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Abstract. Until roughly the year 2000, control algorithms (of the kind that can be 

physically implemented and provided guarantees of stability and performance) were 

mostly available only for systems modeled by ordinary differential equations. In other 

words, while controllers were available for finite-dimensional systems, such as robotic 

manipulators of vehicles, they were not available for systems like fluid flows. With the 

emergence of the “backstepping” approach, it became possible to design control laws 

for systems modeled by partial differential equations (PDEs), i.e., for infinite 

dimensional systems, and with inputs at the boundaries of spatial domains. But, until 

recently, such backstepping controllers for PDEs were available only for systems 

evolving on fixed spatial PDE domains, not for systems whose boundaries are also 

dynamical and move, such as in systems undergoing transition of phase of matter (like 

the solid-liquid transition, i.e., melting or crystallization). In this invited article we 

review new control designs for moving-boundary PDEs of both parabolic and 

hyperbolic types and illustrate them by applications, respectively, in additive 

manufacturing (3D printing) and freeway traffic.  
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1. CONTROL SYSTEMS AND FEEDBACK LAWS 

For dynamical systems modeled by ordinary or partial differential equations (PDEs) 

with significantly fewer input variables than state variables—like a scalar input variable for 

a PDE with a spatially-distributed or infinite-dimensional state—control theory constructs 

the input as a function(al) of the state. This achieves stability for the dynamical system, 

where ―stability‖ in a technically rigorous sense refers to a set of mathematical properties, 

which includes the property that the state converges to zero as time approaches infinity.  
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Constructing such input functions, also called ―feedback laws‖ because the input 

depends on the measurable state, is part of the design of most technological systems. A 

simple example is the Segway, whose driver would nosedive or fall backward without the 

feedback system that feeds the pitch angle measurements into the wheel angle inputs to 

keep the apparatus and rider upright. Less obvious feedback systems developed through 

evolution to both keep organisms alive and prevent them from making drastic changes to 

themselves, regardless of how much they desire said modifications. For instance, feedback 

systems that regulate metabolism prevent people from achieving significant weight loss by 

starving themselves over several days. These feedback systems developed in the living 

organisms in order to maintain—in the case of human organisms—our energy reserves in 

periods of famine and during strenuous travel.  

2. PDE CONTROL ON MOVING DOMAINS 

Classical control theory developed for ordinary differential equations (ODEs) requires 

remarkable sophistication in the design of feedback laws for nonlinear systems. Feedback 

synthesis for PDEs poses even greater challenges, namely in transitioning from the finite to 

infinite system dimension. Nonlinear ODE control saw its greatest achievements in the 

1980s [1] and 90s [2], whereas PDE control has blossomed during the last two decades [3].  

Not all physical systems are modeled by ODEs of a fixed order or PDEs on fixed 

domains. Some important applications—including traffic, opinion dynamics, and climate 

science—involve processes whose dimensions or domains depend on the size of the 

process state. For instance, the state vector dimension can increase with the size of the 

state. Or a higher temperature in its PDE spatial domain may cause the domain to grow, 

as in, melting ocean ice.  

Classical control techniques are unequipped to deal with such dimension-varying 

dynamics. In fact, such possibilities have rarely even occurred to the control research 

community, which has been preoccupied in recent years with already difficult nonlinear, 

infinite-dimensional, stochastic, and hybrid phenomena in fixed dimension. 

 

 

 
 

Fig 1 Examples of cascade systems in which a PDE, which is directly controlled, feeds 

into an ODE. Top: a hyperbolic PDE-ODE cascade, where a pure delay is example 

of the simplest hyperbolic PDE (example: control of congested traffic). Bottom: a 

parabolic PDE-ODE traffic (example: additive manufactruring/3D printing).  
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Among the simplest and most elegant problems with the state’s dimension that varies 

with the state’s size are those that involve a connected ODE and PDE, so that the PDE’s state 

acts as an input to the ODE, whose state thus represents the PDE’s boundary location. Such 

PDE-ODE systems may involve either hyperbolic or parabolic PDEs. Figure 1 depicts 

general PDE-ODE cascade systems in which the ODE is a general stabilizable dynamical 

system. Control of such PDE-ODE cascade systems is studied in [4]. In this article the ODE 

considered is a special case—a scalar ODE governing the position of the PDE’s boundary.  

3. CONTROL OF THE STEFAN SYSTEM (PARABOLIC):  

EXAMPLE OF ADDITIVE MANUFACTURING WITH LASER ACTUATION 

An example of a parabolic PDE-ODE system in which the ODE state represents the 

PDE’s boundary locatoin is the so-called Stefan system. Developed and analytically solved in 

the late 1800s by Slovenian-Austrian physicist Josef Stefan (of Stefan-Boltzmann fame), 

known in former Yugoslavia as Jožef Štefan, the system models melting and freezing [5].  

 

 

 
 

Fig. 2 Diagrams of additive manufacturing through laser-based sintering. Laser melts 

metal powder, which subsequently solidifies, allowing to build, layer-by-layer, a 

complex 3D solid form. Top: a diagram of the laser sintering system. Bottom: a 

notational representation of the temperature fields in the liquid and solid phases, 

represented in one spatial dimension, denoted by x. The heat flux qc represents a 

boundary input to the liquid phase.  
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Researchers have recently used the Stefan system to model numerous other physical 

phenomena, including additive manufacturing with both polymers and metals, depicted 

in Figure 2; growth of axons in neurons; tumor growth; cancer treatment via 

cryosurgeries; spread of invasive species in ecology; lithium-ion batteries; domain walls 

in ferroelectric thin films; and information propagation in social networks. 

Figure 3, shows the image at the bottom of Figure 2 rotated clockwise by 90 degrees, 

where Tl(x,t) and Ts(x,t) respectively represent the spatiotemporal temperatures in the 

solid and liquid. Heat PDEs govern the temperatures. A scalar ODE—whose inputs are 

the heat fluxes at the PDEs’ boundary—governs the liquid-solid interface position s(t). 

 

 

 

Fig. 3 Temperature profiles and phase interface in a PDE-ODE system involving a 

liquid, a solid, and rightward melting with the aid of heat flux applied by a laser 

on the left boundary. 

The Stefan model is given by the parabolic (heat equation) PDE  

  

in which T(x,t) represents the spatiotemporal distribution of temperature, at location x 

and at time t, the heat flux qc represents a boundary input at x = 0, and the liquid-solid 

interface s is governed by the ODE 

 

Even though the heat equation above, for T, appears linear, the scalar ODE governing 

s is clearly nonlinear because its right-hand side is a nonlinear function of s, where the 

nonlinearity is the heat flux function at the liquid-solid interface. This nonlinearity, along 

with the non-constancy of the PDE’s domain, is what makes control of this seemingly 

simple system quite challenging and entirely unconventional.  
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Stefan’s PDE-ODE model gives rise to several control and state estimation problems. 

The early efforts on control of the Stefan problem are [6, 7, 8, 9]. Here we focus on a 

control problem that is both simple and difficult. The goal is to regulate the liquid-solid 

interface position s(t) to a setpoint sr > 0. This goal is depicted in Figure 4. The non-

obvious thing to note is that, as the liquid-solid interface position s(t) is regulated to its 

equilibrium value sr, the temperature in both the liquid and the solid phases is being 

regulated to the melting/freezing temperature Tm. If this were not the case, namely, if the 

liquid were the be regulated substantially above, and the solid substantially below Tm, the 

liquid-solid interface position s(t) would keep on moving, either melting more of the 

solid, or freezing more of the liquid.  

 
Fig. 4 A depiction of the control objective in the Stefan problem. The liquid-solid 

interface is regulated to the setpoint, while, at the same time, the temperature fields 

of both the liquid and the solid phases are being regulated to the melting/freezing 

temperature, which represents the thermal equilibrium in this problem.  

Using the backstepping approach for PDE-ODE systems [4], we design and implement 

a feedback law qc(s, T) by using a laser to apply a heat flux to the liquid. This backstepping 

feedback is given by  

 

where c is a positive gain constant. This backstepping control law is proportional to the 

error between the measured thermal energy and the thermal energy at the melting/freezing 

point, plus the interface tracking error s - sr. The feedback law appears linear but it is not. 

The dependence of the upper limit of integration in x on the solid-liquid interface s is what 

makes this controller nonlinear, for the system which is nonlinear.   

The backstepping approach entails construction of a Volterra transformation of the 

temperature state and a Lyapunov functional based on the transformed temperature state 

[10, 11].1 

                                                           
1 http://a2c2.org/awards/o-hugo-schuck-best-paper-award 

http://a2c2.org/awards/o-hugo-schuck-best-paper-award
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Fig. 5 Time evolution of the liquid-solid interface (top), which approaches its setpoint 

without an overshoot, and the temperature at the initial location of the liquid-solid 

interface (bottom) which starts from the melting point, has an upward excursion 

while the solid gets melted, and returns to the melting point, which is the system’s 

thermal equilibrium. At no point does the temperature in the liquid phase fall 

below freezing. At no point does the heat flux get negative, which ensures the 

monotonicity of the motion of the liquid-solid interface and the absence of frozen 

islands within the liquid.  

Figure 5 shows that the controller succeeds in its task. The solid-liquid interface is 

regulated to its setpoint. The temperature throughout the liquid domain is regulated to the 

melting point, which is the system’s thermal equilibrium. 

This control law achieves global stabilization for all initial conditions where the 

liquid temperature is above melting and the solid temperature is below freezing; both 

temperatures remain in these states for all time. In physical terms, this means that no 

solid islands form within the liquid and no pools of liquid form within the solid. The 

maximum principle for the heat equation establishes this result [12, 13].  
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4. CONTROL OF MOVING SHOCK IN CONGESTED TRAFFIC 

The analog to the Stefan system’s parabolic PDE phenomenon is the hyperbolic PDE 

phenomenon that arises in traffic. This originates with a moving shock that delineates the 

free traffic (upstream of shock) from the congested traffic (downstream from shock), as 

seen in Figure 6.  

 

 
Fig. 6 Free traffic (upstream/left) and congested traffic (downstream/right) are separated 

by shock, depicted as a sharp increase in density. Modulating the durations of the red 

and green lights on the on-ramps regulate the shock location to a desired position.  

The hyperbolic nonlinear Lighthill-Whitham-Richards PDE [14, 15], which acts as a 

simple delay for small deviations, models the traffic flow. A scalar ODE governs the 

shock motion, and the traffic densities of the congested and free traffic at the shock 

location form the ODE’s inputs. This ODE represents the Rankine-Hugoniot jump 

condition that is common in compressible gas models. The PDE-ODE system is given by 

 

where the first PDE models the density of cars in the free traffic segment, the second 

PDE models the density in the congested traffic segment, and the ODE at the bottom 

models the motion of the free-congested interface l(t), namely, of the shock location.  
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If left uncontrolled, this system will exhibit the upstream motion of the shock, until 

the entire freeway is consumed by congestion. This is shown in Figure 7, which shows a 

simulation of the PDE model on the left and a simulation of a ―microscopic‖ model on 

the right (where each car’s motion is modeled individually). 

 

 
 

Fig. 7 Shock starting near the downstream end of the freeway segment propagates 

upstream until the entire freeway segment is consumed by congestion. Left: LWR 

PDE simulation. Right: ―microscopic‖ simulation showing density of cars where 

blue denotes low density and yellow/green denotes high density, namely, congestion.  

To prevent the loss of free traffic, we again use the PDE backstepping design to devise a 

feedback law that regulates the moving shock’s position to a setpoint. This backstepping 

controller is given by the formulas 

 

The variable Uin denotes the deviation of the density of cars at the inlet of the freeway 

segment relative to a setpoint, whereas the variable Uout denotes the deviation of the 

density of cars at the outlet of the freeway segment relative to a setpoint. The quantities 

Kf and Kc denote positive gain constants, whereas L denotes the length of the freeway 

segment.  

The feedback laws above are implemented via ―ramp metering,‖ which involves 

modulation of the red and green lights on the freeway on-ramps around steady durations 

that correspond to the desired location of the shock.  

Figure 8 illustrates the success of the feedback laws. They ―arrest‖ the upstream drift 

of the shock and keep the segment of the freeway upstream of the shock in free, i.e., 

uncongested traffic.  
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Fig. 8 The controllers implemented through ramp metering at the inlet and outlet of the 

freeway prevent the drift of the congested traffic beyond the setpoint for the shock. 

Hence, the upstream portion of the freeway is kept uncongested (blue denotes low 

density of cars in both pictures). Allowing the downstream portion of the freeway to 

be congested is important—not doing so would mean that many cars are prevented 

from entering the freeway and are instead kept on the ramps and on the streets leading 

to the ramps.  

The similarity between the feedback laws for the Stefan (additive manufacturing) and 

the freeway problems are quite noticeable. Both feedbacks include integrals over varying 

spatial domains and both feedbacks also include the error between the measured interface 

position and the reference position.  

Analyzing the PDE-ODE system with the feedback law once again employs a 

backstepping/Volterra transformation of the traffic density PDE’s state, along with a 

resulting Lyapunov functional. Like with the Stefan system, stability occurs in the H1 

Sobolev norm. The details are contained in [16]. However, while stability for the Stefan 

system holds for all physically-meaningful initial conditions, it only holds locally—for 

small deviations of the density field around its equilibrium profile—for the traffic problem.   

Another important result on control of an LWR-like model of traffic is [17].  

4. CONCLUSIONS 

In this tutorial exposition of two PDE control designs from distinct domains of physics 

and engineering, we have illustrated the current state-of-the art in designing controllers for 

infinite-dimensional systems modeled by PDEs with moving boundaries. These techniques 

are also applicable to a variety of other phase-change problems, including tumor growth and 

cancer treatment, lithium-ion batteries, and information propagation in social networks, as 

well as to multi-phase flows, fluid-structure interactions, and undersea construction using 

long cables.  

Future research needs to advance these techniques from one spatial dimension to two 

and three spatial dimension, multi-PDE scenarios, and systems in which the interface is 
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not governed by an ODE but by another PDE, possibly from a different class than in the 

main domain. An example of such a dynamical system is a biological cell whose membrane 

is governed by an elastic structural PDE model (second-order in time and fourth-order in 

space), while the interior is governed by a diffusion-dominated parabolic PDE.  

Acknowledgement: The paper is the result of joint work with my students Shumon Koga (for the 

Stefan problem) and Huan Yu (for the traffic problem). The material in this article was presented in 

two lectures that the author presented in the Serbian Academy of Sciences and Arts, one dedicated to 

traffic control and the other dedicated to the Stefan model of systems with a phase change. 

REFERENCES 

[1] A. Isidori, Nonlinear Control Systems, Springer, 1989. 

[2] M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic, Nonlinear and Adaptive Control Design, Wiley, 1995. 

[3] M. Krstić and A. Smyshlyaev, Boundary Control of PDEs: A Course on Backstepping Designs, SIAM, 2008.  

[4] M. Krstić, Delay Compensation for Nonlinear, Adaptive, and PDE Systems, Boston, MA: Birkhauser, 2009. 

[5] J. Stefan, ―Uber die Theorie der Eisbildung, insbesondere uber die Eisbildung im Polarmeere,‖ Annalen 

der Physik, vol. 278, pp. 269–286, 1891.  

[6] A. Armaou and P.D. Christofides, ―Robust control of parabolic PDE systems with time-dependent spatial 

domains,‖ Automatica, vol. 37, pp. 61–69, 2001. 

[7] N. Petit, ―Control problems for one-dimensional fluids and reactive fluids with moving interfaces,‖ In 

Advances in the theory of control, signals and systems with physical modeling, volume 407 of Lecture 

notes in control and information sciences, pages 323–337, Lausanne, Dec 2010.  

[8] B. Petrus, J. Bentsman, and B.G. Thomas, ―Feedback control of the two-phase Stefan problem, with an 

application to the continuous casting of steel,‖ In Proceedings of the 49th IEEE Conference on Decision 

and Control (CDC), 2010, pp. 1731–1736.  

[9] M. Izadi and S. Dubljevic, ―Backstepping output feedback control of moving boundary parabolic PDEs,‖ 

European Journal of Control, vol. 21, pp. 27–35, 2015.  

[10] S. Koga, M. Diagne, and M. Krstić, ―Control and state estimation of the one-phase Stefan problem via 

backstepping design,‖ IEEE Transactions on Automatic Control, vol. 64, pp. 510–525, 2019. 

[11] S. Koga, I. Karafyllis, and M. Krstić, ―Input-to-state stability for the control of Stefan problem with 

respect to heat loss at the interface,‖ In Proceedings of the 2018 American Control 

Conference. Milwaukee, WI, 2018. 

[12] A. Friedman ―Free boundary problems for parabolic equations I. Melting of solids,‖ Journal of 

Mathematics and Mechanics, vol. 8, no. 4, pp. 499–517, 1959.  

[13] S. Gupta, The Classical Stefan Problem. Basic Concepts, Modelling and Analysis. North-Holland: 

Applied mathematics and Mechanics, 2003.  

[14] M. J. Lighthill and G. B. Whitham, ―On kinematic waves. II. A theory of traffic flow on long crowded 

roads,‖ Proc. Roy. Soc. London. Ser. A., 229 317–345, 1955. 

[15] P. I. Richards, ―Shock waves on the highway,‖ Operations Res., 4, 42–51, 1956 

[16] H. Yu, L.-G. Zhang, M. Diagne, and M. Krstic, ―Bilateral boundary control of moving traffic 

shockwave,‖ IFAC Symposium on Nonlinear Control Systems, 2019. 

[17] I. Karafyllis, N. Bekiaris-Liberis, & M. Papageorgiou. ―Feedback Control of Nonlinear Hyperbolic PDE 

Systems Inspired by Traffic Flow Models‖. IEEE Transactions on Automatic Control, 2018.  

 


