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Abstract. Low-frequency noise spectroscopy (LFNS) is an experimental technique to 

study noise spectra, typically below 10 kHz, as a function of temperature. Results of LFNS 

may be presented as the ‘so-called’ noise maps, giving a detailed insight into fluctuating 

phenomena in electronic devices and materials. The authors show the usefulness of virtual 

instrument concept in developing and controlling the measurement setup for LFNS 

experiments. An example of a noise map obtained for polymer thick-film resistors 

(PTFRs), made of commercial compositions, for temperature range 77 K – 300 K has 

been shown. The experiments proved that 1/f noise caused by resistance fluctuations is the 

dominant noise component in the studied samples. However, the obtained noise map 

revealed also thermally activated noise sources. Furthermore, parameters describing 

noise properties of resistive materials and components have been introduced and 

calculated using data from LFNS. The results of the work may be useful for comparison of 

noise properties of different resistive materials, giving also directions for improvement of 

thick-film technology in order to manufacture reliable, low-noise and stable PTFRs. 
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1. INTRODUCTION 

Noise measurements are much more sensitive to internal electronic component 

imperfections than ordinary resistance measurements since noise and resistance are 

proportional to the fourth and second moments of local current distribution, respectively. 

Taking into account that a reduction of supply voltage in modern electronic circuits is a 

common trend forced by commercial applications, one may realize that the noise generated 

in electronic components becomes one of their most important parameter. It is also 

observed in specialized electronics, like cryogenic thermometry, where intrinsic noise of 

the device limits capabilities or the resolution of the overall circuit. On the other hand, it 
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has been also shown that there is a relationship between low-frequency noise observed in 

electronic components and their reliability [1, 2]. Therefore, the noise measurements are 

very important research and diagnostic tool. However, noise measurements requires much 

more sophisticated equipment and are time consuming, as compared to resistance (or 

conductivity) and I-V curve tests.  

It is a good practice to start noise studies with noise components identification which 

means that the shape of noise spectrum and its dependence on the excitation signal has to 

be known. One of noise components commonly observed in low-frequency range is 1/f noise. 

However, in many electronic components, apart from 1/f, other noise components may 

also be detected. A good example are thick-film resistors (TFRs), in which the resistive 

layer of RuO2+glass is prepared in a high-temperature process, i.e., made of pastes 

deposited on the proper substrate and then fired in temperature of about 850 ºC. In these 

resistors, apart from the dominant 1/f noise, Lorentzian components, caused by thermally 

activated noise sources (TANSs) distributed randomly in the resistive layer, have also 

been found [3]. However, to detect TANSs and study their properties noise spectra have 

to be measured as a function of temperature. This research technique is called low-frequency 

noise spectroscopy (LFNS). Noise spectra vs. temperature have been investigated in TFRs 

at fixed temperature points [4], whereas LFNS used in [3, 5, 6] make it possible to depict 

a large amount of experimental data in the plot of fluctuating quantity vs. frequency f and 

temperature T, called ‘noise map’. It was possible due to continuous acquisition of voltage 

fluctuations observed on TFRs with the current excitation, and recording calculated in real-

time consecutive spectra during slowly varying temperature. The progress was made also 

due to the usage of software defined instruments for controlling the experiment and 

processing the data. The software that supports the experiment uses virtual instrument (VI) 

concept, which means that the instrument consists of three main components: (i) general 

purpose personal computer, (ii) specialized software which is responsible for interaction 

with the user by means of graphical interface, and (iii) internal and/or external functional 

hardware (DAQ board/device, digital meters with remote control, etc.) [7, 8]. Due to the 

synergy, the functionality and possibilities of VIs result in equal parts both from the 

software and the hardware. In this work we describe in more detail the software layer that 

is used in studies of noise properties of electronic materials and components in function of 

temperature. The usefulness of VIs, developed for supporting LFNS experiments, will be 

shown with the use of polymer thick-film resistors (PTFRs) as the subject of studies. 

2. ROLE OF THE SOFTWARE 

As a base Noise Signal Analyzer described in [9] has been reused. The hardware part of 

VI is shown in Fig. 1. The heart of the system is multi-channel plug-in DAQ board, which 

simultaneously digitizes analog signals.  

Voltage signals, including fluctuations of interest, from the multi-terminal electronic 

component, after conditioning are sampled and converted to digital representation giving 

2
20

 samples in each time record of trec = 2 s duration. After spectra and/or cross-spectra 

calculations, executed in real-time by the use of FFT algorithm, they are displayed and 

certain low parts of the spectra are recorded. Additional digital voltmeters (3458A and 

34410A both from Agilent) and temperature controller (Lake Shore 340) are used for 

monitoring biasing conditions of the sample as well as its temperature. In order to precisely 
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tune sampling frequency an external generator (Agilent 33120A with extended stability) is 

used for triggering DAQ board. All auxiliary instruments are recognized automatically at the 

start of the system and then exchange messages with PC controller via GPIB or USB bus.  
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Fig. 1 Hardware part of VI used in low-frequency noise experiments 

The software part has been prepared in LabVIEW environment and is divided into two 

main parts: (A) controlling the experiment, and (B) post-experiment analysis. The following 

main tasks are defined in part (A): (i) signal sampling in continuous mode, (ii) digital signal 

processing of the sampled signal (in real time), including spectra calculations, (iii) monitoring 

resistance R of the sample and its temperature T, (iv) spectra presentation and recording 

together with additional data (R and T) for further analysis. The above tasks are executed 

iteratively in independently running threads. The software part responsible for digital 

signal processing also offers more advanced functions for analysis either in time or 

frequency domain, like (i) phase sensitive detection (for ac method of noise measurements), (ii) 

detrend function [10] for removing trend and thus rejecting distortion of noise spectrum 

due to the temperature drift, (iii) power cross-spectral density function, which apart from 

ordinary power spectral density function is the most useful in experiments that involve 

multi-terminal samples, (iv) correlation function, (v) second spectra, etc. The complexity 

of the software may be expressed as a number of sub-VIs, which is about 500 for part (A) 

and 270 for part (B) of the software.  

The block diagram of the software part of considered VI is shown in Fig. 2, where 

three main pieces are visible: configuration, experiment control and monitoring, and post-

experiment data processing. Furthermore, three traditional layers, i.e. hardware (acquisition), 

analysis and presentation, have been shown in the background of experiment control. Under 

the hood, during the experiment several loops are executed concurrently in separate 

threads which communicate with each other via queues. The first loop acquires data from 

DAQ board and passes them to digital signal processing engine that calculates, selected 

previously at the configuration stage, functions in time and/or frequency domain. Another 

loop continuously reads measurements from auxiliary meters and calculates actual 

resistance and temperature. Loops interacting with hardware functional blocks, i.e. DAQ-

board/device and monitors/controllers, iterate independently with their own pace. For 

transferring data between loops, an advanced queues mechanism has been employed, not 
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to lose any time record and results of calculated functions. Averaging engines have been 

used for data decimation during the experiment with the way and rate configured by the user.  
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Fig. 2 Block diagram of the software part of VI developed to support low-frequency noise 

spectroscopy 

LFNS experiment takes long time, which is the result of small rate of temperature 

changes. Namely, to avoid spectra distortion due to the temperature drift, the following 

relation has to be fulfilled [11]  

 2 2(2 ) ( ),rec Vext f S f    (1)  

where  is the rate of voltage drift caused by temperature change, and SVex is excess noise, 

SVex = SV - SV=0, where SV and SV=0 are power spectral densities of voltage fluctuations with 

bias and with no sample bias, respectively. However, if the above relation is not fulfilled, 

then the spectra will include distortion (mainly in low-frequency range) obscuring the useful 

information. Nevertheless, the negative influence of the resistance drift, may be significantly 

reduced by using detrend procedure, which removes unwanted small changes in the signal 

just before calculating spectra [11]. The above issues limit the rate of temperature changes 

and therefore the temperature sweep in the experiment covering temperature range 77 K – 

300 K lasts nearly 2 days. During this time, consecutive time records, acquired from the 

device under test, are used for (cross)spectra calculations. It means that about 86 thousands 

of spectra, each counting 1000 (or even more) bins for every acquired signal have to be 

decimated and recorded in separate files. Hence, the software support for post-experiment 

data processing is necessary. The main progress with respect to Noise Signal Analyzer, 

described in [9], concerns part (B) of the software. It consists of the functions responsible for 
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(i) spectra viewing, editing and their transformations, including excess noise calculations, 

noise normalization, etc., (ii) noise maps generating and viewing, as well as TANSs 

identification and analysis, including calculation of activation energy, (iii) calculations of the 

powers of fluctuating quantity in the user defined frequency bands as a function of temperature, 

necessary for evaluation of the integral noise measure [3], (iv) decomposition of total noise into 

bulk and contact components, which is possible for multi-terminal samples, and (v) calculations 

parameters describing noise properties, like noise spectral exponent, material noise intensity 

parameter C (see next section). All the functions create graphs with plots and/or save their 

results in files for further analysis (see bottom part of Fig. 2).  

3. EXPERIMENT 

As a subject of studies a pair of PTFRs, with matched resistance, prepared on the same 

substrate, has been taken. Resistive layers of PTFRs have been made of ED7100_200Ω - 

carbon-based composition from Electra Polymers Ltd on FR-4 laminate. Samples have 

been prepared as multi-terminal PTFRs in which rectangular resistive layer (length L = 15 mm, 

width w = 0.5 mm and thickness d = 20 m) ended on opposite sides with current terminals. 

Additional, evenly spaced along the layer, terminals (voltage probes) have also been formed. 

Such shape of sample has been used in our previous experiments [3]. Polymer thick-film 

resistive films have been screen-printed on bare Cu contacts.  

The substrate with the pair of samples has been then inserted into liquid nitrogen 

cryostat, making lower arms of the dc bridge (see Fig. 3). Ballast resistors RB have been 

selected so as to fulfil the relation RB  RS. The circuit has been supplied from programmable 

source measure unit (Keithley 2636) working in voltage mode and low-pass passive filter of 

large time constant. Signals from diagonal of the bridge and its sub-diagonals have been 

connected to differential low-noise preamplifiers (5186 from Signal Recovery) with 1000 

gain and then after low-pass filtering digitized in acquisition plug-in board. Spectra SV and 

cross-spectra (with 0.5 Hz resolution) for signals taken from samples terminals have been 

calculated in real time by the software and gathered in proper files for further analysis. The 

experiment started with cooling down the sample and letting the temperature rise freely.  

It should be noted that the voltage V7-7 acquired from the diagonal of the bridge includes 

fluctuations arising in both samples. Similarly, voltages from sub-diagonals, Vi-i, include 

fluctuations that arise in both samples but only in parts of the resistive layers (sectors) 

marked by terminals ‘1’ and ‘i’, where i = 2…6. Furthermore, in order to obtain voltages 

from sectors 3-5 and 2-6 covering internal sectors of the resistive layer, voltages V5-5-V3-3 

and V6-6-V2-2 have been created by the use of amplifiers/filters with differential inputs. To 

improve the accuracy of the spectra calculation for the internal sectors, cross-correlation 

technique has been employed, i.e. cross-power spectral density function has been used for 

calculation SV(1-i) using voltages V7-7 and Vi-i, while SV(1-7) has been calculated using ordinary 

power spectral density function from voltage V7-7. Due to the advantage of the method [6], 

SV(1-6), are free from noise of voltage probes, including both contacts noise and noise of 

resistive arm, although it includes (apart from noise of the part of the main resistive layer) 

also noise of current contacts at terminals ‘1’. On the other hand, SV(1-7) includes noise of 

contacts at terminals ‘1’ and ‘7’ and noise of the whole resistive layers. In a similar way, SV(2-

6) and SV(3-5) calculated as cross-power spectral density of V7-7 and either V5-5-V3-3 or V6-6-V2-2 

are free from noise of current contacts as well as voltage probes. 
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During the experiment, apart from the spectra of interest, also current resistance of the 

sample, RS, is calculated and recorded, using supply and sample voltages and the known 

value of ballast resistor RB. Since temperature of the sample is also monitored and recorded, 

temperature dependence of sample resistance, R1-7(T), is also the result of LFNS experiment.   
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Fig. 3 Measurement setup for noise studies in multi-terminal TFRs 

4. RESULTS 

Entry test of samples, executed at room temperature, cover measurements of voltage 

distribution along the resistive layer, noise spectra measurements for identification main 

noise components and samples selection. The voltage distribution has been shown in Fig. 4 

(points). The data points for terminals 2 – 6 have been used in a linear fit (solid line) for 

evaluation sheet resistance Rsq = 0.353 k, while the expected nominal value was 200 . 

From the intersections of the extrapolated line (dashed line) with coordinates, resistances of 

contacts may be calculated. It thus occurred that the resistance of bottom contact is Rcontact(1) 

= 273  while Rcontact(7) ≈ 0 .  

 

Fig. 4 Voltage distribution along the resistive layer.  

Terminals’ labels have been given near the corresponding points.  
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The fundamental issue in noise properties studies is the identification of noise 

components. To do that, spectra of fluctuating quantity (current or voltage) are acquired 

as the function of sample bias. It has been shown in Fig. 5a, where collection of excess 

noise spectra gathered at room temperature for terminals 7-7, SVex(1-7) is plotted for 

different sample voltages. Additionally, background noise, SV=0, and dashed line for pure 

1/f noise have been drawn for reference. It is obvious that 1/f noise is dominant. Therefore, it 

is convenient to use product of frequency and SVex, <f·SVex>f, averaged over certain frequency 

band, f, as the measure of noise intensity. The plot of this quantity, calculated for decade 

frequency bands, versus sample voltage (points) is show in Fig. 5b. Squared voltage 

dependence has been added (dashed line) for reference. It is visible that the observed noise 

is caused by resistance fluctuations.  

After tests at room temperature, the substrate with studied PTFRs has been inserted 

into LN2 cryostat, cooled-down and noise spectra have been recorded during warming-up. 

An exemplary plot of the noise map has been shown in Fig. 6. In this map the product 

f·SR, where SR = SVex/I
2
 and I is biasing current, has been plotted vs frequency and reciprocal 

temperature. Such fluctuating quantity, f·SR, has been chosen since it is sample voltage 

independent and other than 1/f noise components are emphasized. Furthermore, reciprocal 

temperature scale (horizontal scale in Fig. 6) helps in direct detection of TANSs which are 

visible in the map as streaks, marked with dashed lines. From the slopes of these lines, 

activation energies of TANSs [6] have been calculated: Eg = 1013 meV, 736 meV, 642 

meV, 316 meV, 303 meV.  

The set of TANSs visible in the noise map is sample-dependent since only those TANSs 

are visible that modulate resistances in the critical percolation path. Analyzing noise map 

of Fig. 6 we may notice that at temperatures 145 K and 186 K there are vertical streaks that 

look like unwanted interferences. But further inspection of noise spectra ensures that the 

noise map is correct and non-stationary noise sources have been recorded. Their individual 

spectra of Lorentzian shape have been shown in Fig. 7. Additionally, another two spectra, 

for intermediate temperature, including TANS of Eg = 303 meV have been plotted. 

Furthermore, the spectrum with two Lorentzians has been also shown in Fig. 7 that has 

been caught at 77 K, which means that TANSs also exist in a lower temperature range. 
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Fig. 5 (a) Excess noise for different sample voltages.  

(b) Noise intensity versus sample voltage 
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Fig. 6 Noise spectra gathered for samples made of ED7100 with Cu contacts plotted as a 

noise map, i.e. the quantity fSR versus frequency and temperature 
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Fig. 7 Selected spectra with visible Lorentzians  

5. INTEGRAL NOISE MEASURE 

As we can see, the dependence of noise intensity is subject to large variations, which 

has been shown in the noise map in Fig. 6 and also in Fig. 8. Since only those TANSs are 

visible in noise maps that modulate critical resistances in percolation paths, dependence 

of R
2
 versus temperature is irregular, although temperature dependence of resistance, also 

shown in Fig. 8, is monotonic and smooth. It implies the necessity of averaging R
2
 over 

temperature to obtain a reliable noise measure. Namely, having SR(f, T) as a result of LFNS 

experiment, we use the integral measure of noise intensity [12]:  
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T f
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where T1, T2 and f1, f2 determine temperature and frequency range, respectively. The inner 

integral calculates the power, R
2
, of resistance fluctuations, while the outer integral 

averages R
2
 over the temperature. The plot of R

2
, calculated for studied resistors in 

decade frequency bands, has been shown in Fig. 8.  

The values of integral s calculated for different sectors of the studied resistor, for 

frequency band 1 kHz – 10 kHz have been then used for the decomposition of the noise of 

the whole resistor into bulk and contact noise components, which has been depicted in 

Fig. 9, where s has been plotted vs sectors’ size. It should be noted, that the noise of two 

samples/sectors is measured acquiring signals from the bridge diagonal/sub-diagonals. As 

the internal sectors of resistor, i.e. sectors (3-5) and (2-6), are far from current contacts 

also s calculated for them is free of contact noise, while s calculated for sectors (1-6) and 

(1-7) includes noise of bottom contacts and all contacts, respectively. Hence, from the 

slope of linear fit of s for sectors (3-5) and (2-6) we obtain ‘s per square’, ssq =1.4∙10
-5 


2
. 

Next, dimension-independent bulk noise intensity Cbulk  ssq /Rsq
2
sq, is calculated: Cbulk 

= 5.7∙10
-22 

m
3
, where sq is the volume of the individual square [12]. Parameter Cbulk 

occurred to be very helpful for comparison noise properties of different materials [12-14].  
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Fig. 8 Power of resistance fluctuations versus temperature and temperature dependence 

of resistance 
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The noise generated in the interfaces of both current contacts can be evaluated as a 

difference between noise intensity measured for the whole resistor, s1-7, and extrapolated 

bulk noise sbulk = L/wssq, which is depicted in Fig. 9. Analyzing the plot of Fig. 9 we can 

see that the noise generated in contacts at the terminals ‘7’ significantly contributes to the 

overall noise. To compare the quality of the interface we use contact-geometry-independent 

parameter, Cint  wsint/ssq [12]. Its numerical value is the length of hypothetical resistive 

film, which would have the noise intensity equal the intensity of the interface noise. In this 

case, we obtain Cint = 32 mm, which means that the quality of the interface between 

resistive layer and Cu contacts is very poor and the contribution of noise contacts in the 

noise of the resistor is significant. 

The main reason for the introduction of parameters describing noise properties is to 

make possible quantitative comparison of the noise properties of different materials or 

devices. An example is the current noise index (CNI) defined for resistors or resistive 

materials [15 Method 308] and often used by the manufacturers. However, CNI is useless 

in characterization of materials properties as long as geometrical dimensions of the samples 

are unknown. Therefore, another parameter is introduced, i.e. material noise intensity,  

 C ≡ fSR/R
2
, (2) 

where  is the volume of the sample. It is worth to note that C describes properties of the 

material itself, since it is frequency, as well as sample volume and bias independent. 

Hence, parameter C describes properties of samples with various geometry and therefore 

is considered as the most proper quantity for materials characterization with respect to 1/f 

noise [16]. Furthermore, using the value of C and geometrical dimensions of the sample it 

is possible to calculate measurable quantity, i.e. power spectral density of voltage or 

current fluctuations for the known bias. The parameter C is equivalent to the previously 

defined Cbulk, however, Cbulk = C ln10. The value C = 2.5∙10
-22 

m
3
 obtained for studied in this 

work resistive layer of ED7100 is very close to 10
-21

 m
3
 found in [17] for squared resistors 

(size 1.5 mm) of ED7100 with Cu contacts but it is still more than 1 order of magnitude 

larger than C ≈ 0.6∙10
-23

 m
3
 found for Pb-rich RuO2+glass thick-film layers [3]. 

6. SUMMARY 

The importance of the software support in low-frequency noise spectroscopy has been 

explained. Virtual Instrument concept and its usage in controlling LFNS experiment and 

post-experiment data processing have been described. Since the functionality and 

possibilities of VIs result in equal parts both from software and hardware, it is easy to 

expand the capabilities of VIs by changing existing or developing new sub-VIs.  

As the subject of LFNS experiment, that showed the usefulness of VI concept, PTFR 

of ED7100 resistive ink with Cu contacts has been used. The shape of test resistor was 

multi-terminal allowing for (i) studies of noise vs volume of the sample, and (ii) localization 

of noise sources in different parts of the resistor, (iii) obtaining valuable information 

concerning the quality of the interface resistive/conductive layer. The experiments proved 

that 1/f noise caused by resistance fluctuations is the dominant noise component in the 

studied samples. However, exemplary noise map as the result of LFNS, revealed also 

thermally activated noise sources. The noise map gave detailed insight into fluctuating 
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phenomena and opened the door for introduction of integral noise measure. Parameters 

used for characterization of noise properties of resistive materials and components, 

including material noise intensity Cbulk and Cint describing the quality of the interface 

between resistive and conductive layers in TFR, have been defined and calculated for 

studied samples. It has been found that interface between polymer composition ED7100 

and Cu contacts has very poor noise properties. 

The concepts shown in this work may also be used for studies of noise properties in 

other electronic components, both passive and active. The results obtained by LFNS may 

be utilized in thick-film technology in selection materials for manufacturing low-noise, 

reliable resistive components with stable parameters as well as in improvements of the 

technology in order to achieve technological advantage.  
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