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DESIGN OF MULTIPLIERLESS COMB COMPENSATORS  

WITH MAGNITUDE RESPONSE SYNTHESIZED  

AS SINEWAVE FUNCTIONS

 

Gordana Jovanovic Dolecek  

Department of Electronics, Institute INAOE, Puebla, Mexico  

Abstract. This paper presents a research on design of multiplierless comb compensators 

with magnitude response synthesized as sinewave functions. First, it is elaborated the 

importance of comb decimation filter and why we need its compensator. In continuation are 

presented some favorable characteristics of comb compensator. The compensators, with 

magnitude characteristic synthesized as sinewave functions fulfill those favorable 

characteristics. Next, are described some most important results on design of compensators 

with sinewave-based magnitude responses including single and cascaded sinewave-based 

functions. In all designs are presented the overall corresponding magnitude responses and 

the zooms in the passband. The parameters of design generally depend only on number of 

cascaded combs and generally do not depend on decimation factor. Design parameters are 

presented in tables along with the corresponding required number of adders. 

Key words: Sigma Delta AD converters, oversampling, decimation, decimation filter, 

comb filter, compensation filter. 

1. INTRODUCTION  

The oversampled Sigma Delta (ΣΔ) Analog-Digital Converters (ADC)  samples the 

analog signal with a frequency much larger than the Nyquist frequency (which is the 

minimum required sampling frequency), usually expressed through Over Sampling Ratio 

(OSR) [1]. Oversampled converters have gained a lot of popularity in last two decades 

due to some very favorable characteristics like low power consumption, small silicon 

area, high resolution, among others, [2], [3]. The oversampled signal frequency must be 

decreased to the Nyquist frequency at the AD modulator output. This process is 

performed in a digital form in decimator. Therefore the principal parts of ΣΔ ADC are 

modulator and decimator. Our attention here is only on the decimator. 

Decimation is a process of decreasing the sample rate by an integer called decimation 

factor M. Decimation introduces unwonted replicas of the main spectrum called aliasing. 
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Aliasing may deteriorate the decimated signal and must be eliminated prior the 

decimation by a lowpass digital filter, called decimation, or antialiasing filter [4]. 

The most popular decimation filter is a comb filter which has all coefficients equal to 

unity and consequently does not require multipliers for its implementation.  

This filter naturally provides the aliasing rejection in bands around the comb zeros, 

called folding bands. However, this attenuation is not enough and must be improved. 

Some recent methods for improving comb aliasing rejection are described in [5]. 

Additionally, the comb passband characteristic is not flat and exhibits a passband 

droop, which is increased with the increase of the number of cascaded combs K. The 

introduced droop in the signal band penalizes the resolution achieved by the ΣD ADC, 

and should be compensated [1]. 

In this paper we only consider the design of comb compensators. The rest of the paper is 

organized in the following form. Next section presents basic description of comb filters in z-

domain and also in the frequency domain. The wideband and narrowband compensators are 

defined and some very desirable characteristics of comb compensator are elaborated. 

Section III presents compensator with magnitude characteristic synthesized as a single 

sinewave function. Wideband and narrowband cases are elaborated. The magnitude 

responses based on the cascade of single sinewave functions are described in Section IV. 

Finally, Section V introduces the most efficient compensator with magnitude response 

synthesized using fourth-order sinewave function. The parameters of design are presented 

for all methods, and methods are illustrated with examples. 

2. COMB DECIMATION FILTER 

   Transfer function of the comb filter is usually presented in a recursive form as: 
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where M is the decimation factor and K is the number of cascaded combs. 

    From the recursive form (1) is derived the popular CIC (Cascaded-Integrator-Comb) 

structure [6], shown in Fig. 1. Due to the popularity of CIC structure some authors use 

also term CIC for comb filter.   

 

Fig. 1 CIC structure 

     The nonrecursive transfer function is given as [4]: 
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The recursive structure is area efficient, while the nonrecursive structure is a power 

efficient [4]. Using the polyphase decomposition the nonrecursive structure  may be more 

power efficient because all filtering is moved to the lower rate. In a polyphase 

decomposition the polyphase components are introduced [4]: 
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where Hλ(z
M), λ=1,….,M-1, are the polyphase components. 

The polyphase decomposition is shown in Fig. 2 a. Using the multirate identities [4] we 

get more efficient structure, shown in Fig. 2b. 

 
a. Comb polyphase decomposition                  b. Moving filtering to lower rate 

Fig. 2  Polyphase decomposition 

The magnitude characteristic of comb filter has the following form: 
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The passband edge frequency ωp is defined as: 

                                                           RMp /  ,                                                        (5) 

where R is an integer.  

For R=2, it is considered wide passband, while for R<2 is considered a narrowband. 

The magnitude characteristic (4) should be flat in the passband in order to preserve 

the decimated signal. 

The stopband is defined in bands around comb zeros, called folding bands, where 

aliasing occur: 
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In order to eliminate aliasing, comb should have enough attenuation in folding bands.  

Figure 3 shows overall comb magnitude characteristics for M=15 and K=1,…,5. The 

wideband passband zoom is also shown. 

We can easily note that by increasing the comb parameter K, the aliasing rejection is 

improved. However, the passband droop is increased.  
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Fig. 3 Overall comb magnitude responses and passband zoom, for different values of K 

 

The passband droop of comb H(z) must be corrected by the filter called comb 

compensator filter C(z), which works at low rate i.e. after decimation, as shown in Fig.4. 

                                  
Fig. 4 Compensated comb 

We consider here only comb compensators.  

Some desirable characteristics of the .compensator are listed in the continuation: 

 Like comb, the compensator structure does not require multipliers. 

 The multiplierless compensator has a low number of adders. 

 Compensator design is simple and defined only by the comb parameter K, and 

generally does not depend on the decimation factor M. 

 Compensated comb has a low absolute value of the passband deviation. 

 Compensator should not deteriorate alias rejection in comb folding bands. 

Generally, there is a trade-off between the number of adders and the absolute value of 

the passband deviation of the compensated comb. 

The compensator magnitude characteristic should approximate inverse comb 

characteristic: 
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in the passband: 
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where ωp is the passband frequency edge and C(ejMω) is the compensator frequency response 

at high rate. 

Different methods have been proposed for design of narrowband and wideband 

multiplierless compensators. 
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In this paper we consider only compensators with magnitude characteristic synthesized 

using sinewave forms, since those types of compensators truly satisfy all compensator 

desirable characteristics, previously mentioned. In all examples we consider the same values 

of comb parameters, i.e., M=16 and 25, and K=5.  

3. SINGLE SINEWAVE FUNCTION-BASED MAGNITUDE RESPONSE 

3.1 Wide band compensator [7] 

The magnitude response of compensator presented in [7] has a sinewave-squared form: 

 )2/(sin1)( 2 MBeC Mj   ,  (9)  

where B is amplitude of sine-squared function, M is a comb parameter. 

The magnitude characteristic of the compensated comb is: 
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where K is the order of comb filter. 

The values of parameter B depend on the given value of comb parameter K and do not 

depend on the comb parameter M, (for M>10), and are given in the first column of Table 1, 

[7]. The resulting maximum absolute value of passband deviation of the compensated 

comb, is equal to 0.4dB. 

Using a well known trigonometrical relation, 

                                              2/)]2cos(1[)(sin2   ,                                              (11) 

the transfer function of compensator, at low rate, is given as: 

            12122122 ]21[2])22([2)(   zzzBBzzBBzC .         (12) 

The compensator is a second order filter. The number of required adders S is shown 

in the second column of Table 1. Note that the compensator coefficients can be presented 

using shifts and adders, and consequently the compensator is a multiplierless filter. 

Table 1 Values of parameter B and adders S for K=1,…, 5 

K B S 

1 2-2 3 

2 2-1 3 

3 

4 

5 

2-1+2-2 

1 

1+2-2 

4 

3 

4 
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The values in Table 1, can be used for the same value of K and different values of M, 

as shown in the following example. 

Example 1: We consider the value of K = 5 and two different values for M, 16 and 25. From 

Table 1, the parameter B = 5/4=1+2-2. From (10), the magnitude responses of compensated 

combs are given as: 
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where sub indexes 1 and 2 are for M=16, and 25, respectively. 

The overall magnitude responses of the compensated comb and comb are shown in 

Fig. 5, along with the passband zoom. 

 
a. M=16, K=5 

 
b. M=25, K=5 

Fig. 5 Magnitude responses of comb and compensated comb in [7] 



 Design of Multiplierless Comb Compensators with Magnitude Response Synthesized as Sinewave Functions 7 

3.2 Narrowband compensator [8] 

In [8] was proposed a narrowband compensator with the following magnitude 

characteristic: 

                                           )2/(sin21)( 2 MeC bMj   ,                                      (15) 

where b is parameter and the passband edge  is equal: 

                                                         Mp 8/  .                                                        (16) 

The transfer function is given as: 

 ( 2) 2 1 2( ) 2 [1 (2 2) ]b bC z z z         . (17) 

   The parameter b depends only on comb parameter K. The values of b for K=2,…,6, are 

given in Table 2. 

   Considering values of the parameter b and (17), it follows that the compensator needs 

only S= 3 adders, for all values of K, as shown in third column of Table 2. 

Table 2 Values of parameter b and adders S, for K = 2,…,6 

K b S 

2 2 3 

3 2 3 

4 1 3 

5 0 3 

6 0 3 

Example 2: We consider again M = 16 and 25, and K = 5. From Table 2, in both cases 

b = 0 and the magnitude characteristics of the compensated combs are: 
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where sub indexes 1 and 2 are for M=16, and 25, respectively. 

   The corresponding magnitude responses are shown in Fig. 6. 
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a. M=16, K=5 

 
b. M=25, K=5 

Fig. 6 Magnitude responses of comb and compensated comb in [8] 

 

4. MAGNITUDE RESPONSE  SYNTHESIZED AS CASCADE OF  SINEWAVE FUNCTIONS  

4.1. Method in [9] 

In order to decrease maximum absolute passband deviation of compensated comb, in 

[9] was proposed the magnitude response of compensator as a cascade of two sinewave 

functions with different parameters B: 

                                   )2/(sin1)2/(sin1)( 2
2

2
1  BBeC j   .                    (15) 

The proposed compensator has an interesting feature, i.e. the parameter B1 remains the 

same for all values of K, and B2 is linearly related with the comb parameter K: 
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The parameters and number of adders S are summarized in Table 3. 

The method is illustrated in next example, taking the same comb parameters as in 

previous examples. 
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Table 3 Values of parameters B1 and B2 and adders S, for K=1,…,5 

K B1 B2 S 

1 2-3 2-4 6 
2 2-3 2-4+2-2 7 
3 2-3 2-4+2-1 7 
4 2-3 2-4+2-2+2-1 8 
5 2-3 2-4+20 7 

Example 3: From (16) we get B1=2-3, and B2=17/16=1+2-4, for both values of M. 

The magnitude responses of compensated combs for M=16 and 25, respectively, are: 
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The overall magnitude responses and the passband zooms for both cases are shown in 

Fig. 7. 

 
a. M=16, K=5 

 
b. M=25, K=5 

Fig. 7 Magnitude responses of comb and compensator in [9] 
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Note that the maximum absolute passband deviation of the compensated combs is 

slightly decreased and it is lesser than 0.3 dB. 

4.2. Cascade narrowband and wideband compensators [10] 

In [10] is proposed the cascade of narrowband compensator (17) from [8] 

 ( 2) 2 1 2
1( ) 2 [1 (2 2) ]b bC z z z         , (19)    

and the wideband compensator  from [11]: 

 14 1 4 2 3
2( ) [ 2 [ (2 2) ]]

K
C z z z z        , (20)                     

where K1 is the parameter. 

The transfer function of compensator is: 
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The parameters of compensator, b and K1, depend only on the comb parameter K, and are 

shown in Table 4 along with the corresponding number of adders S for values of K=2, 

…,5. 

Table 4 Values of parameters b and K1 and adders S, for values of K=2,…, 5. 

K K1 b S 

2 1 1+2 6 

3 2 1+2 9 

4 

5 

6 

3 

4 

5 

1+2 

22 

1+22 

12 

15 

18 

The maximum absolute passband deviation of the compensated comb is decreased, as 

shown in the following example. However, the number of the required adders is 

increased, as given in last column of Table 4. 

 

Example 4: We again consider the decimation factors 16 and 25 and K=5. From Table 4 

we have the compensator parameters K1=4 and b=22. The required number of adders is 15. 

The magnitude response of compensated comb for M=16: 
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where C(ej16ω) is the magnitude response of compensator (21) at high rate.  
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Similarly, the magnitude response of the compensated comb with M=25, at high rate is: 

                                             
2

5

251 sin(25 ) / 2
( ) ( )

25 sin( / 2)

j j
cH e C e 


 ,                        (23) 

where C(ej25ω) is  magnitude response of the compensator (21) at high rate. 

The overall magnitude responses of the combs and the compensated combs are 

contrasted in Fig. 8. The passband zooms are also shown. 

 
a. M=16, K=5, K1=4, b=4 

 
b. M=25, K=5, K1=4, b=4 

Fig. 8 Magnitude responses of comb and compensated comb in  [10] 

5. FOURTH-ORDER SINE-BASED MAGNITUDE RESPONSE [12] 

In order to get better approximation of the inverse comb characteristic in [12] was 

proposed to cascade the filter (9) from [7], and filter with a fourth-order sine-based 

magnitude response: 

                                         )2/(sin1)( 4
2 MAeC Mj   .                                    (24) 
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The magnitude characteristic of the compensator is given as: 

                                        )()()( 21
MjMjMj eCeCeC   .                                        (25) 

Using (9), (24) and (25), the magnitude characteristic of compensator at high rate, 

becomes: 

                     2 4( ) [1 sin ( / 2)] [1 sin ( / 2)]j MC e B M A M      .                      (26) 

Transfer function C2(z) is obtained by  using the following trigonometrical relations: 

   8/3)2cos(4)4cos()(sin4   . (27) 

Using (27) and Euler's formula from (24) we get: 

  2223144
2 ])22()(41[2)(   zzzzzAzC . (28) 

Similarly, from (14) we have: 

  12122122
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Finally, from (28) and (29) we get the compensator transfer function: 
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The  values of A and B are the parameters of the design which depend on the comb 

parameter K, and are given in Table 5 along with the required number of adders for each 

value of K, K=1,….,6. 

Table 5 Values of parameters A and B, and adders  S,  for values of K=1,…, 6. 

K A B S 

1 0 2-2-2-5 4 

2 2-2 2-2+2-4 10 

3 

4 

5 

2-1 

2-1 

1 

2-1-2-4 

2-1+2-3+2-4 

20-2-2-2-5 

10 

11 

11 

6 1 20-2-6 10 

The method is illustrated in Example 5. 

Example 5: Using the same values M=16 and 25 and K=5, as I previous examples, from 

Table 4, we get design parameters: A=1 and B=20-2-2-2-5=23/32.  

Magnitude responses of compensated combs for M=16 and 25, respectively, are given as: 

 
1

2 41 sin(8 )
( ) [1 23/ 32sin (8 )] [1 sin (8 )]

16 sin( / 2

j
cH e  

 


    . (31) 
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2

2 41 sin(25 / 2)
( ) [1 23/ 32sin ( 25/ 2)] [1 sin ( 25/ 2)]

25 sin( / 2

j
cH e  

 


    . (32) 

Magnitude responses (31) and (32) are contrasted with the comb magntude responses 

in Fig. 9a and 9b, respectively. The zooms in passband are shown in both cases. 

 
a.  M=16, K=5, A=1, B=23/32 

 
b.  M=25, K=5, A=1, B=23/32 

Fig. 9 Illustration of compensator in [12] 

The absolute value of passband deviation of the compensated combs is lesser than 

0.1 dB requiring 11 adders. 

6. CONCLUSION 

This paper addresses the different methods for comb compensator design with magnitude 

responses synthesized as sinewave functions. The presented methods are the result of our 

research in last ten years. All presented designs are multiplierless, considering that the 

compensator coefficients are realized using only adders and shifts. All design parameters 
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depend only on the comb parameter K, and practically do not depend on the decimation 

factors. The design parameters are presented in tables. The presented methods are compared 

in Table 6 in terms of the compensation capability expressed in maximum absolute value of 

the passband deviation in dB, of the compensated comb, and the complexity expressed in 

number of adders. In all presented methods, comb compensation do not deteriorate aliasing 

rejection in folding bands. 

Table 6 Comparisons  

Method δ[dB] S 

[3] 

[9] 

[10] 

[12] 

0.4 

0.3 

0.25 

0.1 

3, for K=1,2,4;    4, for K=3,5 

6 for K=1;   7 for K=2,3,5;   8 for K=4 

6 for K=2;  9 for K=3; 12 for K=4, 15 for K=5; 18 for K=6 

4, for K=1, 10 for K=2,3; 11, for K=4,5; 10, for K=6 

We can observe that the compensator in [12] exhibits best trade-off between the 

quality of compensation expressed in the maximum absolute passband deviation and the 

complexity expressed in the number of required adders. 
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