
FACTA UNIVERSITATIS 

Series: Electronics and Energetics Vol. 33, No 4, December 2020, pp. 605-616 

https://doi.org/10.2298/FUEE2004605L 

© 2020 by University of Niš, Serbia | Creative Commons License: CC BY-NC-ND 

COMPUTATION OF PER-UNIT-LENGTH INTERNAL 

IMPEDANCE OF A MULTILAYER CYLINDRICAL 

CONDUCTOR WITH POSSIBLE DIELECTRIC LAYERS  

Dino Lovrić, Slavko Vujević, Ivan Krolo 

University of Split, Faculty of Electrical Engineering, Mechanical Engineering  

and Naval Architecture, Split, Croatia  

Abstract. In this manuscript, a novel method for computation of per-unit-length internal 

impedance of a cylindrical multilayer conductor with conductive and dielectric layers is 

presented in detail. In addition to this, formulas for computation of electric and magnetic 

field distribution throughout the entire multilayer conductor (including dielectric layers) 

have been derived. The presented formulas for electric and magnetic field in conductive 

layers have been directly derived from Maxwell equations using modified Bessel 

functions. However, electric and magnetic field in dielectric layers has been computed 

indirectly from the electric and magnetic fields in contiguous conductive layers which 

reduces the total number of unknowns in the system of equations. Displacement currents 

have been disregarded in both conductive and dielectric layers. This is justifiable if the 

conductive layers are good conductors. The validity of introducing these approximations 

is tested in the paper versus a model that takes into account displacement currents in all 

types of layers.  

Key words: internal impedance, multilayer cylindrical conductor, dielectric layers, 

conductive layers, modified Bessel functions. 

1. INTRODUCTION  

Conductors composed of different types of materials are often used in a number of 

engineering applications [1,2]. Since each material used in the conductor has certain 

advantages and disadvantages, by carefully combining different types of conductor materials 

one can obtain a structure in which advantages of one material used negates the 

disadvantages of another material. However, the resulting multilayer structure becomes more 

challenging to accurately model. This is for example the case when performing various 

electromagnetic compatibility analyses [3,4], harmonic and transient analyses of transmission 

lines [5] as well as harmonic and transient analyses of grounding systems [6,7].  
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In order to obtain the distribution of electric and magnetic fields inside the multilayer 

structure, authors in the available literature mainly utilize a cascade of two-port networks 

[8-10]. This approach leads to certain numerical instabilities that are inherent to the 

transfer matrix of the system, where some elements of the matrix tend to infinity for high 

frequencies even for extra thin layers, which was demonstrated in [11]. In paper [11], 

however, the authors derive the equations for computation of electric and magnetic field 

distribution within the multilayer structure directly from Maxwell equations and base the 

solutions on modified Bessel functions [12] which have proven to be the most numerically 

stable choice [13-15]. Accurate distribution in all layers is obtained by forming a system of 

linear equations from boundary conditions which is then easily solved. The formulas are 

derived to maximize numerical stability and robustness of the proposed algorithm. In the 

model from [11] all layers of the multilayer conductor are characterized by electrical 

conductivity, permittivity and permeability, hence both conductive and displacement 

currents have been taken into account in all types of layers. 

In this paper, a slightly different approach to model a multilayer structure is proposed 

and tested. First of all, the multilayer structure consists of two types of layers: conductive 

layers which consist of materials that are good conductors and dielectric layers, unlike in 

[11] where the layers are general. The proposed model consists of an arbitrary number of 

conductive layers where a single dielectric layer can be situated between two conductive 

layers. Secondly, displacement currents have been disregarded in all layers. This is only 

possible if the conductive layers are made of materials which are good electrical 

conductors. And thirdly, in the proposed model, the conductive layers are the only layers 

which contribute to the formation of the system of equations. Distribution of electric and 

magnetic fields in dielectric layers is computed indirectly from the border conditions on 

contiguous conductive layers. The effect of introducing these simplifications is tested in 

the numerical examples part of the manuscript.  

2. MODEL OF THE MULTILAYER CYLINDRICAL CONDUCTOR WITH DIELECTRIC LAYERS  

The multilayer cylindrical conductor analyzed in this paper can have an arbitrary 

number of conductive layers (m). In addition to this, the model of the multilayer conductor 

allows the existence of a single dielectric layer between two conductive layers, which 

means that for a total number of m conductive layers there can be a maximum of m-1 

dielectric layers (the last layer of the conductor is a conductive layer).  

An arbitrary i-th conductive layer is characterized by its internal radius ri
in
, external 

radius ri
ex

, electrical conductivity σi and magnetic permeability μi, whereas each of the 

dielectric layers is defined by its magnetic permeability µi
d
 and, indirectly, by the external 

and internal radii of the contiguous conductive layers. Electrical permittivity is non-existent 

in the model since the displacement currents have been disregarded in all layers. All layer 

materials are considered to be linear, isotropic and the parameters describing them are not 

frequency dependent. To better illustrate this, Fig. 1 depicts the i-th and (i+1)-th conductive 

layers. The i-th dielectric layer illustrated on Fig. 1 is defined by the external radius of the i-

th conductive layer and the internal radius of the (i+1)-th conductive layer. In the case that 

the dielectric layer is nonexistent then ri
ex

 = ri+1
in
. The developed formulas have been derived 

in such a way to directly take this case into account without modification. Due to simplicity 
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of the model, to each i-th conductive layer, where i = 1, 2, ..., m-1, an i-th dielectric layer has 

been joined, which can be an actual dielectric layer or a fictive dielectric layer. The last 

conductive layer does not have a joined dielectric layer. 

If the first layer is solid, then r1
in 

= 0, whereas if it is a tubular, then r1
in 

≠ 0. 

 

Fig. 1 Dielectric layer between two conductive layers  

3. DISTRIBUTION OF ELECTRIC AND MAGNETIC FIELD IN CONDUCTIVE  

AND DIELECTRIC LAYERS 

The formulas for the computation of electric and magnetic field inside an arbitrary i-th 

conductive layer of the multilayer conductor are derived directly from Maxwell equations 

for good conductors. Due to axial symmetry, the electric field only has the component in 

the direction of the conductor current whereas the magnetic field only has the azimuthal 

component. Unlike in paper [11], in this paper, displacement currents have been disregarded 

in the entire multilayer conductor including dielectric layers due to the fact that they are 

significantly smaller in relation to conductive currents even for higher frequencies, if the 

conductive layers can be considered good conductors. The effect of disregarding 

displacement currents will be tested in the numerical examples section of this paper.  

The expressions for computation of electric and magnetic field inside an arbitrary i-th 

conductive layer are derived directly from Maxwell equations using modified Bessel 

functions [12] with disregarded displacement currents. For improved numerical stability 

of the electromagnetic models modified Bessel functions have been scaled up/down to 

produce values of similar order of magnitude thus avoiding any underflow/overflow 

numerical problems [13-15]:  

 0 0 1 1( ) exp( ) ( ) ; ( ) exp( ) ( )s s

i i i i i iI r r I r I r r I r                  (1) 

 0 0 1 1( ) exp( ) ( ); ( ) exp( ) ( )s s

i i i i i iK r r K r K r r K r                (2) 

Expressions for computation of electric and magnetic field inside an arbitrary i-th 

conductive layer written using scaled modified Bessel functions are: 
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  1 1( ) exp[ ( )] ( ) exp[ ( )]s s ex s s in

i tot i i i i i i i iH I C I r r r D K r r r                  (3) 

  0 0( ) exp[ ( )] ( ) exp[ ( )]s s ex s s intot i
i i i i i i i i i

i

I
E C I r r r D K r r r

 
                


 (4) 

  jj iiii 






 
 1
4

exp  (5) 

where 
sI0  is the scaled complex-valued modified Bessel function of the first kind of order zero, 

sK0  is the scaled complex-valued modified Bessel function of the second kind of order zero, 
sI1  is the scaled complex-valued modified Bessel function of the first kind of order one, 

sK1  is 

the scaled complex-valued modified Bessel function of the second kind of order one, 
s

iC  and 
s

iD  are the unknown scaled complex-valued coefficients for the i-th conductive layer, i  is the 

complex wave propagation constant of the i-th conductive layer, σi is the electrical conductivity 

of the i-th conductive layer, µi is the magnetic permeability of the i-th conductive layer, ω is the 

circular frequency of the conductor current, αi is the attenuation constant of the i-th conductive 

layer, totI  represents the phasor of the total multilayer conductor current and r is the distance of 

the observation point from the axis of the multilayer cylindrical conductor.  

Computation of electric and magnetic field inside a dielectric layer between the i-th 

and (i+1)-th conductive layers is achieved indirectly, from the values of electric and 

magnetic fields on the outer edge of the i-th conductive layer.  

Computation of magnetic field at an observation point located inside a dielectric layer 

between the i-th and (i+1)-th conductive layers is performed using Ampere’s law 

disregarding the displacement currents. The magnetic field intensity in the dielectric layer 

is integrated along a curve (circle of radius r with the center located on the axis of the 

conductor) which produces the following equation:  

 enc
d
i IrH 2  (6) 

where 
d
iH  is the magnetic field inside the dielectric layer and encI  is the harmonic 

current enclosed inside the circle of radius r. 

Since the magnetic field on the outer edge of the i-th conductive layer encloses the 

same amount of harmonic current and can be written as:  

 enc
ex

i
rr

i IrH ex
i




2  (7) 

by introducing (7) into (6), the following equation is obtained for computation of 

magnetic field inside a dielectric layer between the i-th and (i+1)-th conductive layers: 

 
r

r
HH

ex
i

rr
i

d
i ex

i




 (8) 

As for the computation of electric field inside the dielectric layer between the i-th and 

(i+1)-th conductive layers, Fig. 2 clearly describes how this is achieved. The dash-dotted 

line represents the axis of the multilayer conductor which lies on the z-axis of the 
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coordinate system. The black rectangle in the figure represents the curve over which the 

line integral of the electric field intensity present in the Faraday’s law of induction is 

integrated, the black arrow denoting the positive path of integration as dictated by the 

right hand rule.  

 

Fig. 2 Computation of electric field inside the dielectric layer between the i-th and  

(i+1)-th conductive layers   

The line integral reduces to the following expression since the values of electric field 

are constant along the integration curve and cancel each other out on parts of the curve 

perpendicular to the conductor axis: 

 i
rr

i
d
i jEE ex

i




 (9) 

The per-unit-length magnetic flux though the surface bounded by the integration curve 

depicted on Fig. 2 is easily obtained by integrating the magnetic flux density through the 

surface:  

 
ex
i

ex
i

rr
iex

i

ex
i

d
i

r

r

d
i

d
ii H

r

r
nrdrH


  1  (10) 

where µi
d
 is the magnetic permeability of the dielectric layer located between the i-th and 

(i+1)-th conductive layers. 

By introducing (10) into (9) and rearranging the expression one can obtain the 

following expression for electric field inside the dielectric layer between the i-th and 

(i+1)-th conductive layers:  

 ex
i

ex
i rr

iex
i

ex
i

d
i

rr
i

d
i H

r

r
nrjEE


   (11) 

Since the electric and magnetic fields inside dielectric layers are computed indirectly, 

the number of unknown complex-valued coefficients has been reduced unlike in paper 

[11] where each layer, be it conductive or dielectric, adds two unknowns to the subsequent 

system of equations. Computation of unknown coefficients slightly varies depending on 

whether the multilayer conductor is a solid conductor (r1
in 

= 0) or a tubular conductor 

(r1
in 

≠ 0). The computation of unknown complex-valued coefficients from the boundary 

conditions is given in Appendix A. 
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4. PER-UNIT-LENGTH INTERNAL IMPEDANCE OF THE MULTILAYER CONDUCTOR 

Per-unit-length internal impedance of the multilayer conductor with possible dielectric 

layers where the displacement currents have been disregarded in the entire conductor is 

computed using the value of electric field on the outer edge of the multilayer conductor 

using the following expression: 

 exp( )
ex
m

m r r

tot

E
Z Z j

I


     (12) 

where Z is the modulus of the per-unit-length internal impedance of the multilayer 

conductor and φ is the phase angle of the per-unit-length internal impedance of the 

multilayer conductor. 

Substituting equation (4) into (12), one obtains the following expression for computation of 

per-unit-length internal impedance of the multilayer conductor:  

  0 0( ) ( ) exp[ ( )]s s s s ex inm
m m m m m m m m m

m

Z C I r D K r r r


            


 (13) 

5. COMPARISON WITH A MODEL OF THE MULTILAYER CONDUCTOR FROM [11] 

In paper [11], a model of a multilayer conductor is developed which consists of an 

arbitrary number of layers which can feature arbitrary electrical and magnetic parameters. 

This, in fact, means that each layer has its electrical conductivity, permittivity and 

magnetic permeability, hence conductive and displacement currents have been taken into 

account in all layers. In this paper, however, a different approach is proposed which 

totally disregards displacement currents in all layers. In following two examples, the 

effects of this will be investigated. 

5.1. Example 1 

In the first numerical example the following multilayer conductor with four layers in 

total is considered: 

1. r1
in

 = 0; r1
ex

 = 5 mm; σ1 = 1.37 MS/m; μ1 = 1.02·μ0; ε1 = ε0 

2. r2
in

 = 5 mm; r2
ex

 = 10 mm; σ2 = 59.6 MS/m; μ2 = 0.999994·μ0; ε2 = ε0 

3. r3
in

 = 10 mm; r3
ex

 = 15 mm; σ3 = 0; μ3 = μ0; ε3 = ε0 

4. r4
in

 = 15 mm; r4
ex

 = 20 mm; σ4 = 10 MS/m; μ4 = μ0; ε4 = ε0 

As can be seen from the previous list, first two layers are conductive layers, the third layer 

is a dielectric layer, whereas the final layer is a conductive layer. These parameters have 

been implemented into the model from [11] which takes displacement currents into account 

in all layers, and into the proposed model where displacement currents have been disregarded. 

Per-unit-length internal impedance is computed for a set of frequencies ranging from 

very low to very high frequencies. Fig. 3 depicts the moduli of the per-unit-length internal 

impedance for both models, whereas Fig. 4 depicts the phase angle of the impedance. As 

can be observed from both figures the curves coincide throughout the observation interval. 

The maximum difference between the moduli of per-unit-length internal impedances is 
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1.0179·10
-10

, whereas the maximum difference between the phase angles of per-unit-

length internal impedances is 1.6209·10
-7

.  

 
Fig. 3 Comparison of moduli of per-unit-length internal impedance computed by the 

model from [11] and the proposed model for the first example 

 
Fig. 4 Comparison of phase angles of per-unit-length internal impedance computed by 

the model from [11] and the proposed model for the first example 

5.2. Example 2 

In the second numerical example the following multilayer conductor with seven layers 

in total is considered. A tubular multilayer conductor consisting of four thin conductive 

layers and three dielectric layers is considered: 

1. r1
in

 = 4; r1
ex

 = 5 mm; σ1 = 59.6 MS/m; μ1 = 0.999994·μ0; ε1 = ε0 

2. r2
in

 = 5 mm; r2
ex

 = 7 mm; σ2 = 0; μ2 = μ0; ε2 = ε0 

3. r3
in

 = 7 mm; r3
ex

 = 8 mm; σ3 = 1.37 MS/m; μ3 = 1.02·μ0; ε3 = ε0 

4. r4
in

 = 8 mm; r4
ex

 = 10 mm; σ4 = 0; μ4 = μ0; ε4 = ε0 

5. r5
in

 = 10 mm; r5
ex

 = 11 mm; σ5 = 10 MS/m; μ5 = μ0; ε5 = ε0 

6. r6
in

 = 11 mm; r6
ex

 = 13 mm; σ6 = 0; μ6 = μ0; ε6 = ε0 

7. r7
in

 = 13 mm; r7
ex

 = 14 mm; σ7 = 59.6 MS/m; μ7 = 0.999994·μ0; ε7 = ε0 
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These parameters have been implemented into the model from [11] which takes 

displacement currents into account in all layers, and into the proposed model where 

displacement currents have been disregarded. 

Per-unit-length internal impedance is computed for a set of frequencies ranging from 

very low to very high frequencies. Fig. 5 depicts the moduli of the per-unit-length internal 

impedance for both models, whereas Fig. 6 depicts the phase angle of the impedance. As 

can be observed from both figures the curves coincide throughout the observation 

interval. The maximum difference between the moduli of per-unit-length internal 

impedances is 1.1872·10
-10

, whereas the maximum difference between the phase angles of 

per-unit-length internal impedances is 1.7847·10
-4

.  

 
Fig. 5 Comparison of moduli of per-unit-length internal impedance computed by the 

model from [11] and the proposed model for the second example 

 
Fig. 6 Comparison of phase angles of per-unit-length internal impedance computed by 

the model from [11] and the proposed model for the second example 
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5.3. Discussion 

Other than the presented two numerical examples, numerous comparisons have been 

made for different kinds of multilayer conductors and the authors came to the same 

conclusion. Disregarding the displacement currents in both the conductive layers and the 

dielectric layers introduces a practically insignificant error in the model if the conductive 

layers are good conductors. Furthermore, the number of unknowns in the system of 

equations is reduced since the dielectric layers are treated differently than in [11] which 

reduces computation time by approximately 23%. It can also be noted here that the model 

presented in [11] was tested against similar models available in the literature which are 

based on a cascade of a set of two-port networks [8-10] and proved equally accurate and far 

more stable. Therefore, by comparing the proposed model to the model presented in [11] 

one can also validate this proposed model relative to the other models available in literature. 

6. CONCLUSION 

In this paper a model of the multilayer conductor with conductive and dielectric layers 

is proposed. In the proposed model the effect of totally disregarding displacement 

currents in both conductive layers and dielectric layers was examined and the authors 

came to the conclusion that displacement currents have negligible effects on the 

distribution of electric and magnetic field inside a multilayered conductor even for higher 

frequency values. In addition to this, the dielectric layers are taken into account indirectly 

in a way that does not add additional unknown coefficients to the system of linear 

equations, which reduces computation time.  
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APPENDIX A  

FORMATION OF THE SYSTEM OF EQUATIONS  

FOR COMPUTING THE UNKNOWN COMPLEX-VALUED COEFFICIENTS  

Model of the multilayer cylindrical conductor presented in this paper can have an 

arbitrary number of conductive layers (m). This means that there are 2∙m unknown scaled 

complex-valued coefficients 
s

iC  and 
s

iD  (i = 1, 2, ..., m) which one needs to compute in 

order to know the electric and magnetic field distribution in all layers. Unknown scaled 

complex-valued coefficients are obtained by forming and solving a system of 2∙m linear 

equations which are derived from the boundary conditions between layers and the 

boundary conditions on the edges of the multilayer conductor.  

The first 2∙(m-1) equations in the system of equations are formed from the boundary 

conditions between layers requiring that the tangential components of electric field 

intensity and magnetic field intensity are continuous on border between two adjacent 

layers. The possible existence of a dielectric layer between two conductive layers is taken 

into account in the following boundary conditions, which are directly derived from 

equations (9) and (12) where in this case, r is substituted with 
in

ir 1 : 

 1...,,2,1;
1

1
1 





miH

r

r
H in

i
ex
i rriex

i

in
i

rri  (A1) 

 1...,,2,1;
1

1
1 






miEH

r

r
nrjE in

i
ex
i

ex
i rrirriex

i

in
iex

i
d
irri   (A2) 

Equations (A1-A2) are valid for both cases when the first conductive layer is a solid 

layer or if it is a tubular layer. 
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One additional equation, also valid for both cases, is derived from the boundary 

condition on the outer edge of the multilayer cylindrical conductor: 

 
ex
m

tot

rr
m

r

I
H ex

m 


 2
 (A3) 

The final equation in the system of equations varies for the cases of solid and tubular 

cylindrical conductors since it is derived from the innermost edge of the conductor (if it 

exists). 

In the case where the first conductive layer is a solid cylindrical conductor, then obviously 

the internal radius of the first layer equals zero. Since modified Bessel functions of the 

second kind tend to infinity if their argument is zero, they must be eliminated in order to 

preserve the physical validity of results. In this case the final equation in the system of 

equations for the case of the solid cylindrical conductor is: 

 01 sD  (A4) 

However, in the case where the first conductive layer is a tubular cylindrical conductor, 

then the internal radius of the first layer does not equal zero so no singularity issues occur. 

Hence, the boundary condition on the innermost edge of the conductor can be included as 

the final equation in the system of equations for the tubular cylindrical conductor: 

 0
1

1 
 inrr

H  (A5) 

By introducing equations for electric and magnetic field described by (1-2) into (A1-

A5), the following system of 2∙m equations is obtained: 

Equations 1 to 2∙m-2: 
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Equation 2∙m-1: 

 
1 1

1
( ) ( ) exp[ ( )]

2

s s ex s s ex ex in

m m m m m m m m m ex

m

C I r D K r r r
r

           


 (A8) 

Equation 2∙m: 

 1 1 11 1 1 1 1 1 1( ) exp[ ( )] ( ) 0
s s s s

in ex in in

iC I r r r D K r             (A9) 

or 

 01 sD  (A10) 

 


