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Abstract. In this paper a detailed analysis of an atypical filter structure in MATLAB 

Filter Design and Analysis (FDA) Tool is presented. As an example of atypical filter 

structure, the IIR half-band filter with approximately linear phase realized as a parallel 

connection of two all-pass branches was examined. We compare two types of those 

filters obtained by two different design algorithms. FDA tool was used for the 

experiment because different effects of the fixed point implementation can be simulated 

easily. One of the goals of this paper was to compare results obtained by two different 

design algorithms. In addition, different realizations of the filter structure based on the 

parallel connection of two all-pass branches were examined. 
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1. INTRODUCTION 

The Digital filter design process consists of several steps. After the design itself, a 

very important step is the analysis of different aspects of filter implementation. If the 

filter is to be implemented in a fixed-point arithmetic, the quantization effects should be 

carefully examined [1]. This can be done by theoretical investigation, for example, by 

sensitivity analysis [2] and detailed round-off noise study. It is not always possible to 

calculate closed-form expressions for all transfer functions that are needed for the exact 

derivation of the sensitivity functions. For the digital filters, it is common practice to use 

numerical simulation of the quantization effects [3]. For that purpose, simulation model 

of specific target platform can be developed, or alternatively commercially available tools 

can be used. The first solution is time consuming and requires good knowledge of the 

fixed-point arithmetic and all the parameters of the target platform. For example, if the 

target platform is a DSP processor, it is not enough to take care of the word-length of the 

processor. Usually, it is necessary to fully understand the structure of the integrated 

multiplier. In the second approach, when a commercially available tool is used, analysis 

                                                           
Received December 3, 2014; received in revised form June 15, 2015 

Corresponding author: Jelena D. Ćertić 
School of Electrical Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, 11020 Belgrade, Serbia 

(e-mail: certic@etf.bg.ac.rs) 
 An earlier version of this manuscript received the Best Section Paper Award (Electric circuits and systems and 

signal processing section) at the 58th ETRAN Conference, Vrnjačka Banja, 2-5 June, 2014. [5]. 



612 A. RADONJIĆ, J. ĆERTIĆ 

time can be decreased. Analysis tools contain sets of typical values for relevant 

parameters of the proposed design. Drawback of this method is that commercially 

available analysis tools do not have the procedures for all possible cases. It means that in 

the case of a typical filter design, an analysis tool probably would be of no help. In this 

paper we analyze IIR half-band approximately linear phase filter by means of the 

commercial analysis tool. We use MATLAB Filter Design and Analysis (FDA) Tool [4] 

because it simulates quantization effects in a way that is suitable for the fixed-point 

implementation. We compare results obtained for filters designed by two different 

algorithms. Filter is realized as a parallel connection of two all-pass branches [1, 2]. 

Although parallel connection of two all-pass branches is a common choice for 

implementation of the low-pass/high-pass odd-order IIR filters [1, 2], it is not fully 

supported in MATLAB Filter Design and Analysis Tool [4, 5]. We define a procedure that 

can be used for the analysis by MATLAB FDA Tool of a specific filter structure, IIR 

half-band filter with approximately linear phase. 

This paper is organized as follows: in section 2 performances of MATLAB FDA Tool 

relevant for the fixed-point implementation are presented; in section 3 the IIR half-band 

approximately linear phase filters are discussed; in section 4 possible realization 

structures are defined, in section 5 results of the analysis are presented, and section 6 

concludes the paper. 

2. MATLAB FDA TOOL 

In recent years, the new versions of MATLAB are available twice a year [6]. 

Typically, each new version has some new features regarding filter design and analysis. 

Filter Design and Analysis (FDA) Tool is part of the signal processing toolbox [4]. By 

using the FDA Tool, different filter structures can be designed and analyzed in a rapid 

way, because the FDA Tool itself contains algorithms for the design of different filter 

types and the large set of analysis procedures. However, sometimes it seems that new 

features are not introduced in this tool fast enough. 

For the scope of our project, part of the FDA tool related to the simulation of the 

quantization effects is important. It should be noted that the simulation of the 

quantization requires an additional (fixed point) toolbox. 

 

Fig. 1 FDA Tool - setting simulation parameters of the multiplier 
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For the supported filter types, FDA simulation of the quantization is a powerful tool 

that allows the user to verify robustness of the filter structure to different effects of the 

quantization process. The user can define word-length parameter for the input signal and 

output signal and filter coefficients. In addition, the number of bits associated to the 

fractional part of the data (input signal, output signal and filter coefficients) can be set. 

Multiplier/accumulator structure can be simulated by defining values for relevant 

parameters, Fig. 1. The user can enter data through the GUI or choose a set of predefined 

values. 

The predefined values usually correspond to “best possible” scenario that is not 

always possible to obtain in “real world” situations, but can be useful for the users 

inexperience in fixed-point applications. 

3. HALF-BAND APPROXIMATELY LINEAR PHASE IIR FILTERS 

An odd order IIR filter (or filter pair) can be implemented as a parallel connection of 

two all-pass branches A0(z) and A1(z), Fig. 2. The transfer functions of the low-pass filter, 

HLP(z), and of the high-pass filter HHP(z) are obtained as: 
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where N is the filter order, an odd number, and the constants ali, l=1, 2, 3, …, (N+1)/2, 

i = 1, 2 are first and second order sections coefficients [2]. It should be noted that for the 

overall filter HLP(z) of order N (an odd number), the order of the all-pass branch A0(z) is 

an even number N0 and the order of the all-pass branch A1(z) is an odd number N1. 

Frequency response of the parallel connection of the low-pass filter is: 
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where φ0(ω) and φ1(ω) are phase responses of the functions A0(z) and A1(z). 
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Fig. 2 IIR odd order filter realization as a parallel connection of two all-pass filters 

From (3) it can be concluded that the overall magnitude response depends on the 

difference of the phase responses of the all-pass functions. The overall phase response of 

the filter HLP(z) is a mean-value of the phase responses of the all-pass branches. 

Comparing to the classical implementation structures of the IIR filters that are based 

on the cascaded or parallel connections of the first and second order sections, realization 

based on the parallel connection of the two all-pass branches has reduced sensitivity in 

the pass-band [2, 7]. For that reason, it is usually a preferable choice for the 

implementation structure in the case of fixed-point implementation [2]. On the other 

hand, filter structure based on the parallel connection of the two all-pass branches suffers 

from the high stop-band sensitivity [2, 7]. In the case when high stop-band attenuation is 

required, quantization effects can degrade the filter frequency response [2]. 

In the special case of the half-band filter with approximately linear phase, the all-pass 

branch A1(z) is a pure delay z
N1 , and the all-pass branch A0(z) is an all-pass function with 

approximately linear phase. In that special case, the filter order of the all-pass branch 

A0(z) is an even number N0 = N1 + 1. In addition, every second coefficient of the function 

A0(z) is zero-valued: 

 0 ( )A z   (4) 

Half-band filter with approximately linear phase is a special case of the IIR filter 

realization based on the parallel connection of the two all-pass branches. For that reason, 

the sensitivity of the filter is low in the pass-band and high in the stop band.  

Design of the half-band IIR filter with approximately linear phase is performed by 

design of the all-pass branch A0(z), approximately linear phase all-pass function. In this 

paper, we use filter transfer functions obtained by two different algorithms, one based on 

the optimization method [8] and the other based on the direct positioning in the z domain 

of the stop-band zeros of the low-pass filter transfer function [9, 10]. 

The first solution, originally presented in [8], design all-pass approximately linear 

phase transfer function A0(z) by optimization procedure. As an outcome, overall 

magnitude response of the half-band IIR filter HLP(z) is equiripple. Results obtained by 

design [8] for the filter of order N = 23 (N0 = 12, N1 = 11) are presented. The filter gain is 

shown in Fig. 3 and the group delay of the filter in Fig. 4. It should be noted that the pass-

band group delay is approximately N1 samples. 
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Fig. 3 Gain response of the filter designed by optimization algorithm [8] 

 

Fig. 4 Group delay of the filter designed by optimization algorithm [8] 

The second approach, presented in [9] and [10], actually controls the positions of 

stop-band zeros of the overall half-band filter. In the case of the low-pass filter design, 

sometimes it is important to provide additional signal attenuation for certain frequencies 

on the stop-band. It can be achieved by the exact control of stop-band zeros positions. By 

placing a stop-band zeros exactly on the unit circle, large attenuation of the 

corresponding frequency range can be achieved. In the design approach presented in [9, 

10] it is possible to control the stop-band frequencies for which an infinitely large 

attenuation is needed. It was shown in [9, 10] that the stop-band zeros of the low-pass 

half-band IIR filter are roots of the polynomial function 

  (5) 

where are: N is overall filter order, a2k are coefficients of the non-trivial all-pass branch 

(order of the non-trivial all-pass branch is N0 = (N + 1)/2), w=sin(ω) and U4k-2(w) is the 

Chebyshev polynomial of the second kind. There are (N + 1)/4 low-pass half-band IIR 

filter stop-band zeros lying on the unit circle. If the stop-band zeros are defined according 

to the filter specifications and all-pass filter coefficients are unknown, then (5) can be 

transformed into the system of linear equations (one equation for each zero). Values of 

(N + 1)/4 all-pass branch coefficients are calculated by solving system of linear equations. 
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Results obtained by the second approach of the design are presented for the same 

filter order and overall characteristics similar to characteristics obtained by the first 

approach case. The filter gain is shown in Fig. 5 and the group delay of the filter in 

Fig. 6. 

 

Fig. 5 Gain response of the filter designed by zero positioning algorithm [9, 10] 

 

Fig. 6 Group delay of the filter designed by zero positioning algorithm [9, 10] 

It should be noted that both filters share the same realization structure, Fig. 1. 

Therefore, for the filter analysis of both structures it is essential to analyze nontrivial all-

pass branch of the filter A0(z). 

4. IMPLEMENTATION OF THE HALF-BAND APPROXIMATELY LINEAR PHASE IIR FILTERS 

The goal was to develop a procedure for the detailed analysis of the filter structure 

presented in Fig. 1 in the case of the fixed-point realization. The objective was to compare 

half-band IIR filters with approximately linear phase obtained by two different algorithms and 

to select for each of the two filter types, a filter realization that is most suitable for the case of 

fixed point implementation platform. Three different implementations of the all-pass branch 

were analyzed, direct realization, cascaded connection of the second order sections and 

cascaded connection of the fourth sections. 
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Since the filter HLP(z) is a half-band filter, poles of the transfer function A0(z) are 

symmetric about the imaginary axis. Poles and zeros of A0(z) occur in conjugate 

reciprocal pairs. All-pass filter A0(z) is of order N0 = 4l + 2 or N0 = 4l + 4. In the 4l + 2 

case, all-pass filter A0(z) has two poles on the imaginary axis and l quadruplets of poles, 

Fig. 7a. In the 4l + 4 case, there is additional pair of poles placed on the real axis, Fig 7b. 

All-pass branch A0(z) can be implemented as a direct structure of order N0, or as a 

cascaded connection of lower order sections. However, because HLP(z) is the half-band 

filter, symmetric poles and corresponding zeros can be grouped into the forth order 

sections. As a result, transfer function A0(z) can be implemented as a cascaded connection 

of one (for N0 = 4l + 2) or two (for N0 = 4l + 4) second order section(s) and l fourth order 

sections. 

 

Fig. 7 Poles (x) and zeros (o) of the all-pass transfer function A0(z), 

a) filter order is N0 = 4l + 2, b) filter order is N0 = 4l + 4 

Each quadruplet of poles with corresponding zeros form a single forth order all-pass 

section. Since HLP(z) is a half-band filter, the forth order section is of the form: 

 ( )mA z  (6) 

The fourth order section Am(z) can be realized with only two multiplications [1, 4]. 

If the filter is realized as a connection of the second order sections, structure of each 

section (apart from the sections that correspond to the real axis and imaginary axis poles) is: 

 ( )mA z  (7) 

It should be noted that , thus minimum number of multiplications is two [1, 4]. 

Two imaginary axis pair of poles (and a pair of two real poles for N0 = 4l + 4) form a 
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 , ( )I RA z  (8) 

Both sections can be implemented with a single multiplication. 

 

Each section (second or fourth or N0-th order) can be realized as a direct form (direct 

form I), direct canonical form (direct form II), transposed direct form (transposed direct 

form I) or transposed direct canonic form (transposed direct form II). Alternatively, 

scheme with reduced number of multiplications [1, 4], Fig. 8 can be used. For the all-pass 

filter of order N0, the minimum number of multipliers is N0. Since the filter HLP(z) is a 

half-band filter, every second coefficient of the all-pass branch is zero. Therefore, the 

number of multipliers is reduced to N0/2. Forth order section (6) can be realized with only 

two multipliers am4 = a4 and am2 = a2. Second order section given by (8) can be 

implemented with only one multiplier aI,R2 = a1. 
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Fig. 8 All-pass filter structure with minimum number of multiplications (N0=4) 

5. ANALYSIS OF THE HALF-BAND APPROXIMATELY LINEAR PHASE IIR FILTERS 

The structure presented in Fig. 1 (parallel connection of two all-pass branches) should 

be considered as a “classic” structure (along with cascaded and parallel realizations) but 

MATLAB FDA Tool does not have direct support for this type of the design. It means 

that a FDA Tool can’t be used for the design of the filter. Instead, the filter should be 

designed in MATLAB and imported into the FDA Tool. It can be done if the filter is 

constructed as an object, because MATLAB FDA Tool can import the filter object from 

the currently active workspace. For that reason, the filters were designed in the 

conventional way and obtained the coefficients of the denominator of the non-trivial all-

pass branch A0(z). For both algorithms, three filter objects were constructed, one for the 

direct implementation, one for the cascaded connection of the second order sections and 

last for the realization with second and forth order sections. Unfortunately, it is not 

possible to perform quantization analysis by using the FDA Tool for the cascaded or 
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parallel structures that were not designed in FDA Tool. This means that the user has to 

set filter object properties in MATLAB. Example filter is a parallel connection of an all-

pass branch of order N0 = 12 and a pure delay of N1 = 11 samples. The filter A0(z) can be 

implemented as a direct structure, cascaded connection of 12 second order sections or as 

a cascaded connection of two second order sections and 5 fourth order sections. 

The filter A0(z) was defined as the all-pass filter, assuming realization based on Fig. 8 

with minimum number of multipliers [1, 4]. There is another benefit of the all-pass filter 

implementation with reduced number of multiplications. When the all-pass filter is 

implemented as in Fig. 8, the last coefficient of the numerator polynomial remains 

exactly one. For all other implementation variants, this coefficient usually is rounded to 

the nearest value allowed by the chosen quantization parameters. For example, if the 

coefficients are coded as two’s complement numbers with 15 fractional bits, 1 will be 

rounded to the value 1-2
-15 

= 0.999969482421875. However, for all-pass filter type, 

arithmetic property of the filter object can’t be set to “fixed”. For the analysis of the 

quantization effects, it is not essential to implement filter with as few multipliers as 

possible. Therefore, we changed our design to direct form I. We defined filter object 

properties related to the fixed-point arithmetic, Fig. 9. At the end, we made a parallel 

connection of A0(z) and a pure delay, and add scaling factor 0.5. 

H=dfilt.df1(fliplr(A),A); 

H.Arithmetic='fixed'; 

set(H,'OutputWordLength',16,'OutputFracLength',15); 

set(H,'CoeffWordLength',16,'CoeffAutoScale',0); 

set(H,'NumFracLength',15,'DenFracLength',15); 

set(H,'ProductMode','SpecifyPrecision'); 

set(H,'NumProdFracLength',30); 

set(H,'DenProdFracLength',30,'CastBeforeSum',CBS); 

H2=dfilt.delay(11); 

Huk=cascade(dfilt.scalar(0.5),parallel(H,H2)); 

Fig. 9 Creating filter object, all-pass branch is realized as a direct structure,  

A is vector of denominator coefficients of the transfer function A0(z) 

Hi=dfilt.df1(fliplr(ci),ci); 

... 

H2ord=dfilt.cascade(Hi); 

Hr=dfilt.df1(fliplr(cr),cr); 

... 

addstage(H2ord,Hr); 

H2ord2=copy(H2ord); 
for br=1:length(nule_rest)/2 

    Hc2=dfilt.df1(fliplr(cc2(br,:)),cc2(br,:)); 

... 

    addstage(H2ord2,Hc2); 

end; 

Fig. 10 Creating filter object, all-pass branch is realized as a cascaded connection of second 

order sections; structure, ci, cr, and cc2 are denominator coefficients corresponding 

to imaginary axis poles, real axis poles and “rest” poles respectively 

For the cascaded implementations, the arithmetic properties of the all sections should 

be set independently. It means that filter object was defined for each section. All-pass 
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branch A0(z) was defined as a new object defined as a cascaded connection of the objects 

corresponded to all low order sections. In Fig. 10 code for obtaining a connection of the 

second order sections is presented. Fixed-point arithmetic properties are set in the same 

way as for the direct realization of A0(z). 

5. ANALYSIS RESULTS 

Analysis is performed in the FDA Tool for approximately linear phase half-band IIR 

filters obtained by optimization algorithm [8], and for filters obtained by the low-pass 

filter stop-band zero positioning method. Design parameters for the optimization 

algorithm [8] are: the filter order, N0 = 23, the pass-band edge frequency, g = 0.45π. 

Design parameters for the stop-band zero positioning method are: the filter order, N0=23, 

the first stop-band zero frequency, 0 = 0.61π. Both designs share the same realization 

structure, Fig. 1. Therefore, for the same filter order, number of the multipliers and 

number of the states are the same for both structures. In Table 1 results for the number of 

the multiplications (M) and the number of the states (S) are presented, for the filter order 

N = 23 (N0=12, N1=11), assuming direct form I for all sections. It should be noted that 

direct form I is not optimal. It requires twice as many multiplications as the all-pass 

structure. In addition, the number of the states is reduced in the case of canonic structures 

(direct form II and transposed direct form II). 

Table 1 Implementation costs, M – number of multipliers, 

S – number of states, direct form I 

Structure M S 

SOS1 - Second order section, real 

(or imaginary) axis poles 

2 4 

SOS2 - Second order section 

(other poles) 

4 4 

FOS - Fourth order section 4 8 

D - Delay (11 taps) 0 11 

0.5 constant 1 0 

Direct implementation of A0(z) 12 24 

HLP(z) – direct impl. of A0(z) 13 35 

HLP(z) – 2 SOS1, 4 SOS2 21 35 

HLP(z) – 2 SOS1, 2 FOS 13 35 

It was shown in [5] that, for the implementation consist of the second order sections 

only, degradation of the frequency response is larger comparing to other two alternatives. 

In Fig.  11 gains of implementation based on the second order section are presented for 

quantized and non-quantized filter coefficients for both algorithms. The quantization 

parameters are set to: coefficient world-length – 16 bits, number of fractional bits – 15. 

Assuming two’s complement signed numbers, values that can be representing correctly 

are in [-1 1) range. In Fig. 11 it can be seen that the filter obtained by the optimization 

method [8] H12(z) has equiripple response. For the given filter order, stop-band 

attenuation is less than 40 dB. Therefore, the quantization error is small (for the specified 

world-length). Characteristic of the filter obtained by zero positioning procedure [9, 10] 
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H22(z) has increased stop-band attenuation. For the attenuation values larger than 80 dB 

degradation of the response is noticeable. In Fig. 12 gains of the low-pass filter HLP(z) for 

three different implementation of the all-pass branch A0(z) in the case of the design [9, 

10] are presented. For all three simulated structures, the degradation for the attenuations 

larger than 80 dB is similar. For the defined word-length of 16 bits, this effect is 

expected. 

 

Fig. 11 The gains of the analyzed filters, H12(z) – design method based on the optimization 

[8], H22(z) – design method based on the low-pass stop-band zeros positioning [9, 10] 

 

Fig. 12 The gains of the analyzed filters based on the low-pass stop-band zeros positioning 

[9, 10], for three different implementation of the all-pass branch A0(z), 

H2(z) – direct implementation, H22(z) – cascaded connection of the second order 

sections, H24(z) – cascaded connection of the second and fourth order sections 

The analyzed structures are approximately linear phase IIR half-band filters. In 

Fig. 13 group delays are presented for low-pass filters obtained by the optimization 
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method [8], H1(z) and by the low-pass filter stop-band zero positioning method [9, 10], 

H2(z). In both cases, group delay is approximately 11 samples. In Fig. 14 group delays are 

presented for the filter obtained by the optimization method [8] for the all-pass branch 

H1ap(z) and for the low-pass filter H1(z). It should be noted that the delay of the low-pass 

filter has smaller variations comparing to the variations of the delay of the all-pass 

branch. 

 

Fig. 13 The group delay of the analyzed filters, H12(z) – design method based on the 

optimization [8], H22(z) – design method based on the low-pass stop-band zeros 

positioning [9, 10] 

 

Fig. 14 The group delay of the all-pass branch H1ap(z) and of 

the low-pass filter H1(z) designed by the optimization method [8] 

6. CONCLUSION 

In this paper, a possible solution for analysis of the quantization effects and 

implementation cost using a well known commercially available FDA tool was presented. 

It was shown that it is possible to use an FDA Tool even in the cases where the filter 
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structure that was analyzed is not directly supported. Our approach was confirmed by 

simulation of quantization effects in the case of half-band IIR filter with approximately 

linear phase. Two different algorithms were used for the design of the filter, one, well-

known [8], based on the optimization method, and the other, recently published [9, 10], 

based on the direct positioning of the low-pass filter stop-band zeros. Implementation 

structures are the same for both filters, and consist of a parallel connection of the 

approximately linear phase all-pass branch and a pure delay. For the situation presented 

in this paper, when the structure is not fully supported in the FDA Tool, the user should 

be able to set additional parameters manually (by writing the appropriate code). It 

requires advanced knowledge about different implementation structures, the principles of 

the simulation of the quantization effect and number representations in the fixed-point 

arithmetic systems. It can be concluded that it is possible to use the FDA Tool for the 

analysis of the filters that are not supported, but the process is not as simple as in the case 

of the supported filters. 
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