
FACTA UNIVERSITATIS

Series: Electronics and Energetics Vol. 28, No 4, December 2015, pp. 597 - 609

DOI: 10.2298/FUEE1504597R

EFFICIENT CALCULATION OF THE AUTOCORRELATION

OF BOOLEAN FUNCTIONS WITH A LARGE NUMBER OF

VARIABLES


Miloš Radmanović
1
, Radomir Stanković

1
, Claudio Moraga

2

1
Faculty of Electrical Engineering, University of Niš, Niš, Serbia

2
European Centre for Soft Computing, Mieres, Spain, and Department of Computer

Science, Technical University of Dortmund, Dortmund, Germany

Abstract. The autocorrelation of a Boolean function is an important mathematical

concept with various applications. It is a kernel of many algorithms with essential

applications whose efficiency is directly limited by the time and space complexity of

methods for computing the autocorrelation. These limitations, in this paper, can be

overcome by computing the autocorrelation using a Shared Multi-Terminal Binary

Decision Diagram (SMTBDD) which is a data structure allowing compact representations of

large Boolean functions. The computation is performed in the spectral domain by

exploiting the Wiener-Khinchin theorem and the fast calculation algorithms through

SMTBDDs. It is necessary to develop a specialized decision diagram package with all the

standard BDD operations that supports a fast calculation algorithms through decision

diagrams with dynamically resizable terminal nodes. It allows to deal with large

integers that appear in computing the autocorrelation coefficients. An experimental

evaluation over benchmarks favorably confirms the efficiency of the proposed data

structure and related algorithm.

Key words: Boolean functions, autocorrelation, Wiener-Khinchin theorem, fast Walsh

transform, BDD package, dynamically resizable terminal nodes.

1. INTRODUCTION

The autocorrelation function has numerous applications in computing, telecommunications,

data encoding and transmission, cryptography, etc. In particular, in computer-aided design,

the autocorrelation is used in the optimization and synthesis of combinational logic [1-5],

variable ordering for binary decision diagrams [6-9], and estimation the function complexity

[10]. The related algorithms are deterministic and, for the classes of Boolean functions

where they can be efficiently applied (depending on the properties of autocorrelation

Received November 26, 2014; received in revised form March 20, 2015

Corresponding author: Miloš Radmanović

Faculty of Electrical Engineering, University of Niš, Alaksandra Medvedeva 14, 18000 Niš, Serbia

(e-mail: milos.radmanovic@elfak.ni.ac.rs)

598 M. RADMANOVIĆ, R. STANKOVIĆ, C. MORAGA

coefficients), the produced solutions are optimal. This can be considered an advantage

compared to various heuristic approaches that have been proposed for the same applications,

see, e.g., [11] and references therein, since in heuristic algorithms there is no guarantee on

the obtained quality. The efficiency of algorithms based on autocorrelation is directly

determined by the runtime of methods used for computing the autocorrelation as well as

the complexity of the underlaid data structures used to represent the input and output data.

In vector notation, the autocorrelation of a function of n variables is as a vector of length

2
n
. Therefore, methods for computing the autocorrelation coefficients have an exponential

complexity in the number of the variables. There are various methods for an efficient

computation of individual autocorrelation coefficients of a given function depending on

the data structure used to specify the Boolean function and its autocorrelation [12, 13].

The autocorrelation coefficients may also be computed from the spectral coefficients

of the function by exploiting the Wiener-Khinchin theorem and the fast calculation

algorithms through Multi-Terminal Binary Decision Diagrams (MTBDDs) [14]. The

method may be extended to the computation of the autocorrelation for multiple-output

functions. Since this method produces large integers up to the value 2
2n

, where n is the

number of variables in the function, currently available BDD based techniques are limited

to functions of less than 32 variables [15].

In this paper, we present a method for the computation of the autocorrelation spectra

through SMTBDDs for multiple-output Boolean functions of more than 32 variables. The

computation is performed in the spectral domain by exploiting the Wiener-Khinchin

theorem and the fast calculation algorithm through SMTBDDs [16]. This computation,

for Boolean functions of many variables, requires calculations of large integers. For this

reason, the standard BDD packages [17-22] with integer data type terminal nodes cannot

be used. Experiments with a package with integer data type terminal nodes show that it is

necessary to develop a package that will preserve all the standard BDD operations necessary

to perform the corresponding fast calculation algorithms through decision diagrams,

however, with dynamically resizable terminal nodes. Being developed by appreciating and

incorporating all the standard techniques in programming decision diagrams, the specialized

decision diagram package presented in this paper can be viewed as an extension of the

classic BDD packages. However, it allows dealing with large integer terminal nodes. This

feature was achieved by incorporating in the decision diagram package the template class

“BitVector” used to define the dynamically resizable terminal nodes. The size of the node

can be specified by the user as a template parameter. To estimate features of the package, we

show, by experiments on benchmarks, that the proposed implementation allows us the

computation of the autocorrelation of multiple-output Boolean functions with a large number

of variables (over 32 variables), while the application of the decision diagram packages with

integer data type terminal nodes restricts the computation of autocorrelations to Boolean

functions with 32 or less variables.

The paper is organized as follows: The second section reviews basic properties of the

autocorrelation of Boolean functions. The third section describes SMTBDDs and a fast

calculation algorithm through SMTBDDs. The fourth section discusses computation of

the autocorrelation coefficients through SMTBDDs. Section five briefly describes how

the classic BDD packages can be extended into a specialized decision diagram package

with dynamically resizable terminal nodes. Section six illustrates, based on benchmarks,

that the proposed extension of the classical BDD packages allows the computation of the

 Efficient Calculations of the Autocorrelation of Boolean Functions with a Large Number of Variables 599

autocorrelation coefficients for Boolean functions of many variables. Furthermore, some

peculiar properties for the discussed computations are pointed out and illustrated. The

paper concludes with a discussion of possible directions for future research.

2. AUTOCORRELATION FUNCTION

The following notation is used throughout the paper. A binary n-tuple x1x2...xn,

xi  {0,1} is denoted by x and the equivalent integer value is assigned to it as:

1

x 2
n

n i

i

i

x 



 . (1)

With this notation, f (x) is an n-variable Boolean function, i.e., f (x) = f (x1x2...xn),

xi  {0,1}, x  {0…00, 0…01, …, 1…11}. An m-output Boolean function is defined as

the function f (x) = f (f0, f1, f0,..., fm1): {0,1}
n
  {0,1}

m
.

The autocorrelation function is defined as [1]:

2 1

0

() () (), {0,1,..., 2 1}

n

n

v

B u f v f v u u




    , (2)

where is the addition modulo 2, EXOR.

The autocorrelation function computes a measure of similarity between a function f

and the same function under displacement. The autocorrelation function (or transform), of

a Boolean function is an integer valued function. We assume that the Boolean functions

are represented by BDDs, while the autocorrelation functions, being integer valued, are

represented by MTBDDs. For multi-output functions the Shared BDDs (SBBDs) and

SMTBDDs are used.

It should be noticed that the maximal value of an autocorrelation coefficient can be 2
n
.

This can be a source of difficulties when computing the autocorrelation of Boolean

functions with a large number of variables and representing the autocorrelation function

by decision diagrams since representing large integers in terminal nodes is required. For

example, a Boolean function of 65 variables might have autocorrelation coefficients

whose value could be 2
65

  3.6810
19

. This problem is addressed in the paper and a

solution is proposed through decision diagrams with dynamically resizable terminal nodes

by using a particular technique of object oriented programming languages.

For multiple-output functions f = (f0, f1, f0,..., fm1) the autocorrelation functions of the

individual outputs are combined into the total autocorrelation function [1]:

  













1

0

1

0

12

0

)()()()(
m

i

m

i v

iii

n

uvfvfuBuB . (3)

 As evident from previous equations, computing the autocorrelation coefficients

requires 2
n
 operations to compute each of the 2

n
 coefficients. Therefore, the run-time and

computational resources are exponential in n.

For a function f defined by the truth-vector
TnffF)]12(,),1(),0([  , the Walsh

spectrum
Tn

ffff SSSS)]12(,),1(),0([  is defined as [22]:

600 M. RADMANOVIĆ, R. STANKOVIĆ, C. MORAGA

 FnWS f)( , (4)

where,

)1()(
1
WnW

n

i
 , (5)

where denotes the Kronecker product, and

 











11

11
)1(W , (6)

is the basic Walsh matrix.

The Walsh transform is a self-inverse transform up to the constant 2
-n

that is used as

the normalization factor when defining the Walsh transform and its inverse.

In the matrix notation, if a function f and its autocorrelation function)(uB are

represented by vectors
TnffF)]12(,),1(),0([  , and

Tn

f BBBB)]12(,),1(),0([  ,

respectively, the Wiener-Khinchin theorem is defined as [1]:

 2))()((2 FnWnWB n

f

 . (7)

The main advantage of this theorem comes from the existence of the Fast Walsh

transform (FWT) that is an algorithm to compute the Walsh spectrum with logarithmic

time complexity. Since the FWT can be performed also over decision diagrams [16], the

Wiener-Khinchin theorem can be used in computing the autocorrelation function of

Boolean functions with a large number of variables. It should be noticed that the maximal

value of an autocorrelation coefficient, when using the Wiener-Khinchin theorem, before

multiplication with 2
-2n

 could be 2
2n

. For example, a function of 65 variables might produce the

value 39130 1036.12  . Again we see the problem of large integers that should be represented

in terminal nodes of decision diagrams.

3. SMTBDDS AND A FAST CALCULATION ALGORITHM THROUGH SMTBDD

A BDD is a data structure convenient to represent a Boolean functions of many

variables. Due to that, BDDs have become widely used for a variety of CAD applications,

for example in [23-24], including symbolic simulation, verification, reliability analysis of

combinational and sequential circuits.

An MTBDD is a generalization of a BDD, derived by allowing terminal nodes that

show integer values [25]. A comprehensive set of arithmetic operations can be realized

efficiently on MTBDDs, such as addition, subtraction, and multiplication, as well as logic

operations. They are implemented by recursive algorithms and executed in time almost

linear in the graph size [16]. Multiple-output integer-valued functions are represented by

SMTBDDs, having a separate root node for the each output [22]. The Walsh spectrum of

a Boolean function (if the scaling factor 2
-n

 is assigned to the inverse transform) is an

integer-valued function and can be represented by an MTBDD.

Example 1: Fig. 1 shows the SMTBDD for the Walsh spectra of the functions

1 1 2 3 1 2 3(, ,)f x x x x x x  and 2 1 2 3 1 2 2 3(, ,)f x x x x x x x  . The Walsh spectrum of the function

f1 is Sf 1 = [5,1,1,1,3,1, 1,1]
T
 and that of the function f2 is Sf 2 = [3,1,3,1,1,1,1,1]

T
. It

 Efficient Calculations of the Autocorrelation of Boolean Functions with a Large Number of Variables 601

should be observed that the MTBDD for Sf 1
 is compact since there are two constant

subvectors of two consecutive 1 in the Walsh spectrum of f1. It is obvious that this

SMTBDD is much smaller than two MTBDDs for the functions f1 and f2 in the number of

nodes since there are shared values of the Walsh coefficients of f1 and f2.

Fig. 1 SMTBDD for the Walsh spectra for the functions in Example 1

The algorithm, we refer to as the fast calculation algorithm for the Walsh transform

[1] through an SMTBDD, is based on the fast algorithms for spectral transforms through

BDDs. Several variants of BDD based calculation algorithms for Walsh transform as well as

extensions of the BDD calculation methods to other transforms for the Boolean functions are

considered in [19], [22], [25], [26], and elsewhere. The algorithm is based upon the

factorization of transform matrices as used in the development of the Fast Fourier transform

(FFT). Butterfly operations are implemented in terms of graph addition and subtraction

operations resulting in a technique that is implemented through the use of graph

manipulations only. This method takes advantage of the compactness inherent in MTBDDs

and can be more effective for Boolean function transformations than traditional approaches.

Example 2: The fast calculation algorithm for the Walsh spectrum through an MTBDD

of the function 1 2 3 1 2 3(, ,)f x x x x x x  with Walsh spectrum Sf = [5,1,1,1,3,1, 1,1]
T
 is

shown in Fig. 2. An MTBDT (Multi-Terminal Binary Decision Tree) can be reduced into

an MTBDD. The subtrees may be shared and the redundant information (nodes) deleted

from the MTBDT. The impact of the deleted nodes can be represented by the cross-points

defined as points where an edge crosses a level in the MTBDD [26]. In this introductory

example, all cross-points or "hidden" nodes must be considered as explicitly present to

apply the local Walsh transform. The Walsh transform algorithm is bottom up. The

transform of the level corresponding to the variable x3 has as effect, that for each node

and cross-point, it replaces the subtree connected to a node with a 0-labeled edge, by the

sum of the values of both subtrees of that node (which in this case are leaves) and the

subtree connected to the same node with a 1-labeled edge, by the difference. The same

procedure is applied step by step to nodes and cross-points in higher levels of the

MTBDD. Computation of Walsh transform through an MTBDD by applying the traversal

in a bottom-up manner is denoted as bolded nodes and cross-points.

602 M. RADMANOVIĆ, R. STANKOVIĆ, C. MORAGA

Fig. 2 Fast calculation algorithm for the Walsh spectrum of the function f in Example 2

through an MTBDD

This technique can be used for any transformation that has a Kronecker product based

transformation matrix and can be extended to SMTBDDs [26].

4. AUTOCORRELATION THROUGH AN SMTBDD BY USING THE WIENER-KINCHIN THEOREM

The computation of the Walsh spectrum can be performed through the flow-graph

describing the Fast Walsh transform (FWT).

Example 3: Computing the autocorrelation coefficients using the Wiener-Khinchin

theorem as specified in Eq. (7) through the Fast Walsh transform for the function

1 2 3 1 2 3(, ,)f x x x x x x  is shown in Fig. 3. Step 1 is dedicated to calculate the Walsh

spectrum Sf = [5,1,1,1,3,1, 1,1]
T

from the truth-vector of the function f. In the final

step, the autocorrelation spectrum is multiplied by the normalization factor 1/8. Notice

that normalizing after the computation of the Walsh transform allows us the use of the

integer arithmetic in the whole process, even though at the price of accepting 2
2n

 as the

upper boundary. Moving ahead the normalizing factor, would allow an upper bound of 2
n
,

but would require working with rational numbers and a complex floating point implementation.

This is why the integer arithmetic version was adopted for the present work.

The Wiener-Khinchin theorem and the Walsh spectrum computation through an

MTBDD [13] leads to the following algorithm for the computation of the autocorrelation

over SMTBDDs.

Fig. 3 Computing the autocorrelation for the function in Example 3

 Efficient Calculations of the Autocorrelation of Boolean Functions with a Large Number of Variables 603

Algorithm 1. Autocorrelation spectrum through an SMTBDD

Let)(fSMTBDD be the representation of multi-output function f. Suppose that

function can be efficiently represented by SMTBDD.

1) Update the size of SMTBDD terminal node according with the maximal value of an

autocorrelation coefficient.

2) Conversion of the)(fSMTBDD into an)(fSSMTBDD , where fS denotes the Walsh

spectra of the function f.

3) Multiplication of the)(fSSMTBDD by itself using the standard procedure for

multiplication of functions represented by BDDs (see, e.g., [2]).

4) Conversion of the resulting)(2

fSSMTBDD into a new)2(f

n BSMTBDD .

5) Normalization with 2
-n

, since the Walsh matrix is self-inverse up to the constant 2
n
,

where n is the number of variables in the function f.

Example 4: Computing the autocorrelation coefficients using the Wiener-Khinchin

theorem and the FWT through an SMTBDD for the functions 1 1 2 3 1 2 3(, ,)f x x x x x x 

and 2 1 2 3 1 2 2 3(, ,)f x x x x x x x  is shown in Fig. 4. It is fairly obvious that the number of

"butterflies" and multiplication operations in this SMTBDD is smaller than the number of

operations in two MTBDDs for the functions 1f and 2f , since there are shared subtrees in

the MTBDD for the functions 1f and 2f .

5. THE BDD PACKAGE WITH DYNAMICALLY RESIZABLE TERMINAL NODES

5.1. Motivation

Decision diagrams are a standard part of many CAD-CAM systems since they permit

compact representations of large Boolean functions and efficient manipulations and

calculations with them.

There are several code packages and development environments using BDDs and their

various generalizations and extensions, as the main data structure. These decision diagram

packages are built in various programming languages, especially in C, C++, and Java.

Basic principles in programming decision diagrams are set in [17] and then further

elaborated by many authors, e.g., [11, 18, 21, 22, 27, 28], and references therein. Most

packages appreciate these fundamental principles and share common features, however, a

specification and suitable modification of the basic decision diagram packages is usually

required to meet demands in particular concrete applications. The same is true when

decision diagrams are used to compute the autocorrelation of Boolean functions. In this

case, a particular problem is the requirement to deal with large integers.

It should be noticed that the maximal value of a terminal node, when performing the

Wiener-Khinchin theorem and the FWT through an SMTBDD, before multiplication with

2
-n

 could be 2
2n

, where n is the number of variables in the function. Therefore, if the

computation of the autocorrelation coefficients is performed through the SMTBDD, the

usability of classical BDD packages which have 32-bits or 64-bits integer terminal nodes

604 M. RADMANOVIĆ, R. STANKOVIĆ, C. MORAGA

is necessary limited to relatively moderate size Boolean functions (with 16 or 32 variables

respectively). With this motivation, in this paper, we propose an extension of the classical

BDD packages, with dynamically resizable terminal nodes, that allows computation of the

autocorrelation for large Boolean functions. The idea comes from the consideration in

[29] where decision diagrams with terminal nodes replaced by vectors are discussed.

These vectors can be viewed as binary representations of large integers. In computing the

autocorrelation, it is convenient to have flexibility in determining the size of the binary

vectors corresponding to the binary representations of integers. This consideration leads

to decision diagrams with dynamically resizable terminal nodes. We however appreciate

and preserved all other basic recommendations in programming decision diagrams, as for

instance implementation of the unique table, compute table, garbage collection, etc., and

implemented them as in many other decision diagram packages. Therefore, a description

of these features is omitted. Instead we refer to basic principles in programming decision

diagrams, and focus on the modifications that we did in implementation of terminal

nodes. Some other implementation details are briefly presented in Sect. 5.3 discussing

computation of the autocorrelation functions.

5.2. Implementation of dynamically resizable terminal nodes

The class diagram for the static structure of nodes implementation for the BDD package

with dynamically resizable nodes is shown in Fig. 5.

Fig. 4 Computing the autocorrelation for the multiple-output function in Example 4

 Efficient Calculations of the Autocorrelation of Boolean Functions with a Large Number of Variables 605

Fig. 5 BDD node implementation for the BDD package with dynamically resizable nodes

The class "Node" is used as basic class to represent a non-terminal or a terminal node. It is

an object-oriented class that contains the attributes: "level", "next", and "reference counter".

The "level" denotes a variable that labels the node and it uses the integer data type. The "next"

pointer links nodes together that belong to the same level. The visited flag for a BDD traversal

can be stored as the least significant bit of the "next" pointer. The "reference counter" is

implemented for garbage collection of nodes and it uses the integer data type [17]. A non-

terminal node is a class, derived from the class "Node", and contains the attributes: "then" and

"else" children pointers. A terminal node is also a class, derived from the class "Node", and

contains the attribute "value", which stores the constant value of the terminal node.

Object oriented languages allow us the definition of a template class to represent a class

member of any possible datatype (including a user-defined datatype). In order to implement

dynamically resizable terminal nodes, the "TerminalNode" class is implemented as a template

class. The attribute "value" uses a template data type and can be of any possible datatype. The

main program declares the used type of the attribute "value". This implementation for the

attribute "value" allows a user-defined implementation of a class that supports work with large

integers, where the length of large integers can be preset with a parameter.

5.3. Computation of the autocorrelation through SMTBDDs

with dynamically resizable terminal nodes

To compute the autocorrelation coefficients of a large Boolean function in the case of

restricted memory resources, we developed a BDD package with dynamically resizable

nodes. The computation procedure is implemented in C++. The unique table and the

operation table are implemented as a hash tables with collision chains [17]. The hash key is

composed of the memory position of the node and its successors. Since this implementation

uses the Walsh transformation over the BDD package, currently available techniques require

the usage of the field "level" in the node implementation. For this reason, the unique table is

not divided into subtables as proposed in [20]. Since this implementation uses BDD operations

that require operations for user-defined types, the BDD operations are implemented as

templates of overloaded operator functions.

For a user-defined implementation of the class that supports work with large integers, we

developed the template class "BitVector<size>", where the size of the binary vector (large

integer) can be preset with the template parameter “size”. Since this implementation uses

BDD operations that require operations for the binary vectors, the class "BitVector" must

support overloaded operator functions for assignments, relational, and arithmetic operators.

606 M. RADMANOVIĆ, R. STANKOVIĆ, C. MORAGA

The implementation of the class "BitVector" uses standard programming technique for data

structures.

Example 5: The implementation of the update of the size of SMTBDD terminal node

where the maximal value of an terminal node can be 2
128

 (expressed in C++) uses the

following two lines of code:

bdd_manager<BitVector<128>> manager;

smtbdd<BitVector<128>> bdd(manager);

In terms of BDD package implementation, it is common to use class “bdd_manager”

for initialization of the BDD package. After this initialization a “bdd” object must be defined

that handles the SMTBDD.

6. EXPERIMENTAL RESULTS

The autocorrelation computation was tested on a set of large benchmarks [30] on a PC

Pentium IV running at 2,66 GHz with 4 GB of RAM. The size of the unique table and the

operation table was limited to 262139 entries. The garbage collection was activated when

available memory runs low. Computation run-time statistics of the BDD-based method

includes the creation of the SMTBDDs. All benchmarks were used in the Espresso-mv or

pla format [31].

Table 1 gives the experimental results of the computation run-time and the terminal

node size of the autocorrelation computation through an SMTBDD with dynamically

resizable terminal. All times are given in seconds. The fifth column shows the number of bits

required to represent values of terminal nodes. It can be seen as an experimental justification

of the necessity for the extension of the BDD package that is presented in this paper.

Table 1 Statistics of the computation run-time and the terminal node size of the

autocorrelation computation through an SMTBDD with dynamically resizable

terminal nodes

Benchmark Inputs Outputs Cubes Terminal size [bits] Computation time [s]

b4 33 23 54 96 1.28

in3 35 29 75 96 1718.38

jbp 36 57 166 96 0.88

signet 39 8 124 96 --

apex2 39 3 1035 96 --

seq 41 35 336 96 --

apex1 45 45 206 96 --

ti 47 72 271 96 33.18

ibm 48 17 173 128 113.27

apex3 54 50 280 128 --

misg 56 23 75 128 0.28

e64 65 65 65 160 0.49

x7dn 66 15 622 160 16035.81

x2dn 82 56 112 192 0.59

soar 83 94 529 192 7.52

mish 94 43 91 192 0.65

apex5 117 88 1227 256 32.96

ex4p 128 28 620 288 360.26

o64 130 1 65 288 --

 Efficient Calculations of the Autocorrelation of Boolean Functions with a Large Number of Variables 607

In the case of computing the autocorrelation coefficients for benchmarks with 30 or

more variables using the Wiener-Khinchin theorem as specified in Eq. (7) through the

Fast Walsh transform the computation failed, due to the memory limitations of 4GB for

storing Walsh and the autocorrelation spectrum. Moreover, currently available BDD based

techniques are limited to benchmarks of less than 32 variables. Therefore, experimental results

are not compared with results using other approaches.

Table 2 gives the experimental results of space statistics. All results are given in

number of nodes. Table entries with dashes indicate that the method failed to complete for

that particular benchmark because of running out of memory.

Table 2 Space statistics of the autocorrelation computation through an SMTBDD

with dynamically resizable terminal nodes

Benchmark

SMTBDD (f)

size

SMTBDD (Sf)

size

SMTBDD (Sf2)

size

SMTBDD (Bf)

size

[Non-terminal nodes / Terminal nodes]

b4 512 / 2 5923 / 277 3831 / 156 1842 / 158

in3 377 / 2 13874 / 538 9563 / 335 7496 / 1618

jbp 550 / 2 6813 / 260 4290 / 157 1501 / 211

signet 2956 / 2 -- -- --

apex2 7102 / 2 -- -- --

seq 142321 / 2 44743 / 3993 24093 / 2013 --

apex1 28414 / 2 77535 / 3191 55024 / 2193 --

ti 6187 / 2 16437 / 950 8782 / 493 49947 / 2091

ibm 835 / 2 40264 / 517 23680 / 311 5085 / 1078

apex3 -- -- -- --

misg 107 / 2 2994 / 120 1748 / 72 377 / 73

e64 1446 / 2 3039 / 99 1610 / 50 1686 / 39

x7dn 863 / 2 73602 / 1046 53813 / 761 32217 / 6280

x2dn 223 / 2 5541 / 116 3283 / 68 657 / 107

soar 995 / 2 35346 / 465 16116 / 254 2584 / 453

mish 131 / 2 5595 / 99 3832 / 64 142 / 65

apex5 2705 / 2 73230 / 238 29499 / 122 4645 / 158

ex4p 1301 / 2 133953 / 1095 56278 / 621 4621 / 1149

o64 -- -- -- --

7. CONCLUSIONS AND FUTURE WORK

The complexity of methods for computing the autocorrelation is exponential in the

number of variables of the function. The method presented in this paper is based on SMTBDD

representations of the functions. Besides allowing the processing of multi-output Boolean

functions of a large number of variables with a restricted memory, the SMTBDD offers a

considerable flexibility in calculations of user defined subsets of particular autocorrelation

coefficients. The computation is performed in the spectral domain by exploiting the Wiener-

Khinchin theorem and the fast calculation algorithm through an SMTBDD. This computation,

for large Boolean functions, requires calculations with large integers. For this reason, the

usability of classical BDD packages is necessarily limited to relatively moderate size Boolean

functions. With this motivation, we propose an extension of the classical BDD packages with

608 M. RADMANOVIĆ, R. STANKOVIĆ, C. MORAGA

dynamically resizable terminal nodes that allows us the computation of the autocorrelation for

large Boolean functions. An experimental verification confirms that the proposed

implementation allows us the computation of the autocorrelation of large Boolean functions. In

a few cases the computation failed, due to the memory limitations caused by the size of the

SMTBDD to represent either the function, its Walsh spectrum, or the autocorrelation spectrum.

Thus, the main concept presented in the paper is achieved. However, additional work

towards further optimization of the implementation in terms of memory and time requirements

is advisable. The implementation can be easily modified for the computation of the

convolution, the correlation, and related mathematical operators. This concept can be

successfully applied to the computation of other spectral transformations for large Boolean

functions. The proposed BDD package can be used in other applications where dealing

with functions having large integer values is required.

Acknowledgement: The authors are very grateful to the reviewers for their constructive comments

which significantly improved the contents and the presentation of the paper.

REFERENCES

[1] M. G. Karpovsky, Finite Orthogonal Series in the Design of Digital Devices, New York: Wiley, 1976.

[2] M. G. Karpovsky, R. S. Stanković, and J. T. Astola, "Spectral Techniques for Design and Testing of

Computer Hardware", In Proceedings of the 1st Int. Workshop on Spectral Techniques and Logical

Design for Future Digital Systems, pp. 9-43, 2000.

[3] J. E. Rice, and J. C. Muzio, "On the Use of Autocorrelation Coefficients in the Identification of Three-

level Decompositions", In Proceedings of the IEEE/ACM Int. Workshop on Logic Synthesis, pp. 187-

191, 2003.

[4] O. Keren, I. Levin, and R. S. Stanković, "Linearization of Logical Functions Defined by a Set of

Orthogonal Terms - Theoretical Aspects", Automation and Remote Control, vol. 72, no. 3, pp. 615-625, 2011.

[5] O. Keren, and I. Levin, "Linearization of Multi-Output Logic Functions by Ordering of the

Autocorrelation Values", Facta Universitatis Series: Electronics and Energetics, vol. 20, no. 3, pp. 479-

498, Dec. 2007.

[6] J. E. Rice, M. Serra, and J. C. Muzio, "The Use of Autocorrelation Coefficient for Variable Ordering for

ROBDDs", In Proceedings of the Int. Workshop on Applications of Reed-Muller Expansion in Circuit

Design, pp.185-196, 1999.

[7] M. G. Karpovsky, R. S. Stanković, and J. T. Astola, "Reduction of Sizes of Decision Diagrams by

Autocorrelation Functions", IEEE Trans. on Computers, vol. 52, no. 5, pp. 592-606, 2003.

[8] O. Keren, "Reduction of Average Path Length in Binary Decision Diagrams by Spectral Methods", IEEE

Trans. on Computers, vol. 57, no. 4, pp. 520-531, 2008.

[9] O. Keren, I. Levin, and R. S. Stanković, "Determining the Number of Paths in Decision Diagrams by

Using Autocorrelation Coefficients", IEEE Trans. on CAD of Integrated Circuits and Systems, vol. 30,

no. 1, pp. 31-44, 2011.

[10] M. G. Karpovsky, and E. S. Moskalev, "Utilization of Autocorrelation Functions for Realization of

Systems of Logical Functions", Automation and Remote Control, vol. 31, no. 2, pp. 243-250, 1970.

[11] R. Ebendt, G. Fey, and R. Drechsler, Advanced BDD Optimization, Netherlands: Springer, 2005.

[12] J. E. Rice, and J. C. Muzio, "Methods for Calculating Autocorrelation Coefficients", In Proceedings of

the 4th Workshop on Boolean Problems, pp. 69-76, 2000.

[13] M. Radmanović, R. Stanković, and C. Moraga, "Analysis of Decision Diagram based Methods for the

Calculation of the Dyadic Autocorrelation", Int. Journal of Systemics, Cybernetics and Informatics,

pp.11-19, July 2007.

[14] R. S. Stanković, M. Bhattacharaya, and J. T. Astola, "Calculation of Dyadic Autocorrelation Through

Decision Diagrams", In Proceedings of the European Conf. Circuit Theory and Design (ECCTD’01), pp.

28-31, 2001.

 Efficient Calculations of the Autocorrelation of Boolean Functions with a Large Number of Variables 609

[15] G. Janssen, "A Consumer Report on BDD Packages", In Proceedings of the 16th Symposium on

Integrated Circuits and Systems Design, pp. 217-223, 2003.

[16] E. M. Clarke, K. L. McMillan, X. Zhao, and M. Fujita, "Spectral Transforms for Extremely Large

Boolean Functions", In Proceedings of the IFIP WG 10.5 Workshop on Applications of the Reed-Muller

Expression in Circuit Design, pp. 86-90, 1993.

[17] K. S. Brace, R. L. Rudell, and R. E. Bryant, "Efficient Implementation of a BDD Package", In

Proceedings of the 27th Design Automation Conf., pp. 40-45, 1990.

[18] G. Janssen, "Design of a Pointerless BDD Package", In Proceedings of the 10th Int. Workshop on Logic

and Synthesis, pp. 310-315, 2001.

[19] M. Thornton, and R. Drechsler, "Spectral Decision Diagrams Using Graph Transformations", In

Proceedings of the Design, Automation and Test in Europe Conf. and Exhibition, pp. 713-717, 2001.

[20] F. Somenzi, "Efficient Manipulation of Decision Diagram", Int. Journal on Software Tools for

Technology Transfer, vol. 3, no. 2, pp. 171-181, 2001.

[21] S. N. Yanushkevich, D. M. Miller, V. P. Shmerko, and R. S. Stanković, Decision Diagram Techniques

for Micro- and Nanoelectronic Design Handbook, CRC Press, 2006.

[22] T. Sasao, and M. Fujita, Representations of Discrete Functions, Boston: Kluwer Academic Publishers, 1996.

[23] P. Dziurzanskii, V. P. Shmerko, and S. N. Yanushkevich, "Representation of Logical Circuits by Linear

Decision Diagrams with Extension to Nanostructures", Automation and Remote Control, vol. 65, no. 6,

pp. 920-937, 2004.

[24] D. Grobe and R. Drechsler, "BDD-based Verification of Scalable Designs", Facta Universitatis Series:

Electronics and Energetics, vol. 20, no. 3, pp. 367-379, Dec. 2007.

[25] E. M. Clarke, M. Fujita, P. C. McGeer, K. McMillan, J. C. Yang, and X. Zhao, "Multi-Terminal Binary

Decision Diagrams: An Efficient Data Structure For Matrix Representation", In Proceedings of the Int.

Workshop on Logic Synthesis, vol. 6a, pp. 1-15, 1993.

[26] R. S. Stanković, and B. Falkowski, "Spectral Transform Calculation through Decision Diagrams", VLSI

Design, vol. C-14, no.1, pp. 5-12, 2002.

[27] G. D. Hachtel, and F. Somenzi, Logic Synthesis and Verification Algorithms, Norwell: Kluwer

Academic Publishers, 1996.

[28] J. V. Sanghavi, R. K. Ranjan, R. K., Brayton, and A. Sangiovanni-Vincentelli, "High Performance BDD

Package By Exploiting Memory Hierarchy", In Proceedings of the 33rd IEEE/ACM Design Automation

Conference (DAC’96), pp. 635-640, 1996.

[29] H. Hasan Babu, and T. Sasao, "Shared Multi-Terminal Binary Decision Diagrams for Multiple-Output

Functions", IEICE Trans. on Fundamentals, vol. E81-A, no. 12, pp. 2545-2553, 1998.

[30] F. Brglez, "The benchmark archives at CBL - ACM/SIGDA benchmarks", Nort Carolina State

University, 2011, http://www.cbl.ncsu.edu/benchmarks.

[31] R. Rudell, Espresso Misc. Reference Manual Pages, Berkeley University of California, 1993.

