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The basic operations of XBOOLE are sufficient to solve BDEs. We demonstrate
how a XBooLe-problem program (PRP) of the freely available XBooLe-Monitor
quickly solves some BDes.
Keywords: Boolean Differential Calculus, Boolean Differential equation (BDe),
classes of Boolean functions, lattices of Boolean functions, arbitrary sets of Boolean
functions, Lattice-BDe, XBooLe.

1 INTRoDUCTIoN

Boolean variables are the simplest variables. A Boolean variable carries only
one element of the set B = {0,1}. These two values can be easily distinguished
from each other in technical systems. Therefore we get more and more digital
systems.

Boolean functions, the operations of the Boolean Algebra, and Boolean equa-
tions [1] are well known to solve many tasks for digital systems. The solution of a
Boolean equation is a set of Boolean vectors which describes, e.g., the behavior of
a circuit. However, this theory is restricted to fixed values for a given point in time.

The Boolean Differential Calculus (BDC) [1–3] allows us to study the change
of the values of Boolean variables and Boolean functions. The substitution of the
derivative operations of the BDC into a Boolean equation leads to a Boolean Dif-
ferential Equation (BDe) [4, 5].

A BDE has a more general solution and consequently opens a wider field of
applications. We show in this paper how lattices of Boolean functions can be ex-
pressed by BDes. We will show that additionally to the well known lattices of
incompletely specified functions also more general lattices of Boolean functions
can be described in an easy way using the new special Lattice-BDE. The general-
ized lattices of Boolean functions open a new field of applications.

The rest of this paper is organized as follows. Section 2 defines the derivative
operations of the BDC and briefly explains their meaning. Section 3 summarizes
the known theory of Boolean Differential equations, introduces algorithms that
calculates either sets of classes of Boolean functions or arbitrary sets of Boolean
functions as the solution of a BDE, explains a method to map a more general BDE
into the form needed for one of these algorithms, and shows how a XBooLe-
problem programs (PRP) can solve a BDe in the XBooLe-Monitor.

Lattices of Boolean functions are discussed in Section 4 as a new field of ap-
plications of BDes. Both the well known lattices that describe incompletely spec-
ified functions (ISF) and a more general type of lattices of Boolean functions are
uniquely described using Lattice-BDEs. Several examples show that the known
algorithm can be used to solve different types of Lattice-BDEs. Finally, Section 5
concludes this paper.

102 B. STeINBACh AND C. PoSThoFF

The basic operations of XBOOLE are sufficient to solve BDEs. We demonstrate
how a XBooLe-problem program (PRP) of the freely available XBooLe-Monitor
quickly solves some BDes.
Keywords: Boolean Differential Calculus, Boolean Differential equation (BDe),
classes of Boolean functions, lattices of Boolean functions, arbitrary sets of Boolean
functions, Lattice-BDe, XBooLe.

1 INTRoDUCTIoN

Boolean variables are the simplest variables. A Boolean variable carries only
one element of the set B = {0,1}. These two values can be easily distinguished
from each other in technical systems. Therefore we get more and more digital
systems.

Boolean functions, the operations of the Boolean Algebra, and Boolean equa-
tions [1] are well known to solve many tasks for digital systems. The solution of a
Boolean equation is a set of Boolean vectors which describes, e.g., the behavior of
a circuit. However, this theory is restricted to fixed values for a given point in time.

The Boolean Differential Calculus (BDC) [1–3] allows us to study the change
of the values of Boolean variables and Boolean functions. The substitution of the
derivative operations of the BDC into a Boolean equation leads to a Boolean Dif-
ferential Equation (BDe) [4, 5].

A BDE has a more general solution and consequently opens a wider field of
applications. We show in this paper how lattices of Boolean functions can be ex-
pressed by BDes. We will show that additionally to the well known lattices of
incompletely specified functions also more general lattices of Boolean functions
can be described in an easy way using the new special Lattice-BDE. The general-
ized lattices of Boolean functions open a new field of applications.

The rest of this paper is organized as follows. Section 2 defines the derivative
operations of the BDC and briefly explains their meaning. Section 3 summarizes
the known theory of Boolean Differential equations, introduces algorithms that
calculates either sets of classes of Boolean functions or arbitrary sets of Boolean
functions as the solution of a BDE, explains a method to map a more general BDE
into the form needed for one of these algorithms, and shows how a XBooLe-
problem programs (PRP) can solve a BDe in the XBooLe-Monitor.

Lattices of Boolean functions are discussed in Section 4 as a new field of ap-
plications of BDes. Both the well known lattices that describe incompletely spec-
ified functions (ISF) and a more general type of lattices of Boolean functions are
uniquely described using Lattice-BDEs. Several examples show that the known
algorithm can be used to solve different types of Lattice-BDEs. Finally, Section 5
concludes this paper.

52 B. STeINBACh, C. PoSThoFF  Boolean Differential equations – a Common Model for Classes, Lattices... 53



102 B. STeINBACh AND C. PoSThoFF

The basic operations of XBOOLE are sufficient to solve BDEs. We demonstrate
how a XBooLe-problem program (PRP) of the freely available XBooLe-Monitor
quickly solves some BDes.
Keywords: Boolean Differential Calculus, Boolean Differential equation (BDe),
classes of Boolean functions, lattices of Boolean functions, arbitrary sets of Boolean
functions, Lattice-BDe, XBooLe.

1 INTRoDUCTIoN

Boolean variables are the simplest variables. A Boolean variable carries only
one element of the set B = {0,1}. These two values can be easily distinguished
from each other in technical systems. Therefore we get more and more digital
systems.

Boolean functions, the operations of the Boolean Algebra, and Boolean equa-
tions [1] are well known to solve many tasks for digital systems. The solution of a
Boolean equation is a set of Boolean vectors which describes, e.g., the behavior of
a circuit. However, this theory is restricted to fixed values for a given point in time.

The Boolean Differential Calculus (BDC) [1–3] allows us to study the change
of the values of Boolean variables and Boolean functions. The substitution of the
derivative operations of the BDC into a Boolean equation leads to a Boolean Dif-
ferential Equation (BDe) [4, 5].

A BDE has a more general solution and consequently opens a wider field of
applications. We show in this paper how lattices of Boolean functions can be ex-
pressed by BDes. We will show that additionally to the well known lattices of
incompletely specified functions also more general lattices of Boolean functions
can be described in an easy way using the new special Lattice-BDE. The general-
ized lattices of Boolean functions open a new field of applications.

The rest of this paper is organized as follows. Section 2 defines the derivative
operations of the BDC and briefly explains their meaning. Section 3 summarizes
the known theory of Boolean Differential equations, introduces algorithms that
calculates either sets of classes of Boolean functions or arbitrary sets of Boolean
functions as the solution of a BDE, explains a method to map a more general BDE
into the form needed for one of these algorithms, and shows how a XBooLe-
problem programs (PRP) can solve a BDe in the XBooLe-Monitor.

Lattices of Boolean functions are discussed in Section 4 as a new field of ap-
plications of BDes. Both the well known lattices that describe incompletely spec-
ified functions (ISF) and a more general type of lattices of Boolean functions are
uniquely described using Lattice-BDEs. Several examples show that the known
algorithm can be used to solve different types of Lattice-BDEs. Finally, Section 5
concludes this paper.

Boolean Differential equations - a Common Model for Classes, Lattices, ... 103

2 DeRIVATIVe oPeRATIoNS oF The BooLeAN DIFFeReNTIAL CAL-
CULUS

The BDC defines the Boolean Differential dx which is also a Boolean variable that
is equal to 1 in the case that x changes its value. Additionally, the BDC defines
several differential operations of Boolean functions which describe certain general
properties depending on possible directions of change. We confine ourselves to
derivatives of the BDC where the direction of change is fixed.

For simple derivative operations the direction of change is restricted to a single
variable xi. The (simple) derivative

∂ f (xi,x1)

∂xi
= f (xi = 0,x1)⊕ f (xi = 1,x1) (1)

is equal to 1 if the function f (xi,x1) changes its value when the value of xi changes.
The (simple) minimum

min
xi

f (xi,x1) = f (xi = 0,x1)∧ f (xi = 1,x1) (2)

is equal to 1 when the value of the function f (xi,x1) remains unchanged equal to 1
while the value of xi changes. The (simple) maximum

max
xi

f (xi,x1) = f (xi = 0,x1)∨ f (xi = 1,x1) (3)

is equal to 0 when the value of the function f (xi,x1) remains unchanged equal to 0
while the value of xi changes.

Vectorial derivative operations similarly describe cases where all variables of
the vector x0 change their values at the same point in time. The following formulas
define the vectorial derivative, the vectorial minimum, and the vectorial maximum:

∂ f (x0,x1)

∂x0
= f (x0,x1)⊕ f (x0,x1) , (4)

min
x0

f (x0,x1) = f (x0,x1)∧ f (x0,x1) , (5)

max
x0

f (x0,x1) = f (x0,x1)∨ f (x0,x1) . (6)

The simple derivative operations can sequentially be executed with regard to
different variables of a subset x0. Such m-fold derivative operations describe a
special property for subspaces x1 = const. The following formulas define the m-
fold derivative, the m-fold minimum, the m-fold maximum, and the ∆-operation:
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∂ m f (x0,x1)

∂x1∂x2 . . .∂xm
=

∂
∂xm

(

. . .

(

∂
∂x2

(

∂ f (x0,x1)

∂x1

))

. . .

)

, (7)

min
x0

m f (x0,x1) = min
xm

(

. . .

(

min
x2

(

min
x1

f (x0,x1)

))

. . .

)

, (8)

max
x0

m f (x0,x1) = max
xm

(

. . .

(

max
x2

(

max
x1

f (x0,x1)

))

. . .

)

, (9)

∆x0 f (x0,x1) = min
x0

m f (x0,x1)⊕max
x0

m f (x0,x1) . (10)

Because of the limited space, we skip all theorems about relations between certain
derivative operations and refer to [3, 6].

3 BooLeAN DIFFeReNTIAL eQUATIoNS

3.1 An Introductory Example

If we know the function f (x) and need the result of any derivative operation then
we simply apply the definition and get as result an uniquely specified Boolean
function.

Example 1. We take the Boolean function:

f (x) = f (x1,x2,x3) = x1 ∨ x2 x3 (11)

and use Definition (4) to calculate the vectorial derivative of f (x) with regard to
(x1,x3):

∂ f (x1,x2,x3)

∂ (x1,x3)
= f (x1,x2,x3)⊕ f (x1,x2,x3)

= (x1 ∨ x2 x3)⊕ (x1 ∨ x2 x3)

= x1 ⊕ x2 x3 ⊕ x1 x2 x3 ⊕ x1 ⊕ x2 x3 ⊕ x1 x2 x3

= (x1 ⊕ x1)⊕ x2 (x3 ⊕ x3)⊕ x2 (x1 x3 ⊕ x1 x3)

= x2 ⊕ x2 (x1 ⊕ x3)

= x2 ∨ (x1 ⊕ x3) ,

and get as result the unique Boolean function:

g(x1,x2,x3) = x2 ∨ (x1 ⊕ x3) . (12)

Arrows in Figure 1 illustrate the pairs of function values which determine the result
of this vectorial derivative. Different function values in these pairs lead to function
values 1 in the calculated vectorial derivative.
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Fig. 1. Related function values of the vectorial derivative of Example 1

Tab. 1. Pairs of functions values and their result of:
∂ f (x0,x1)

∂x0
= g(x0,x1)

f (x0,x1 = const.) f (x0,x1 = const.) g(x0,x1 = const.) g(x0,x1 = const.)
0 0 0 0
1 1 0 0
0 1 1 1
1 0 1 1

Now we consider the reverse situation that we know g(x) and want to find the
function f (x) such that g(x) is the result of a derivative operation of the unknown
function f (x). From Figure 1, we can conclude that the vectorial derivative of
several functions f (x) with regard to (x1,x3) result in the same function g(x) (12).
Table 1 shows that two different patterns of function values of f (x) result for a
vectorial derivative in the same pair of patterns of function values of g(x). In the
special case of Example 1 (see also Figure 1), the two possible patterns of pairs
of function values for each of the four pairs lead to 42 = 16 different function f (x)
with the same function g(x1,x2,x3) (12) as result of the vectorial derivative with
regard to (x1,x3). Figure 2 shows the Karnaugh-maps of these 16 functions using
the same encoding of the leftmost Karnaugh-maps for all of them. The original
function f (x1,x2,x3) belongs to this set of functions and is labeled as f3(x1,x2,x3)
in Figure 2.

Another interesting question: is there for each given function g(x0,x1) at least
one solution function f (x0,x1) of the simple BDe

∂ f (x0,x1)

∂x0
= g(x0,x1) ? (13)

Due to the commutativity of the ⊕-operations we have

g(x0,x1) =
∂ f (x0,x1)

∂x0
= f (x0,x1)⊕ f (x0,x1) =

∂ f (x0,x1)

∂x0
= g(x0,x1) .

(14)
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=
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x2x3 f1(x)
0 0 0 1
0 1 0 1
1 1 0 1
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0 1 x1

f2(x)
0 1
0 1
0 0
1 0

f3(x)
0 1
0 1
1 1
0 1

f4(x)
0 1
0 1
1 0
1 1

f5(x)
0 0
1 1
0 1
0 0

f6(x)
0 0
1 1
0 0
1 0
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1 1
1 1
0 1
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0 1 x1

�

Fig. 2. Sixteen functions with the same vectorial derivative g(x1,x2,x3) (12).

Therefore a function f (x0,x1) exists only in the case

g(x0,x1) = g(x0,x1)

g(x0,x1)⊕g(x0,x1) = g(x0,x1)⊕g(x0,x1)

g(x0,x1)⊕g(x0,x1) = 0
∂g(x0,x1)

∂x0
= 0 . (15)

We call (15) the integrability condition and can conclude: the functions f (x0,x1) of
the BDE (13) exist if and only if g(x0,x1) satisfies the integrability condition (15).
All solution functions of the BDe (13) are given by

fi(x0,x1) = xi ∧g(x0,x1)⊕h j(x0,x1) (16)

with x0 = (x1, . . . ,xi, . . . ,xk), x1 = (xk+1, . . . ,xn), and

∂h j(x0,x1)

∂x0
= 0 . (17)

We learn from this example:

1. A Boolean Differential equation ∂ f (x1,x2,x3)
∂ (x1,x3)

= g(x1,x2,x3) includes the un-
known function f (x1,x2,x3).

2. There are solutions of a BDe only if the right-hand function g(x1,x2,x3)
satisfies a special integrability condition.
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3. The general solution of an inhomogeneous BDe is built using a single spe-
cial solution of the inhomogeneous BDe and the set of all solutions of the
associated homogeneous BDe. The associated homogeneous BDe is built by
replacing the right-hand side of an inhomogeneous BDe by 0.

4. Generally, the solution of a Boolean Differential Equation is a set of Boolean
functions. This is a significant difference to Boolean equations. The solution
of a Boolean equation is a set of Boolean vectors.

3.2 BDEs of Simple and Vectorial Derivatives - Separation of Classes

Generally, a Boolean Differential equation (BDe) is an equation in which deriva-
tive operations of an unknown function f (x) occur. In order to find a convenient
solution method, we restrict in this subsection BDes such that only the function
f (x) and all its simple and vectorial derivatives are allowed in expressions on both
sides of an equation:

Dl

(

f (x),
∂ f (x)

∂x1
,
∂ f (x)

∂x2
, . . . ,

∂ f (x0,x1)

∂x0
, . . . ,

∂ f (x)

∂x

)

= Dr

(

f (x),
∂ f (x)

∂x1
,
∂ f (x)

∂x2
, . . . ,

∂ f (x0,x1)

∂x0
, . . . ,

∂ f (x)

∂x

)

. (18)

Using the ⊕-operation, each BDe(18) can be transformed into a homogeneous
restrictive BDe:

D
(

f (x),
∂ f (x)

∂x1
,
∂ f (x)

∂x2
, . . . ,

∂ f (x0,x1)

∂x0
, . . . ,

∂ f (x)

∂x

)

= 0 . (19)

The following definition supports the description of the solution procedure.

Definition 1. Let g(x) be a solution function of (19). Then

1.
[

g(x),
∂g(x)

∂x1
,
∂g(x)

∂x2
, . . . ,

∂g(x)

∂x

]

x=c
(20)

is a local solution for x = c,

2.
D(u0,u1, . . . ,u2n−1) = 0 (21)

is the Boolean equation, associated to the Boolean Differential Equation
(19), and has the set of local solutions SLS.
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Fig. 3. Values of the function g(x1,x2) = x1 ∨ x2 and their simple and vectorial derivatives for
(x1,x2) = (1,1).

3.
∇g(x) =

(

g(x),
∂g(x)

∂x1
,
∂g(x)

∂x2
, . . . ,

∂g(x)

∂x

)

(22)

The local solutions (20) are the key to solve a BDe. The values of the simple
and vectorial derivatives in a single selected point of the Boolean space specify
the function values in all other points of this space. Figure 3 shows the function
g(x1,x2) = x1∨x2 where function values 1 are indicated by double circles, values 1
of derivatives are indicated by solid arrows, and values 0 of derivatives are indicated
by dotted arrows.

Example 2. Assume, we know the local solution for (x1,x2) = (1,1) as depicted in
Figure 3. Then we can conclude:

• due to the known point: g(x)|(x1,x2)=(11) = 1 → g(1,1) = 1 ,

• due to the direction of change dx1 dx2: ∂g(x)
∂x1

∣

∣

∣

(x1,x2)=(11)
= 1 → g(0,1) = 0 ,

• due to the direction of change dx1 dx2: ∂g(x)
∂x2

∣

∣

∣

(x1,x2)=(11)
= 0 → g(1,0) = 1 ,

and

• due to the direction of change dx1 dx2: ∂g(x)
∂ (x1,x2)

∣

∣

∣

(x1,x2)=(11)
= 0 → g(0,0) = 1 .

Hence, a possible solution function g(x) = x1 ∨x2 could be reconstructed based on
the knowledge of the local solution in a single point of the Boolean space.

The BDe (19) contains all elements of ∇ f (x) either in non-negated or negated
form. hence, all these elements can be encoded by Boolean variables ui as shown
in Table 2.
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the knowledge of the local solution in a single point of the Boolean space.

The BDe (19) contains all elements of ∇ f (x) either in non-negated or negated
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Tab. 2. Mapping of the BDe into the associated Boolean equation

index binary code ui associated element

0 (0 . . .00) u0 f (x)

1 (0 . . .01) u1
∂ f (x)
∂x1

2 (0 . . .10) u2
∂ f (x)
∂x2

3 (0 . . .11) u3
∂ f (x)

∂ (x1,x2)

: : : :

2n −1 (1 . . .11) u2n−1
∂ f (x)

∂x

The result of this substitution is an associated Boolean equation D(u) = 0. The
solution of this Boolean equation is the set of all local solutions SLS(u). There are
local solutions for which no global solution functions of the BDE (19) exist. The
sufficient condition for a global solution function of the BDE (19) is that a local
solution exists for each point of the Boolean space Bn:

∀c ∈ Bn ∇ f (x) |x=c ∈ SLS(u) . (23)

An important consequence of (23) is that the solutions of the BDe (19) consist
of classes of Boolean functions as characterized by Theorem 1; the proof is given
in [4, 5].

Theorem 1. If the Boolean function f (x) is a solution function of the Boolean
Differential Equation (19), then all Boolean functions

f (x1,x2, ...,xn) = f (x1 ⊕ c1,x2 ⊕ c2, ...,xn ⊕ cn) (24)

for c = (c1, . . . ,cn) ∈ Bn are also solution functions of (19).

The set of local solutions SLS(u) expresses by u0 the function value in one
point of Bn and by ui, 0 < i < 2n, the values of changes with regard to all the other
points of Bn. The separation of function classes becomes easier when the function
value in all points of Bn are uniquely given. The function d2v (derivative to value)
uses (25) to transform the set SLS(u) into the set SLS′(v).

v0 = u0 ,

vi = u0 ⊕ui , with i = 1,2, ...,2n −1 . (25)
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Due to (24), the exchange of xi and xi does not change the set of solution func-
tions. The function epv (exchange of pairs of values) realizes this exchange:

SLST (v) = epv(SLS′(v), i) . (26)

Applied to variables vi this exchange is described by:

v(m+2k·2i−1) ⇐⇒ v(m+(2k+1)·2i−1) , (27)
with i = 1,2, ...,n ,

m = 0,1, ...,2i−1 −1 ,

k = 0,1, ...,2n−i −1 .

Table 3 enumerates the index pairs which are used in the function epv for Boolean
spaces up to B

4.

Tab. 3. Index pairs defined by (27) for the exchange of function values

i = 1 i = 2 i = 3 i = 4
0 ⇔ 1 0 ⇔ 2 0 ⇔ 4 0 ⇔ 8
2 ⇔ 3 1 ⇔ 3 1 ⇔ 5 1 ⇔ 9
4 ⇔ 5 4 ⇔ 6 2 ⇔ 6 2 ⇔ 10
6 ⇔ 7 5 ⇔ 7 3 ⇔ 7 3 ⇔ 11
8 ⇔ 9 8 ⇔ 10 8 ⇔ 12 4 ⇔ 12

10 ⇔ 11 9 ⇔ 11 9 ⇔ 13 5 ⇔ 13
12 ⇔ 13 12 ⇔ 14 10 ⇔ 14 6 ⇔ 14
14 ⇔ 15 13 ⇔ 15 11 ⇔ 15 7 ⇔ 15

The intersection of the given set SLS′(v) with the exchanged set SLST (v) for all
variables xi separates the set of global solution functions from the local solutions
which are not sufficient. Algorithm 1 describes the procedure to solve the BDe
(19) in detail. The solution vectors v of Algorithm 1 specify, substituted into (28),
all solution functions of the BDe (19).

f (x1,x2, . . . ,xn) = x1 x2 . . . xn ∧ v0 ∨ x1 x2 . . . xn ∧ v1 ∨ . . .∨ (28)
x1 x2 . . . xn ∧ v2n−1

3.3 BDEs of Simple and Vectorial Derivatives as well as Variables - Separa-
tion of Arbitrary Function Sets

The solution of a Boolean Differential equation of the type (18) is a set of function
classes characterized by (24). Additional Boolean variables x in a Boolean Dif-
ferential equation of the type (29) restrict the derivatives to certain points of the
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Algorithm 1 Separation of function classes
Require: BDe (19) with function f (x) containing n variables
Ensure: set of Boolean vectors v = (v0,v1, . . . ,v2n−1) that describe, substituted in

(28), the set of all solution functions of the BDe (19)
1: SLS(u) ← solution of Be (21) associated with BDe (19)
2: SLS′(v) ← d2v(SLS(u))
3: for i ← 1 to n do
4: SLST (v) ← epv(SLS′(v), i)
5: SLS′(v) ← SLS′(v)∩SLST (v)
6: end for

Boolean space. Therefore, selected functions of the function classes can belong to
the set of solution functions. hence, a BDe (29) has an arbitrary set of Boolean
functions as solution.

Dl

(

f (x),
∂ f (x)

∂x1
,
∂ f (x)

∂x2
, . . . ,

∂ f (x0,x1)

∂x0
. . . ,

∂ f (x)

∂x
,x

)

= Dr

(

f (x),
∂ f (x)

∂x1
,
∂ f (x)

∂x2
, . . . ,

∂ f (x0,x1)

∂x0
. . . ,

∂ f (x)

∂x
,x

)

. (29)

A BDE (29) can be solved using a slightly modified algorithm. The variables x
remain in the associated Boolean equation (30) associated to (29):

Dl(u0,u1, . . . ,u2n−1,x1,x2, . . . ,xn)

= Dr(u0,u1, . . . ,u2n−1,x1,x2, . . . ,xn) . (30)

A detailed analysis in [4] reveals that the local solutions must be split into the
cofactors S0 for xi = 0 and S1 for xi = 1 and the exchange of function pairs must be
restricted to S1. Algorithm 2 describes the detailed steps to solve a BDe (29).

3.4 More General Boolean Differential Equations

In addition to the simple and vectorial derivatives all other derivative operations can
be used within a BDe. We do not need special solution algorithms for such more
general Boolean Differential equations because the theorems of the BDC allow us
the transformation of all types of derivative operations into the elements of ∇ f (x)
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Algorithm 2 Separation of functions
Require: BDe (29) in which the function f (x) depends on n variables
Ensure: set S of Boolean vectors v = (v0,v1, . . . ,v2n−1) that describe, substituted

in (28), the set of all solution functions of the BDe (29)
1: SLS(u,x) ← solution of the Be (30) associated with BDe (29)
2: S(v,x) ← d2v(SLS(u,x))
3: for i ← 1 to n do
4: S0(v,x\ (x1, . . . ,xi)) ← maxxi [xi ∧S(v,xi, . . . ,xn)]
5: S1(v,x\ (x1, . . . ,xi)) ← maxxi [xi ∧S(v,xi, . . . ,xn)]
6: ST1(v,x\ (x1, . . . ,xi)) ← epv(S1(v,x\ (x1, . . . ,xi)), i)
7: S(v,x\ (x1, . . . ,xi)) ← S0(v,x\ (x1, . . . ,xi))∩ST1(v,x\ (x1, . . . ,xi))
8: end for

(22).

min
xi

f (x) = f (x)∧
∂ f (x)

∂xi
(31)

max
xi

f (x) = f (x)∨
∂ f (x)

∂xi
(32)

min
x0

f (x0,x1) = f (x0,x1)∧
∂ f (x0,x1)

∂x0
(33)

max
x0

f (x0,x1) = f (x0,x1)∨
∂ f (x0,x1)

∂x0
(34)

min
(x1,x2)

2 f (x) = f (x)∧
∂ f (x)

∂x1
∧

∂ f (x)

∂x2
∧

∂ f (x)

∂ (x1,x2)
(35)

max
(x1,x2)

2 f (x) = f (x)∨
∂ f (x)

∂x1
∨

∂ f (x)

∂x2
∨

∂ f (x)

∂ (x1,x2)
(36)

∂ 2 f (x)

∂x1∂x2
=

∂ f (x)

∂x1
⊕

∂ f (x)

∂x2
⊕

∂ f (x)

∂ (x1,x2)
(37)

∆(x1,x2) f (x) =
∂ f (x)

∂x1
∨

∂ f (x)

∂x2
∨

∂ f (x)

∂ (x1,x2)
(38)

General formulas to express the simple or vectorial minimum or maximum by the
function f (x) and simple or vectorial derivatives are given in (31),. . . , (34). The
equations (35),. . . , (38) describe how all 2-fold derivative operations can be trans-
formed into expressions that contain only the function f (x) and simple or vectorial
derivatives. These formulas can be generalized for any m≤ n of functions in B

n [6].
Using these transformations each more general BDe results either in the BDe
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(18) for which the solution classes can be calculated using Algorithm 1, or it results
in the BDe (29) so that the arbitrary solution set is found using Algorithm 2.

3.5 Solving a Boolean Differential Equations Using a XBOOLE PRP

The XBooLe-Monitor can be downloaded (for free) from:
http://www.informatik.tu-freiberg.de/xboole/

and provides many operations which can be applied to sets of Boolean functions.
All XBOOLE-operations are explained in the help-system of the XBOOLE-Moni-
tor.

We summarize here some XBooLe-operations needed to solve a BDe. All
XBooLe-objects are indicated by numbers. The XBooLe-operations can be ex-
ecuted in the XBooLe-Monitor by means of

1. a selected and parametrized menu item,

2. a tool-bar button followed by the same dialog to specify the parameters,

3. a XBOOLE-command that specifies both the operation and the objects, and

4. a XBooLe-problem program (PRP) that contains a sequence of commands.

The main data structure is the ternary vector list (TVL). All XBooLe-opera-
tions are executed in a Boolean space. The user must specify the number of Boolean
variables which can be used in a Boolean space using the XBooLe-command:

space vmax sno
where vmax is the number of variables and sno is the number of the space.

Variables in a wanted order can be attached to an XBooLe-space using:
avar sni

where on the next lines the names of the variables separated by a space and finished
by a point (.) are declared. A Boolean equation or a system of Boolean equations
is solved using:

sbe sni tno
where tno is the object number of the result TVL and the Boolean equation is
given on the following lines finished by a point (.) using the operation signs ‘/’
for the negation, ‘&’ for the conjunction ∧, ‘+’ for the disjunction ∨, ‘#’ for the
antivalence ⊕, ‘=’ for the equivalence ⊙ as well as for separating both sides of the
equation, and ‘,’ to separate the equations within a system of Boolean equations.
Logic operations for the input TVL (tni, tni1, tni2) and the calculation of the
output TVL (tno) are given by:

• negation fo = f (complement):
cpl tni tno
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• conjunction fo = f1 ∧ f2 (intersection):

isc tni1 tni2 tno

• disjunction fo = f1 ∨ f2 (union):

uni tni1 tni2 tno

• antivalence fo = f1 ⊕ f2 (symmetric difference):

syd tni1 tni2 tno

• equivalence fo = f1 ⊙ f2 (complement of the symmetric difference):

csd tni1 tni2 tno

An ordered set of variables can be defined as a XBOOLE-object called vari-
ables tuple (VT) using:

vtin sni vtno
followed by the variable in the needed order as in the case of the command avar.
Two such VTs define ordered pairs of variables which can be changed using:

cco tni vtni1 vtni2 tno
where the exchange of columns of tni is realized for all defined pair of vari-
ables. Alternatively the VTs can be directly specified within a special XBOOLe-
command:

cco tni <x1 x2> <x8 x9> tno
which exchanges, e.g., column x1 with column x8 and column x2 with column x9.
A single VT is used to specify the variables for a vectorial or m-fold derivative
operation; e.g.:

maxk tni vtni tno
calculates the k-fold maximum with regard to all variables specified in VT vtni
and

maxk tni <xi x2> tno
calculates the 2-fold maximum with regard to (x1,x2).

Example 3. Bent functions [7–9] are the most non-linear functions which are
needed in cryptography. The simplest bent functions are specified by the BDE:

∂ 2 f (x1,x2)

∂x1∂x2
= 1 . (39)

Using (37) we get the equivalent BDE:

∂ f (x1,x2)

∂x1
⊕

∂ f (x1,x2)

∂x2
⊕

∂ f (x1,x2)

∂ (x1,x2)
= 1 . (40)
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This BDE contains two simple and and one vectorial derivative. Hence, it can be
solved using Algorithm 1. The associated Boolean equation of (40) is

u1 ⊕u2 ⊕u3 = 1 . (41)

1 s p a c e 32 1
2 a v a r 1
3 u0 u1 u2 u3 v0 v1 v2 v3 .
4 sbe 1 1
5 u1#u2#u3 =1 .
6 sbe 1 2
7 v0=u0 ,
8 v1=u0#u1 ,
9 v2=u0#u2 ,

10 v3=u0#u3 .
11 i s c 1 2 3
12 v t i n 1 4
13 u0 u1 u2 u3 .

14 maxk 3 4 5
15 v t i n 1 6
16 v0 v2 .
17 v t i n 1 7
18 v1 v3 .
19 cco 5 6 7 8
20 i s c 5 8 9
21 v t i n 1 10
22 v0 v1 .
23 v t i n 1 11
24 v2 v3 .
25 cco 9 10 11 12
26 i s c 9 12 13

Fig. 4. Listing of the PRP to solve the BDe (40).

Figure 4 show the PRP that can be used by the XBOOLE-Monitor to solve
BDE (40). The solution of (41) is stored as XBOOLE-object 1. The lines 6 to 14
in Figure 4 realize the d2v-transformation of line 2 of Algorithm 1 so that the
XBOOLE-object 5 stores SLS′(v). The first sweep of the loop in lines 3 to 6 of
Algorithm 1 is executed in lines 15 to 20 and the second sweep of this loop leads to
the XBOOLE-object 13 as final result in lines 21 to 26 of Figure 4.

Table 4 shows in the left part the solution TVL of BDE (40). The eight v-vectors
describe two classes of Boolean functions. The expressions of these functions are
built by the substitution of the v-vectors of the solution into (28). Table 4 shows
these functions in the right part associated to the classes 1 and 2.

4 BooLeAN DIFFeReNTIAL eQUATIoNS
FoR LATTICeS oF BooLeAN FUNCTIoNS

4.1 Lattices of Incompletely Specified Boolean Functions

A lattice of Boolean function is a special set of functions that has the following
properties:

• if both f1(x) and f2(x) belong to the lattice then f (x) = f1(x)∧ f2(x) belongs
also to this lattice of Boolean functions, and
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Tab. 4. Solution functions of BDe (40)

v0 v1 v2 v3 class 1 class 2
0 1 1 1 x1 ∨ x2
1 0 0 0 x1 ∧ x2
1 0 1 1 x1 ∨ x2
0 1 0 0 x1 ∧ x2
0 0 0 1 x1 ∧ x2
1 1 1 0 x1 ∨ x2
1 1 0 1 x1 ∨ x2
0 0 1 0 x1 ∧ x2

• if both f1(x) and f2(x) belong to the lattice then f (x) = f1(x)∨ f2(x) belongs
also to this lattice of Boolean functions.

A lattice of Boolean function is very often used for the design of a digital circuit.
Based on another point of view, such a lattice is sometimes called incompletely
specified function (ISF).

one method to describe the lattice of functions of an ISF uses two mark func-
tions called:

1. oN-set q(x): all functions of the lattice must be equal to one for q(x) = 1,
and

2. oFF-set r(x): all functions of the lattice must be equal to zero for r(x) = 1.

Using these known mark functions each function f (x) of the set of functions
{ fi(x)} must hold the inequalities:

f (x) ≥ q(x) , (42)
f (x) ≤ r(x) , (43)

which can be transformed into the equivalent restrictions:

f (x)∧q(x) = 0 , (44)
f (x)∧ r(x) = 0 . (45)

The system of equations (44) and (45) can be merged into a single Boolean
equation:

f (x)∧q(x)∨ f (x)∧ r(x) = 0 . (46)
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The system of equations (44) and (45) can be merged into a single Boolean
equation:

f (x)∧q(x)∨ f (x)∧ r(x) = 0 . (46)

Boolean Differential equations - a Common Model for Classes, Lattices, ... 117

The functions q(x) and r(x) in (46) are known and can be represent by expres-
sions of Boolean variables connected by Boolean operations. The term f (x) in (46)
describes the unknown functions of the lattice. Hence, the equation (46) fits to the
type of Boolean Differential equations (29), where only f (x) and variables xi but
no simple or vectorial derivatives occur. All functions of a lattice which is specified
by the BDe (46) can be calculated using Algorithm 2.

Example 4. Let q(x) = x1 x3 ∨ x2 x3 and r(x) = x1 x2 be the given mark functions
of a lattice of Boolean functions f (x). Using (46), we get the BDE of this lattice:

f (x)∧ (x1 x3 ∨ x2 x3)∨ f (x)∧ x1 x2 = 0 (47)

and the associated Boolean equation:

u0 ∧ (x1 x3 ∨ x2 x3)∨u0 ∧ x1 x2 = 0 . (48)

Figure 5 shows the PRP that is used in the XBOOLE-Monitor to solve the BDE
(47). After the definition of the Boolean space B

32 in line 1; the used variables are
defined in lines 2 to 5, and the associated Boolean equation is solved in lines 6 to 8.
The BDE (47) contains only f (x) out of the vector ∇ f (x) so that the transformation
d2v can be restricted to the mapping of u0 to v0 in lines 9 to 14.

Due to the existing variables xi Algorithm 2 must be used to separate the set of
solution functions. All steps of the loop of lines 3 to 8 of Algorithm 2 are realized
in lines 15 to 53 of the PRP in Figure 5. The lines 15 to 27 of the PRP describe
the first sweep of this loop for x1. The indices of the variables vi are taken from the
first four rows of column i= 1 of Table 3 where the VT 11 uses the left values and
the VT 12 the right values. The intermediate solution of this sweep is stored into
the same XBOOLE-object 5 that represent the function S of Algorithm 2. Hence,
the fragment of lines 15 to 27 of the first sweep of the loop can be reused in lines 28
to 40 for the second sweep with x2 and the VTs specified by column i = 2 of Table
3 and in lines 41 to 53 for the third sweep with x3 and the VTs specified by column
i = 3 of Table 3, respectively.

Tab. 5. Solution functions of BDe (47)

v0 v1 v2 v3 v4 v5 v6 v7 solution functions
1 1 0 1 1 1 0 1 f1(x) = x1 ∨ x2

1 1 0 1 0 1 0 1 f2(x) = x1 ∨ x2 x3

1 1 0 0 1 1 0 1 f3(x) = x1 x3 ∨ x2

1 1 0 0 0 1 0 1 f4(x) = x1 x3 ∨ x2 x3
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1 s p a c e 32 1
2 a v a r 1
3 u0
4 v0 v1 v2 v3 v4 v5 v6 v7
5 x1 x2 x3 .
6 sbe 1 1
7 / u0&(x1&x3 +/ x2&/x3 )+
8 u0 &(/ x1&x2 ) = 0 .
9 sbe 1 2

10 v0=u0 .
11 i s c 1 2 3
12 v t i n 1 4
13 u0 .
14 maxk 3 4 5
15 sbe 1 6
16 x1 =0 .
17 i s c 5 6 7
18 maxk 7 6 8
19 c p l 6 6
20 i s c 5 6 9
21 maxk 9 6 10
22 v t i n 1 11
23 v0 v2 v4 v6 .
24 v t i n 1 12
25 v1 v3 v5 v7 .
26 cco 10 11 12 13
27 i s c 8 13 5

28 sbe 1 6
29 x2 =0 .
30 i s c 5 6 7
31 maxk 7 6 8
32 c p l 6 6
33 i s c 5 6 9
34 maxk 9 6 10
35 v t i n 1 11
36 v0 v1 v4 v5 .
37 v t i n 1 12
38 v2 v3 v6 v7 .
39 cco 10 11 12 13
40 i s c 8 13 5
41 sbe 1 6
42 x3 =0 .
43 i s c 5 6 7
44 maxk 7 6 8
45 c p l 6 6
46 i s c 5 6 9
47 maxk 9 6 10
48 v t i n 1 11
49 v0 v1 v2 v3 .
50 v t i n 1 12
51 v4 v5 v6 v7 .
52 cco 10 11 12 13
53 i s c 8 13 5

Fig. 5. Listing of the PRP to solve the BDe (47).

Table 5 enumerates the four solution functions of the BDE (47) calculated by
the XBOOLE-Monitor using the PRP of Figure 5. The columns v3 and v4 show
that this lattice contains all functions which are smaller or equal to the supremum
function f1(x) and greater or equal to the infimum function f4(x).

4.2 Generalized Lattices of Boolean Functions

each derivative operation transforms a given lattice of Boolean functions into an-
other lattice of Boolean functions. The resulting lattices are more general because
the function values 0 and 1 cannot only be chosen for a single x-pattern, but also for
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4.2 Generalized Lattices of Boolean Functions

each derivative operation transforms a given lattice of Boolean functions into an-
other lattice of Boolean functions. The resulting lattices are more general because
the function values 0 and 1 cannot only be chosen for a single x-pattern, but also for
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pairs of x-patterns. The proof that all derivative operations of any lattice result in
such a generalized lattice is given for the first time in [10]. The generalized lattices
are described in [10] by the mark function q(x) and r(x) as well as an independence
matrix (IDM) that have the shape of an echelon and elements below the main diag-
onal are equal to 0. The IDM describes all independent directions of change where
no function of the lattice changes its values. Associated to the independence ma-
trix IDM an independence function f id(x) is defined in [10]. Knowing the mark
functions q(x) and r(x) and the independence function f id(x), a Boolean equation
given in [10] allows us to check for each function f (x) whether it belongs to the
generalized lattice or not.

Instead of the two mark functions and the independence matrix we suggest here
a single Boolean Differential Equation to describe a generalized lattice of Boolean
functions. The directions, in which no function of the lattice changes its values,
are described in a restrictive BDe by simple and vectorial derivatives which are
connected by disjunctions (∨):

n
∨

i=1

∂ f (x)

∂x0i
= 0 , (49)

where

• i is the row index of the IDM,

• values 1 in the row of IDM specify the variables of x0i, and

• ∂ f (x)
∂x0i

= 0 if all elements of the i-th row in IDM(f) are equal to 0.

A BDe (50) can be solved by Algorithm 1, and the special structure of the BDe
ensures that the set of classes of solution function describes a lattice of Boolean
functions.

Example 5. The generalized lattice of the Boolean function f (x1,x2,x3) in which
all functions do not change their function values if either x1 and x3 or x2 and x3 are
commonly changed at the same point in time can be described by the BDE:

∂ f (x)

∂ (x1,x3)
∨

∂ f (x)

∂ (x2,x3)
= 0 (50)

and the associated Boolean equation:

u5 ∨u6 = 0 . (51)

Figure 6 shows the PRP that is used in the XBOOLE-Monitor to solve the BDE
(50). After the definition of the Boolean space B

32 in line 1; the used variables are
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1 s p a c e 32 1
2 a v a r 1
3 u0 u5 u6
4 v0 v1 v2 v3 v4 v5 v6 v7 .
5 sbe 1 1
6 u5+u6 =0 .
7 sbe 1 2
8 v0=u0 ,
9 v5=u0#u5 ,

10 v6=u0#u6 .
11 i s c 1 2 3
12 v t i n 1 4
13 u0 u5 u6 .
14 maxk 3 4 5
15 v t i n 1 6
16 v0 v2 v4 v6 .

17 v t i n 1 7
18 v1 v3 v5 v7 .
19 cco 5 6 7 8
20 i s c 5 8 5
21 v t i n 1 6
22 v0 v1 v4 v5 .
23 v t i n 1 7
24 v2 v3 v6 v7 .
25 cco 5 6 7 8
26 i s c 5 8 5
27 v t i n 1 6
28 v0 v1 v2 v3 .
29 v t i n 1 7
30 v4 v5 v6 v7 .
31 cco 5 6 7 8
32 i s c 5 8 5

Fig. 6. Listing of the PRP to solve the BDe (50).

Tab. 6. Solution functions of BDe (50)

v0 v1 v2 v3 v4 v5 v6 v7 class 1 class 2 class 3
1 1 1 1 1 1 1 1 f1(x) = 1
1 0 0 1 0 1 1 0 f2(x) = x1 ⊕ x2 ⊕ x3
0 1 1 0 1 0 0 1 f3(x) = x1 ⊕ x2 ⊕ x3
0 0 0 0 0 0 0 0 f4(x) = 0

defined in lines 2 to 4, and the associated Boolean equation is solved in lines 5 to
6. The BDE (50) contains only two vectorial derivatives out of the vector ∇ f (x) so
that the transformation d2v can be restricted to the mapping of u5 to v5 and u6 to
v6 in lines 7 to 14, where u0 is needed as counterpart to v0.

Due to missing variables xi Algorithm 1 can be used to separate the classes of
solution functions. All steps of the loop of lines 3 to 6 of Algorithm 1 are realized
in lines 15 to 32 of the PRP in Figure 6. The lines 15 to 20 of the PRP describe
the first sweep of this loop for the exchange of x1. The indices of the variables
vi are taken from the first four rows of column i = 1 of Table 3 where the VT 6
uses the left values and the VT 7 the right values. The intermediate solution of this
sweep is stored into the same XBOOLE-object 5 that represents the function SLS′
of Algorithm 1. Hence, the fragment of lines 15 to 20 of the first sweep of the loop
can be reused in lines 21 to 26 for the second sweep with regard to x2 and the VTs
specified by column i= 2 of Table 3 and in lines 27 to 32 for the third sweep with
regard to x3 and the VTs specified by column i= 3 of Table 3, respectively.
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that the transformation d2v can be restricted to the mapping of u5 to v5 and u6 to
v6 in lines 7 to 14, where u0 is needed as counterpart to v0.

Due to missing variables xi Algorithm 1 can be used to separate the classes of
solution functions. All steps of the loop of lines 3 to 6 of Algorithm 1 are realized
in lines 15 to 32 of the PRP in Figure 6. The lines 15 to 20 of the PRP describe
the first sweep of this loop for the exchange of x1. The indices of the variables
vi are taken from the first four rows of column i = 1 of Table 3 where the VT 6
uses the left values and the VT 7 the right values. The intermediate solution of this
sweep is stored into the same XBOOLE-object 5 that represents the function SLS′
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Table 6 enumerates the four solution functions of the BDE (50) calculated
by the XBOOLE-Monitor using the PRP of Figure 6. The solution of the BDE
(50) consists of three classes of Boolean functions. The class 1 only contains the
function f1(x) = 1 that is the supremum r(x) of the lattice. Due to (24) a solution
class in B

3 generally contains 23 = 8 functions. Two times four of these functions
are identical in case of class 2:

f2(x) = x1 ⊕ x2 ⊕ x3 = x1 ⊕ x2 ⊕ x3 = x1 ⊕ x2 ⊕ x3 = x1 ⊕ x2 ⊕ x3 ,

f3(x) = x1 ⊕ x2 ⊕ x3 = x1 ⊕ x2 ⊕ x3 = x1 ⊕ x2 ⊕ x3 = x1 ⊕ x2 ⊕ x3 .

The class 3 only contains the function f4(x) = 0 that is the infimum q(x) of the
lattice. The solution lattice contains only two of 28 − 2 = 254 functions of B

3

which are greater than q(x) = 0 and smaller than r(x) = 1. Nevertheless, the four
function of Table 6 constitute a lattice—both the conjunction and the disjunction
of any pair of these function result in one of these functions.

It should be mentioned that there are four different BDe having the same lattice
of solutions shown in Table 6. The most extended BDE with this solution lattice
is:

∂ f (x)

∂ (x1,x2)
∨

∂ f (x)

∂ (x1,x3)
∨

∂ f (x)

∂ (x2,x3)
= 0 . (52)

The equivalent other three BDe with the same solution are built by omitting
one of the three vectorial derivatives:

∂ f (x)

∂ (x1,x3)
∨

∂ f (x)

∂ (x2,x3)
= 0 , (53)

∂ f (x)

∂ (x1,x2)
∨

∂ f (x)

∂ (x2,x3)
= 0 , (54)

∂ f (x)

∂ (x1,x2)
∨

∂ f (x)

∂ (x1,x3)
= 0 , (55)

where (53) is identical with (50) and used in Example 5. The reason for these al-
ternative BDe with the same solution lattice is that only two of the three directions
of change in (52) of the vectorial derivatives are linearly independent. Two algo-
rithms in [10] describe how the unique independent directions of change can be
found. The BDe (53) is the unique representative BDe for the solution lattice of
Table 6.

Example 5 explores a generalized lattice with the special mark functions q(x) =
0 and r(x) = 0, in order to emphasize that only a special subset of functions between
these two mark function belong to the lattice. however, this restriction is not nec-
essary. The BDe (46) can be combined with the BDe (49) to the BDe of a most
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general lattice:

f (x)∧q(x)∨ f (x)∧ r(x)∨
n

∨

i=1

∂ f (x)

∂x0i
= 0 . (56)

Example 6. We assume that a generalized lattice of the Boolean function f (x) is
described by the BDE:

f (x)∧ ((x1 ⊕ x3)∧ (x2 ⊕ x4))∨ f (x)∧ ((x1 ⊕ x3)∧ (x2 ⊕ x4))∨

∂ f (x)

∂ (x1,x3)
∨

∂ f (x)

∂ (x2,x4)
= 0 (57)

which has the associated Boolean equation:

f (x)∧ ((x1 ⊕ x3)∧ (x2 ⊕ x4))∨ f (x)∧ ((x1 ⊕ x3)∧ (x2 ⊕ x4))∨u5 ∨u10 = 0 .

(58)
Figure 7 shows the PRP that is used to solve the BDE (57) of a most general

lattice of Boolean functions. After the definition of the Boolean space B
32 in line 1;

the used variables are defined in lines 2 to 8, and the associated Boolean equation
is solved in lines 9 to 12. The BDE (57) contains only f (x) and two vectorial
derivatives out of the vector ∇ f (x) so that the transformation d2v can be restricted
to the mapping of u0 to v0, u5 to v5, and u10 to v10, in lines 13 to 20.

Due to the existing variables xi Algorithm 2 must be used to separate the set of
solution functions which have the structure of a lattice due to the structure of the
BDE to be solved. All steps of the loop of lines 3 to 8 of Algorithm 2 are realized in
lines 21 to 80 of the PRP in Figure 7. The lines 21 to 35 of the PRP describe the first
sweep of this loop for x1. The indices of the variables vi are taken from the column
i = 1 of Table 3 where the VT 11 uses the left values and the VT 12 the right values.
The intermediate solution of this sweep is stored to the same XBOOLE-object 5 that
represent the function S of Algorithm 2. Hence, the fragment of lines 21 to 35 of
the first sweep of the loop can be reused in lines 36 to 50 for the second sweep
with x2 and the VTs specified by column i = 2 of Table 3, in lines 51 to 65 for the
third sweep with x3 and the VTs specified by column i= 3, and finally in lines 66 to
80 for the fourth sweep with x4 and the VTs specified by column i = 4 of Table 3,
respectively.

Table 7 enumerates the four solution functions of the BDE (57) calculated
by the XBOOLE-Monitor using the PRP of Figure 7. The function values in the
columns v0, . . . , v15 confirm that the calculated four functions form a lattice. It
can also be seen in these columns that not all functions which are smaller than the
supremum f1 and larger than the infimum f4 belong to this generalized lattice of
Boolean functions.
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lines 21 to 80 of the PRP in Figure 7. The lines 21 to 35 of the PRP describe the first
sweep of this loop for x1. The indices of the variables vi are taken from the column
i = 1 of Table 3 where the VT 11 uses the left values and the VT 12 the right values.
The intermediate solution of this sweep is stored to the same XBOOLE-object 5 that
represent the function S of Algorithm 2. Hence, the fragment of lines 21 to 35 of
the first sweep of the loop can be reused in lines 36 to 50 for the second sweep
with x2 and the VTs specified by column i = 2 of Table 3, in lines 51 to 65 for the
third sweep with x3 and the VTs specified by column i= 3, and finally in lines 66 to
80 for the fourth sweep with x4 and the VTs specified by column i = 4 of Table 3,
respectively.

Table 7 enumerates the four solution functions of the BDE (57) calculated
by the XBOOLE-Monitor using the PRP of Figure 7. The function values in the
columns v0, . . . , v15 confirm that the calculated four functions form a lattice. It
can also be seen in these columns that not all functions which are smaller than the
supremum f1 and larger than the infimum f4 belong to this generalized lattice of
Boolean functions.
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1 s p a c e 32 1
2 a v a r 1
3 u0 u5 u10
4 v0 v1 v2 v3
5 v4 v5 v6 v7
6 v8 v9 v10 v11
7 v12 v13 v14 v15
8 x1 x2 x3 x4 .
9 sbe 1 1

10 / u0 & ( / ( x1#x3 )&( x2#x4 ) ) +
11 u0 &(( x1#x3 )&( x2#x4 ) ) +
12 u5+u10 =0 .
13 sbe 1 2
14 v0=u0 ,
15 v5=u0#u5 ,
16 v10=u0# u10 .
17 i s c 1 2 3
18 v t i n 1 4
19 u0 u5 u10 .
20 maxk 3 4 5
21 sbe 1 6
22 x1 =0 .
23 i s c 5 6 7
24 maxk 7 6 8
25 c p l 6 6
26 i s c 5 6 9
27 maxk 9 6 10
28 v t i n 1 11
29 v0 v2 v4 v6
30 v8 v10 v12 v14 .
31 v t i n 1 12
32 v1 v3 v5 v7
33 v9 v11 v13 v15 .
34 cco 10 11 12 13
35 i s c 8 13 5
36 sbe 1 6
37 x2 =0 .
38 i s c 5 6 7
39 maxk 7 6 8
40 c p l 6 6

41 i s c 5 6 9
42 maxk 9 6 10
43 v t i n 1 11
44 v0 v1 v4 v5
45 v8 v9 v12 v13 .
46 v t i n 1 12
47 v2 v3 v6 v7
48 v10 v11 v14 v15 .
49 cco 10 11 12 13
50 i s c 8 13 5
51 sbe 1 6
52 x3 =0 .
53 i s c 5 6 7
54 maxk 7 6 8
55 c p l 6 6
56 i s c 5 6 9
57 maxk 9 6 10
58 v t i n 1 11
59 v0 v1 v2 v3
60 v8 v9 v10 v11 .
61 v t i n 1 12
62 v4 v5 v6 v7
63 v12 v13 v14 v15 .
64 cco 10 11 12 13
65 i s c 8 13 5
66 sbe 1 6
67 x4 =0 .
68 i s c 5 6 7
69 maxk 7 6 8
70 c p l 6 6
71 i s c 5 6 9
72 maxk 9 6 10
73 v t i n 1 11
74 v0 v1 v2 v3
75 v4 v5 v6 v7 .
76 v t i n 1 12
77 v8 v9 v10 v11
78 v12 v13 v14 v15 .
79 cco 10 11 12 13
80 i s c 8 13 5

Fig. 7. Listing of the PRP to solve the BDe (57).
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Tab. 7. Solution functions of BDe (57)

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 solution functions
1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 f1(x) = (x1 ⊕ x3)∨ (x2 ⊕ x4)

1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 f2(x) = x1 ⊕ x3

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 f3(x) = x1 ⊕ x2 ⊕ x3 ⊕ x4

0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 f4(x) = (x1 ⊕ x3)∧ (x2 ⊕ x4)

5 CoNCLUSIoNS

The Boolean Differential Calculus extends the field of application of the Boolean
Algebra significantly. Simple and vectorial derivative operations evaluate pairs of
function values in the selected direction of change. The values of m-fold derivative
operations depend on values of the given function in whole subspaces.

An unknown function f (x) and derivative operations of this function appear in
Boolean expressions on both sides of a Boolean Differential Equation (BDe). The
solution of each BDE is a set of Boolean functions. This is an important extension
to a Boolean equation which has a set of binary vectors as solution.

The explored algorithms allow us to solve BDEs which describe either sets of
classes of Boolean functions or arbitrary sets of Boolean functions. We demon-
strated that these algorithms can easily be implemented using the XBooLe-Moni-
tor. The used problem programs (PRP) show all details of the introduced algorithms
to solve a BDe. Using the XBooLe-Library all these steps can be wrapped by
special programs such that the set of solution functions of a BDe is automatically
created.

The algorithms known from [4,5] are able to separate (depending on the type of
the BDe) either classes of solution functions or arbitrary sets of solution functions.
We presented in this paper special types of BDes which either combine certain
classes to a lattice of Boolean functions or restrict the arbitrary sets of solutions to
a lattice of Boolean functions.

There is a wide field of applications of BDEs. Many examples are explained
in [4]. here, we introduced three new types of BDes. All of them describe lattices
of Boolean functions.

1. A BDe of the type (46) describes a well known and widely used lattice of
Boolean functions that can alternatively be expressed by an incompletely
specified function. Such a BDE can be solved using Algorithm 2.

2. A BDE of the type (49) describes a lattice with the infimum function q(x) = 0
and the supremum function r(x) = 1 and can be solved using Algorithm
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1. Such a lattice contains not all functions which are greater than q(x) and
smaller than r(x).

3. A BDe of the more general type (56) merges the BDes of the cases 1 and 2.
Such a BDe must be solved using Algorithm 2 because the mark functions
q(x) and r(x) are not limited to the case 2.

It can be very difficult to find a BDE for a needed set of Boolean functions.
however, it is an advantage that BDes for lattices can be built in a straight manner
based on the mentioned types. Therefore, we call BDes of the types (46), (49), and
(56) Lattice-BDEs.

The result of a Lattice-BDe (49) or (56) is a generalized lattice of Boolean
functions that cannot be expressed by an incompletely specified function. In this
way these Lattice-BDEs opens many new fields of applications, e.g., in circuit de-
sign. Vice versa, the Lattice-BDe (46) is a sub-type of the most general Lattice-
BDE (56) so that the so far widely used lattices of Boolean functions fitting to an
incompletely specified Boolean function are integrated in the new theory in a nat-
ural manner. It is a challenge for the future to utilize Lattice-BDes for specific
applications.
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