature.
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