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Abstract: Wind Turbine Towers (WTTs) are the main structures of wind
farms. They are costly devices that must be thoroughly inspected according
to maintenance plans. Today, existence of machine vision techniques along
with unmanned aerial vehicles (UAVs) enable fast, easy, and intelligent visual
inspection of the structures. Our work is aimed towards developing a vision-
based system to perform Nondestructive tests (NDTs) for wind turbines using
UAVs. In order to navigate the flying machine toward the wind turbine tower
and reliably land on it, the exact position of the wind turbine and its tower
must be detected. We employ several strong computer vision approaches such
as Scale-Invariant Feature Transform (SIFT), Speeded Up Robust Features
(SURF), Features from Accelerated Segment Test (FAST), Brute-Force, Fast
Library for Approximate Nearest Neighbors (FLANN) to detect the WTT.
Then, in order to increase the reliability of the system, we apply the ResNet,
MobileNet, ShuffleNet, EffNet, and SqueezeNet pre-trained classifiers in order
to verify whether a detected object is indeed a turbine tower or not. This
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Abstract. In an overview of Horizontal Current Bipolar Transistor (HCBT) 
technology, the state-of-the-art integrated silicon bipolar transistors are described 
which exhibit fT and fmax of 51 GHz and 61 GHz and fTBVCEO product of 173 GHzV that 
are among the highest-performance implanted-base, silicon bipolar transistors. HBCT 
is integrated with CMOS in a considerably lower-cost fabrication sequence as 
compared to standard vertical-current bipolar transistors with only 2 or 3 additional 
masks and fewer process steps. Due to its specific structure, the charge sharing effect 
can be employed to increase BVCEO without sacrificing fT and fmax. Moreover, the 
electric field can be engineered just by manipulating the lithography masks achieving 
the high-voltage HCBTs with breakdowns up to 36 V integrated in the same process 
flow with high-speed devices, i.e. at zero additional costs. Double-balanced active 
mixer circuit is designed and fabricated in HCBT technology. The maximum IIP3 of 
17.7 dBm at mixer current of 9.2 mA and conversion gain of -5 dB are achieved. 

Key words: BiCMOS technology, Bipolar transistors, Horizontal Current Bipolar 
Transistor, Radio frequency integrated circuits, Mixer, High-voltage 
bipolar transistors. 

1. INTRoDUCTIoN 

In the highly competitive wireless communication markets, the RF circuits and 
systems are fabricated in the technologies that are very cost-sensitive. In order to 
minimize the fabrication costs, the sub-10 ghz applications can be processed by using the 
high-volume silicon technologies. It has been identified that the optimum solution might 
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Abstract. Wind Turbine Towers (WTTs) are the main structures of wind farms. They 
are costly devices that must be thoroughly inspected according to maintenance plans. 
Today, existence of machine vision techniques along with unmanned aerial vehicles 
(UAVs) enable fast, easy, and intelligent visual inspection of the structures. Our work 
is aimed towards developing a vision-based system to perform Nondestructive tests 
(NDTs) for wind turbines using UAVs. In order to navigate the flying machine toward 
the wind turbine tower and reliably land on it, the exact position of the wind turbine 
and its tower must be detected. We employ several strong computer vision approaches 
such as Scale-Invariant Feature Transform (SIFT), Speeded Up Robust Features 
(SURF), Features from Accelerated Segment Test (FAST), Brute-Force, Fast Library for 
Approximate Nearest Neighbors (FLANN) to detect the WTT. Then, in order to increase 
the reliability of the system, we apply the ResNet, MobileNet, ShuffleNet, EffNet, and 
SqueezeNet pre-trained classifiers in order to verify whether a detected object is indeed 
a turbine tower or not. This intelligent monitoring system has auto navigation ability 
and can be used for future goals including intelligent fault diagnosis and maintenance 
purposes. The simulation results show the accuracy of the proposed model are 89.4% 
in WTT detection and 97.74% in verification (classification) problems.
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The simulation results show the accuracy of the proposed model are 89.4% in
WTT detection and 97.74% in verification (classification) problems.
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1 Introduction

Providing reliable and affordable electricity in order to face the increasing
demand of energy in the near future is a worldwide concern. In this regard,
developing renewable and clean energy sources such as wind turbine (WT)
farms in smart grid (SG) infrastructures can play a crucial role in increasing
the capacity of electricity production in many countries across the world.
SG deploys widely information and communication technologies (ICT) [1]
subsystems. There is almost unlimited number of possible applications of
ICT subsystems within the smart grid. SGs with these infrastructures make
it more possible to develop reliable systems through Artificial Intelligence
(AI) [2–4].

On the other side, guaranteeing the reliability of wind turbines is of great
importance. In case of failure and faulty operation, the grid will face inter-
ruptions in its service. Challenges and costly breakdowns such as mechan-
ical deformations, surface defects, overheated components in rotor blades,
nacelles, slip rings, yaw drives, bearings, gearbox, generators, and trans-
formers are the ones which should be monitored to detect faults intelligently
in a wind turbine farm [5–8].

Besides, WTs are costly devices that should have advanced maintenance
systems [5]. In order to increase the lifetime of the WTs and reduce the
maintenance cost, it is essential to improve the monitoring and maintenance
approaches and reach solutions to avoid failure during in-service operation [9,
10]. Vision inspection paves the way toward generating reliable, efficient, and
economical electrical energy in wind turbine farms. Image processing and
machine learning methods have been widely employed to assist in monitoring
and fault diagnostic solutions in energy systems [10–15]. The authors in [11]
proposed a learning-based approach to inspect power line infrastructures.
In [12], authors suggested a smart framework for system reliability, using
machine learning algorithms, to predict failures for preventive maintenance
of system components. The authors in [10], benefited from the image data
and suggested a model to estimate the rotational velocity of the turbine
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blade. Estimating the velocity of blades helps to predict the amount of
generated power by the WTs in the smart grid. This will ensure the grid to
be a more reliable system.

In [13], the authors employed machine learning algorithms to manage
the energy of loads and sources in smart grids. The problems of malicious
activity prediction and intrusion detection have been analyzed using ma-
chine learning techniques in smart grid communication systems in [14, 15].
The authors in [14] detected malicious events and improved system reliabil-
ity. In [15], a novel method was proposed to reliably warn and anticipate
abnormalities and failures in distribution and communication systems.

Deep learning techniques in computer vision applications such as au-
tonomous inspection and monitoring have had a tremendous impact in recent
years [16]. Using convolutional neural networks (CNNs) have led computer
vision to more advanced approaches. The main feature of a CNN is its deep
architecture [17]. One of the common and effective approaches in deep learn-
ing is to use a pre-trained network. Several classification problems have been
solved using pre-trained networks [17]. For instance, the authors in [16] used
deep CNN architecture in the fault classification of power line insulators.

Precise monitoring and forecasting of emerging faults and failures of WTs
are critical tasks and can be complex challenges. If the system problems are
detected and notified accurately, they can be fixed as soon as possible to in-
crease the reliability of the system. Intelligent vision inspection techniques
can be employed to make these predictions and controls to be done auto-
matically and reliably. Therefore, in this work, we propose an intelligent
approach, which deploys computer vision techniques to detect wind turbine
towers (WTTs). Detection of WTTs can ease the challenges in automatic
fault detection and diagnostics process in wind farms through unmanned
aerial vehicles (UAV) [18]. In [19], they used signal processing approaches
and employed a combination of line and feature detection to locate the wind
turbine towers. They started the wind turbine detection stage with Hough
transform to detect lines but there are many objects in the background with
line shapes, such as horizon, shadow, mountains, and power lines, which are
not desired to be located. Detecting the lines and then removing the false
detections can cause computational cost and decrease the overall accuracy.

In this research, we developed a new vision-based model to detect WTTs
and verify it. The proposed verification step which is implemented using a
deep learning classification method, is an extra phase to improve the relia-
bility of the navigation system. This classifier decides between OK and NG
(Not Good) detection results. Here, OK means a WTT is detected correctly
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future goals including intelligent fault diagnosis and maintenance purposes.
The simulation results show the accuracy of the proposed model are 89.4% in
WTT detection and 97.74% in verification (classification) problems.
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and the UAV should update its navigation information while NG means a
false detection has occurred and the UAV should keep its previous knowl-
edge. In our future works, the UAV will be embedded with thermal vision
cameras for advanced visual Nondestructive Tests (NDT).

The remainder of this paper is organized as follows. Section II presents
the methodology of the proposed model. The experiments and results are
reported in Section III. Finally, in Section IV, we conclude the paper.

Class OK

Class NG

Fig. 1: Flowchart of the proposed model.

2 Methodology

In this work, we target developing an appropriate infrastructure to perform
vision-based Nondestructive tests (NDT) for wind turbines using UAVs for
future works. In order to have a precise navigation and guide the flying
machine toward the wind turbine tower and reliably land on it, the position
of the wind turbine and its tower must be estimated. To tackle this issue,
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we have proposed our model based on the flowchart of Fig. 1. There are
two main steps in our model, the first one probing a WTT location in an
input image and the second one checking whether it is a real WTT or not
using a deep learning classifier. This classifier decides between OK and
NG detection results. The UAV updates the position information when the
classifier output is OK.

2.1 Dataset

In our research, DB1 includes about 1500 images which have been captured
by us in different angles, distances, and backgrounds in a real wind turbine
farm. In this wind turbine farm more than 300 WTTs exist and in average 5
images/WTT are available in DB1. This dataset is used for object detection
problem. In Fig. 2, some selected samples from DB1 are depicted. Beside
this dataset, about 2000 images consisting of two different classes, Not Good
(NG) as Class 1 and OK as Class 2 with equal distribution (1000 images
for OK class and 1000 samples for NG), have been collected as DB2 to
evaluate the performance of the proposed algorithm in the verification stage
(classification problem). Fig. 3 illustrates several examples of two mentioned
classes in DB2.

Fig. 2: Some selected image samples in our dataset (DB1)
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(a)

(b)

Fig. 3: Several samples from our database (DB2) for verification problem
including two classes: NG (Not Good) and OK, (a) NG (b) OK.

2.2 The WTT object detection

Object detection is a fundamental field of study in computer vision and
image processing applications [20–27]. Recently, various algorithms have
been suggested for object detection purposes [28–31]. These algorithms ex-
tract local interest features (key points) and describe them to identify the
objects [28–31]. In [28], a well-known algorithm, Scale-Invariant Feature
Transform (SIFT) was presented as a scheme for extracting highly distinc-
tive invariant features, which can be used to match different views of objects.
The advantage of SIFT is its invariance to scaling, rotation, and translation.
The SIFT key point detectors and descriptors have reported to be remark-
ably effective in different applications [28].

SIFT is computationally expensive, especially for real-time systems. This
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has led into thorough research toward an alternative algorithm with lower
computational cost such as Speeded Up Robust Features (SURF) and Fea-
tures from Accelerated Segment Test (FAST) [28–31]. In [29], the authors
implemented a new detector and descriptor called SURF which is invariant
to scaling and rotation. It is competitive and often superior in terms of re-
peatability, distinctiveness, and robustness to SIFT, and can be calculated
and compared much faster.

SIFT and SURF are both based on detectors and descriptors. Once
key points are extracted, a template-matching algorithm must be applied to
describe the features. Here, we adopt Brute-Force [28] and FLANN (Fast
Library for Approximate Nearest Neighbors) based matcher [32] to test the
similarity between the descriptors for the training and test images. The
Brute-Force matcher is simple; it takes the descriptor in the first set and
compares it to all other descriptors in the second set using a distance calcu-
lation. Then the closest ones are returned as the best matches. FLANN con-
tains a collection of optimized algorithms for fast nearest neighbor searches
in large datasets and for features which are high dimensional.

2.3 The verification step based on deep learning classifiers

We used SIFT, SURF, FAST algorithms to extract features and detect WTs.
Since the object detection stage plays a crucial role in reliability of navigating
toward the correct target, we must verify our detection results. If the towers
are not detected reliably, UAVs and thermal cameras may hit the blades or
land on wrong objects. As a result, the UAVs and cameras may be damaged
or the inspection and estimation data may be erroneous.

There are a lot of classical approaches for classification problems such as
Random Forest (RF), AdaBoost, k-Nearest Neighbor (kNN), and Support
Vector Machine (SVM) [33–38] but to verify the object detection output
accuratelly, we propose use of a pre-trained CNN as the classifier. The
authors in [17] presented MobileNet as a class of more efficient models for
mobile and embedded vision applications. As indicated in Fig. 4, MobileNets
are based on an architecture that uses depth wise separable convolutions
to build lightweight deep neural networks [17, 39–41]. In [17], the authors
introduced two simple global hyper-parameters that effectively compensate
for latency and accuracy. These hyper-parameters allow the model builder to
choose the right sized model for their application according to the limitations
of the problem. They have presented many experiments on resource and
accuracy trade-offs and have demonstrated better performance compared to
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other common models on ImageNet classification [17].

M

N

DK
DK

(a) Standard Convolution Filters

M
DK

DK

1

(b) Depthwise Convolution Filters

M

N1
1

(c) 1×1 Convolution Filters called Pointwise Convolution in the context of
Depthwise Separable Convolution

Fig. 4: The standard convolution filters in (a) are replaced by two layers:
depth-wise convolution in (b) and point-wise convolution in (c) to
build depth-wise separable filters [17].

In this work, we applied MobileNet [17], ShuffleNet (an extremely effi-
cient convolutional neural network for mobile devices) [42], EffNet (an effi-
cient structure for convolutional neural network) [43], SqueezeNet [44], and
ResNet [45, 46] pre-trained classifiers with two added fully connected layers
Dense 1 and Dense 2. Dense 2 is the output layer and fixed for our binary
classifier while Dense 1’s parameters are targeted as optimization parame-
ters.

ShuffleNet is a practical CNN architecture with high computational effi-
ciency. It provides more feature map channels to encode more information.
This is an important point for the performance of very small networks. Shuf-
fleNet is well designed and developed for embedded devices such as mobile
phones with very low computing power [42]. SqueezeNet tries to reduce
time cost and parameters noticeably while holding on the accuracy [44].
Residual Neural Network so-called ResNet utilizes the bottleneck architec-
ture efficiently to obtain impressive performance [45, 46]. In this model an
innovative structure with skip connections and features heavy batch nor-
malization was introduced. Such skip connections are also known as gated
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units or gated recurrent units and have a strong similarity to recent suc-
cessful elements applied in RNNs. ResNet has proven to be powerful in a
lot of applications but one major disadvantage is that the deeper networks
usually need several weeks for training, making it impractical in real-world
applications. In addition it has large size for most embedded devices. In
comparison to ResNet, ShuffleNet has the lower complexity with the same
settings. MobileNet and ShuffleNet are favourite models for embedded and
mobile systems but EffNet is the optimized model that can be replaced with
them in the same applications. EffNet deploys spatial separable convolu-
tion, which is simply a depthwise convolution splitted along the x and y axis
with a separable pooling between them. It has been shown that it has the
same capacity even when applied to narrow and shallow architectures [43].
EffNet block is developed to guarantee the safe replacement of the vanilla
convolution layers in mobile hardware applications. Therefore, it has two
main advantages, first is the quicker inference and second the application
of a larger, deeper network becoming possible [43]. A comparison of Mo-
bileNet and ShuffleNet with EffNet is shown in Fig. 5. In this figure, dw
means depthwise convolution, mp means max-pooling, ch is for the number
of output channels and gc is for group convolutions [43].

Fig. 5: A comparison of MobileNet and ShuffleNet with EffNet [43]
(a) An EffNet block (b) A MobileNet block (c) A ShuffleNet block

In the next section, we elaborate experimental results in our research.

3 Experiments and Results

In our work, all implementations and simulations have been done using
Python programming language and TensorFlow by a Core i7 CPU and
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NVIDIA GTX 1050 GPU with 16 GB DDR4 RAM memory. As mentioned
before in Section 2.1, We carried out our experiments and simulations using
images which were captured by us in a real wind farm.

3.1 Using SIFT, SURF, and FAST for WTT object detection

In order to detect the wind turbine towers, firstly, the features and de-
scriptors are extracted using SIFT, SURF, and FAST schemes and then, by
applying Brute-Force and FLANN template matching algorithms, a bound-
ing box is predicted for the wind towers. To evaluate the performance of
our proposed object detection method, we used the Intersection over Union
(IoU) [47]. IoU can be calculated having the ground-truth (GT) bounding
box and predicted bounding box of the model. Fig. 6 illustrates different
examples of the simulation results in our dataset. The features key points
are drawn in blue, predicted bounding box is in red and the ground-truth
bounding box is in green.

The goal was to compute the intersection over union of detected bounding
box and ground-truth box based on Equation (1).

IoU =
Area of Overlap

Area of Union
(1)

We considered the IoU as a scoring factor and will decide on the perfor-
mance of the suggested model based on Equation (2).

Prediction =

{
0 IoU≤ Λ
1 IoU≥ Λ

(2)

If Prediction = 0, it actually means a detected object is not acceptable.
Fig. 6.(a) demonstrates a poor detection with IoU = 0.0198, while Fig. 6.(b)
is an example of a less good prediction with IoU = 0.3129, Fig. 6.(c) is a
good detection with IoU = 0.5734, and Fig. 6.(d) demonstrates an excellent
bounding box, IoU = 0.9708.

The detection rate of the WTT, drWTT , can be calculated as introduced
in Equation (3). In this equation, N is the total number of images in the
experiment.

drWTT =

∑N
i=1 Prediction

N
× 100 (3)
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(a) (b)

(c) (d)

Fig. 6: Detecting wind tower in different images. (a): IoU=0.0198, poor de-
tection using FAST, SIFT, and FLANN. (b): IoU=0.3129, less good
detection using FAST, SURF, and FLANN. (c): IoU=0.5334, good
detection using SURF and Brute-Force. (d): IoU=0.9708, excellent
detection using FAST, SIFT, and Brute-Force.

To evaluate the performance of the proposed method, we measured the
accuracy using Equation (4) and the following metrics: TP (True Positive)
indicates the number of correctly classified samples in the OK class, FN
(False Negative) indicates the number of samples for which the classification
is NG class, but misclassified, TN (True Negative) indicates the number of
samples that properly classified as not belonging to the OK class, and FP
(False Positive) indicates the number of samples belongs to the class OK but
misclassified [48]

Accurracy =
TP + TN

TP + FP + TN + FN
(4)

The results of applying SIFT, SURF, and FAST feature extractors with
Brute-Force and FLANN template matching algorithms are summarized in
Table 1. According to this table, FAST outperforms other feature extrac-
tors in term of accuracy. It extracts more features than SIFT and SURF,
that makes FAST more powerful in the detection of wind towers. We also
observe that SURF is more accurate in extracting and describing features
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in comparison to SIFT. As it is mentioned in Table 1, FLANN template
matching works slightly better than Brute-Force.

Table 1: Result of the WTT object detection

Method Accuracy(%)

Feature extractor

& descriptor
Matcher Runtime (s) IoU=0.5 0.3 0.25

SIFT Brute-Force 0.3955 45.4 74.8 79.8

SURF Brute-Force 0.3021 46.6 76.9 82.0

FAST & SIFT Brute-Force 0.0728 51.1 81.8 84.1

FAST & SURF Brute-Force 0.0623 52.7 83.6 87.3

SIFT FLANN 0.3666 47.0 78.5 83.2

SURF FLANN 0.2309 49.5 82.7 84.9

FAST & SIFT FLANN 0.0821 52.6 82.8 87.3

FAST & SURF FLANN 0.0542 54.8 83.8 89.4

3.2 Applying deep learning classifiers to verify object detection
results

To verify the object detection performance, firstly we used the pre-trained
MobileNet classifier with MobileNets Body Architecture [17] that is pre-
sented in Table 2. In addition, we deployed the following parameter setting:

The optimizer used in our work is named Adam [49]. We set learning
rate to be 3 × 10−7 for the optimizer. At two last layers, we used Fully
Connected (FC) networks. In these layers, each neuron reads the neurons
output in the previous layer and processes the information it needs, and
produces the outputs for the next layer [50–52]. The general formula is the
following, where b is the BIAS; weights of connections are wi, f is a nonlinear
activation function.

f(W tx) = f(

3∑
i=1

Wixi + b) (5)

The most common activation functions are Sigmoid function, hyperbolic tan-
gent function (Tanh), and rectified linear function (ReLU). Their formulas
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are as follows ( [50–52]):

f(W tx) = Sigmoid(W tx) =
1

1 + exp(−W tx)
(6)

f(W tx) = tanh(W tx) =
eW

tx − e−W tx

eW tx + e−W tx
(7)

f(W tx) = Relu(W tx) = max(0,W tx) (8)

The Sigmoid function receives a value range between 0 and 1, and a real-
valued number as the firing rate of a neuron: 0 for not firing or 1 for firing.
The hyperbolic tangent functions as a zero-centered output range and uses
[−1, 1] instead of [0, 1]. For Relu function, if the input is less than 0, its
activation will be thresholded at zero. The Softmax function also can be
used as the output neuron function and is a logistic function. The function
definition is as follows ( [50–52]):

σ(x)j =
exj

∑K
k=1e

xk Xi

for j = 1, ...,K (9)

In our work, Softmax is used for the final classification at the final layer of
the NN.

In the verification problem, the detected objects should be classified into
two categories: OK and NG. As a result, the number of neurons in FC
output layer (Dense 2) would be equal to two. The classification results are
presented in Table 3. Based on the information given in this table, we could
achieve the accuracy of 96.01% in classifying the objects in the 5th exper-
iment (E5) as the best result of MobileNet with runtime around 0.034857
(s). Then we conducted our new experiments (E7 to E12) using ResNet50
rather than MobileNet. According to E11, it could result in the higher accu-
racy about 98.92% in 0.061942(s). Although ResNet50 achieved the better
result in term of the average accuracy, the runtime was doubled. Afterwards,
E13 to E18 were implemented for EffNet, ShuffleNet, and SqueezeNet. The
obtained results can be evident that EffNet with 1000 iterations and 100
neurons before the output layer (E14) can lead to 97.74% average accuracy
in 0.039351(s) as the best scenario. The validation accuracy and the vali-
dation loss for E14 are depicted in Fig. 7. In Fig. 7.(a), the network has
been trained for 1000 epochs and we have obtained a validation accuracy
of 97.74% and as it is apparent in Fig. 7.(b) the validation loss follows the
training loss which is very low.
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Table 2: MobileNets Body Architecture [17].

Type/Stride Filter Shape Input Size

Conv/s2 3× 3× 3× 32 224× 224× 3

Conv dw/s1 3× 3× 32dw 112× 112× 32

Conv/s1 1× 1× 32× 64 112× 112× 32

Conv dw/s2 3× 3× 64dw 112× 112× 64

Conv/s1 1× 1× 64× 128 56× 56× 64

Conv dw/s1 3× 3× 128dw 56× 56× 128

Conv/s1 1× 1× 128× 128 56××56× 128

Conv dw/s2 3× 3× 128dw 56× 56× 128

Conv/s1 1× 1× 128× 256 28× 28× 128

Conv dw/s1 3× 3× 256dw 28× 28× 256

Conv/s1 1× 1× 256× 256 28× 28× 256

Conv dw/s2 3× 3× 256dw 28× 28× 256

Conv/s1 1× 1× 256× 512 14× 14× 256

5× Conv dw/s1 3× 3× 512dw 14× 14× 512
Conv/s1 1× 1× 512× 512 14× 14× 512

Conv dw/s2 3× 3× 512dw 14× 14× 512

Conv/s1 1× 1× 1× 512× 1024 7× 7× 512

Conv dw/s2 3× 3× 1024dw 7× 7× 1024

Conv/s1 1× 1× 1024× 1024 7× 7× 1024

Avg Pool/s1 Pool 7× 7 7× 7× 1024

FC/s1 1024× 1000 1× 1× 1024

Softmax/s1 Classifier 1× 1× 1000

3.3 Decision making and updating the positions

Remembering the Fig. 1, the last stage of our model is the decision making.
In order to update the location of the WTT, Equations (10) and (11) are
used for X-axis and Y-axis, respectively.

X∗
i =

{
Xi−1, Di = NG
XP

i , Di = OK
(10)

Y ∗
i =

{
Yi−1, Di = NG
YP

i , Di = OK
(11)

where in these equations, Di denotes the status of the detected object
in current image frame, i. Here, Xi−1, X

P
i and X∗

i are the X positions for
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previous frame (i − 1), predicted X position for current frame (i), and the
new value of X position for the current frame, respectively (for i = 1, 2).
The same rule applies for Yi−1, Y

P
i and Y ∗

i , in Y positions (for i = 1, 2).
According to the result of the classifier and these equations, the UAV can
decide on updating its information about the location of the WTT.

Table 3: Classification results for the verification problem based on Mo-
bileNet, ShuffleNet, EffNet, SqueezeNet, and ResNet

Experiment Base model Epochs Dense 1 Run time (s) Accuracy (% )

E1 MobileNet 20 40 0.027058 51.11

E2 MobileNet 50 40 0.030192 54.43

E3 MobileNet 100 100 0.032696 76.69

E4 MobileNet 300 100 0.032752 86.22

E5 MobileNet 1000 100 0.034857 96.01

E6 MobileNet 1000 40 0.033198 85.00

E7 ResNet50 20 40 0.055964 56.01

E8 ResNet50 50 40 0.054390 56.13

E9 ResNet50 100 100 0.059588 88.21

E10 ResNet50 300 100 0.060267 95.78

E11 ResNet50 1000 100 0.061942 98.92

E12 ResNet50 1000 40 0.060906 89.46

E13 EffNet 100 100 0.036546 79.12

E14 EffNet 1000 100 0.039351 97.74

E15 ShuffleNet 100 100 0.033497 77.43

E16 ShuffleNet 1000 100 0.035001 95.89

E17 Squeezenet 100 100 0.040951 73.41

E18 Squeezenet 1000 100 0.041828 93.36

4 Conclusion

Wind turbine tower (WTT) as a main component in a farm is a mechani-
cal structure where its components are formed and constructed using carbon
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E6 MobileNet 1000 40 0.033198 85.00

E7 ResNet50 20 40 0.055964 56.01

E8 ResNet50 50 40 0.054390 56.13

E9 ResNet50 100 100 0.059588 88.21

E10 ResNet50 300 100 0.060267 95.78

E11 ResNet50 1000 100 0.061942 98.92

E12 ResNet50 1000 40 0.060906 89.46

E13 EffNet 100 100 0.036546 79.12

E14 EffNet 1000 100 0.039351 97.74

E15 ShuffleNet 100 100 0.033497 77.43

E16 ShuffleNet 1000 100 0.035001 95.89

E17 Squeezenet 100 100 0.040951 73.41

E18 Squeezenet 1000 100 0.041828 93.36

4 Conclusion

Wind turbine tower (WTT) as a main component in a farm is a mechani-
cal structure where its components are formed and constructed using carbon
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Fig. 7: The comparison between the training and validation results of EffNet
pre-trained classifier for the verification problem
(a) Accuracy (b) Loss

fiber reinforced plastic (CFRP) [9]. In order to have intelligent and proactive
maintenance services for the farm, it is essential to develop monitoring in-
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fiber reinforced plastic (CFRP) [9]. In order to have intelligent and proactive
maintenance services for the farm, it is essential to develop monitoring in-
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frastructure based on Vision Inspection (VI) technologies. This can increase
the lifetime of the WT farm and reduce the maintenance cost, provided that
accurate faults and failures predictions are available via advanced Nonde-
structive tests approaches such as intelligent VI and thermal visions [6–10].

In this paper, We suggested a scheme to detect the wind turbine towers
to facilitate monitoring, controlling, and maintenance tasks in smart grids.
We deployed machine learning techniques with vision inspection proposes
to navigate a flying machine in a wind turbine farm precisely. We used
SIFT, SURF, and FAST as feature extractors and Brute-Force and FLANN
as matchers to detect wind turbines. Our simulation results have shown
that FAST as the feature extractor with SURF as the descriptor along with
FLANN matcher outperforms in object detection task with the 89.4% ac-
curacy. Besides, in order to improve navigation reliability, an additional
binary classification step was considered based on ResNet, MobileNet, Shuf-
fleNet, EffNet, and SqueezeNet. Among all mentioned classifiers, ResNet50
obtained the highest average accuracy about 98.92% in 0.061942(s). Its run-
time was almost two times compared to EffNet with average accuracy around
97.74%. Therefore, from practical points of view such as computational-
efficiency and memory restrictions for an embedded device, our well-tuned
pre-trained EffNet was considered as the best classifier among all mentioned
models in our research.
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