
FACTA UNIVERSITATIS 

Series: Electronics and Energetics Vol. 33, No 4, December 2020, pp. 499-529 

https://doi.org/10.2298/FUEE2004499D 

© 2020 by University of Niš, Serbia | Creative Commons License: CC BY-NC-ND 
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Abstract. Artificial Intelligence (AI) has become one of the most frequently used terms in 

the technical jargon (and often in not-so-technical jargon). Recent advancements in the 

field of AI have certainly contributed to the AI hype, and so have numerous applications 

and results of using AI technology in practice. Still, just like with any other hype, the AI 

hype has its controversies. This paper critically examines developments in the field of AI 

from multiple perspectives – research, technological, social and pragmatic. Part of the 

controversies of the AI hype stem from the fact that people use the term AI differently, 

often without a deep understanding of the wider context in which AI as a field has been 

developing since its inception in Mid 1950s. 
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1. INTRODUCTION 

Artificial Intelligence (AI) is seeing an unprecedented rise in popularity for more than 

a decade. Several traditional subfields of AI have developed almost to the level of 

disciplines per se, and there are more and more practical applications of different 

technologies that have been developing for years under the AI umbrella. This has affected 

many sectors, and has attracted attention of not only technology developers, but also of 

educators, social scientists, artists, governments, media and wider public. 

On the other hand, there are many apparently simple questions that are still waiting for 

appropriate answers. What exactly is AI, in the first place? How intelligent is an intelligent 

system? What are the criteria to call a system an AI system, or an intelligent system? 

In order to set the stage for discussing these questions further, a brief review of some 

real-world examples of systems and applications called AI is a good starting point. 

Spam filtering is one of the commonly known examples of applying AI in email services, 

but it‘s less commonly known that smart email categorization and labelling is also AI-

powered [1]. Even fewer email users are aware of AI behind smart replies, nudging which 

emails they haven‘t answered or ignored. 
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AI voice-to-text apps for smartphones, like Speechnotes
1 and Voice Notebook

2
, can 

convert speech to text and can also convert an audio file to text. The same technology 

powers smart personal assistants, like Google Assistant
3
, Alexa

4
 and Cortana

5
, that can 

perform Internet searches, set reminders, integrate with your calendar, create to-do lists, 

order items online and answer questions (via Internet searches). 

When Google Maps recommends the fastest route through a city on someone's 

smartphone, it intelligently takes into account not only the traffic speed, but also the road 

construction, accidents and different user-reported conditions [2]. Likewise, ride-hailing-

and-sharing apps like Uber can accurately calculate the price of a ride, predict the 

passenger's demands, determine optimal pick-up locations and even compute the 

estimated time for food delivery [3]. Some will be surprised to learn that AI autopilots on 

commercial flights are in charge of flying the aircraft for most of the flight time – human-

steered times are typically just during takeoff and landing [4]. 

And that easily shifts attention to self-driving cars, buses and trucks, a largely debated 

AI topic that until very recently referred only to experimentation that used to spark our 

imagination, but nowadays is slowly becoming a reality [5]. These vehicles are smart 

enough to drive at an optimal speed, to follow the signs, to pay attention to the stop lights, 

pedestrians and other cars, and safely bring the passengers and loads to their destinations.  

Using AI-enabled technology in military applications has always been one of the driving 

forces in developing AI further. Typical current applications include unmanned (self-

driving) vehicles, combat robots, drone swarms and autonomous action [6], [7]. They allow 

for running dangerous, suicidal missions, and have opened a whole new line of military 

strategy and tactics development. A good recent example that uses the AI techniques, called 

adversarial machine learning [8], is model turtle created at MIT – a robot that looks like a 

turtle to humans, but can easily fool other AI-powered robots and surveillance drones, to 

which it looks like a rifle [9]. This leads to a series of adversarial algorithmic camouflage 

tactics, like hiding military planes, tanks, and other objects, ―blinding‖ missiles, and so on. 

Image recognition and face recognition systems have become quite popular. Facebook
6
 

highlights faces on an uploaded image and suggests the user friends to tag, using AI to 

recognize faces. Snapchat
7
 goes into a slightly different direction – it can also track facial 

movements. Similarly, Instagram
8
 uses AI to identify the contextual meaning of emoji. 

Amazon Rekognition
9
 can recognize faces of celebrities, and so can Microsoft Azure 

Custom Vision
10

 image recognition cognitive service. Google Cloud Vision
11

 and Amazon 

Rekognition are currently among the leaders of general object recognition and content 
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detection on images. Google Lens
12

 brings up relevant information related to objects it 

identifies using visual analysis, Fig. 1.  
 

  

Fig. 1 The photo of the author's desk taken by the Google Lens app run by his smartphone 

(left) and part of the information shown by the app (correctly except for the color) 

as a result of the AI-based image analysis (right) 

In the banking sector, fraud detection platforms based on machine learning (ML), such 

as the one created by the Teradata
13

 firm, are in high demand [10]. They are capable of 

recognizing potential fraud transactions by differentiating between acceptable deviations 

from the norm and critical ones. Acceptable deviations are treated as false positives, so 

the system can ―learn‖ from its mistakes. The data used to train the ML model include 

recent frequency of transactions, transaction size, geolocational data, the kind of retailer 

involved, etc. 

So, what is it in these (and many, many more) systems and applications that is most 

often called AI? 

2. DEFINING AI? 

The question mark in the subheading is intentional. AI is notoriously hard to define – 

in fact, there are many definitions and none of them is dominant in the AI community; P. 

Marsden has compiled a list of a few dozens of popular definitions [11]. Extracting and 

mixing bits and pieces from several of them, in this article AI is understood primarily as 

technology capable of exhibiting skills typically associated with human intelligence, such 

as the ability to perceive, learn, reason, abstract (classify, conceptualize and generate 

rules) and act autonomously. It is also the science and engineering of creating such 

technology, where intelligence is the computational part of it that enables machines to 

exhibit behaviors and actions that would be called intelligent if a human were so 

behaving, i.e. that would require intelligence if they were done by humans.  

An important characteristic of an AI system is that it can figure out things for itself, 

and then act based on that information. The most popular textbook on AI [12] stresses a 
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variation of that characteristic: ―AI is the study of agents that receive percepts from the 

environment and perform actions… a rational agent is one that acts so as to achieve the 

best outcome or, when there is uncertainty, the best-expected outcome,‖ i.e. has the ability 

to achieve goals in the world in an optimal way. 

There are at least two distinct points in this understanding/description: (a) AI is 

technology, more precisely computational technology; and (b) it behaves and acts in a 

way that is typically associated with human intelligence. What makes things slip away in 

all attempts to define AI is not part (a); it is part (b). 

2.1. What is intelligence? 

The much-quoted line of R.J. Sternberg that ―viewed narrowly, there seem to be 

almost as many definitions of intelligence as there were experts asked to define it‖ [13] 

reveals in a concise way that all attempts to define intelligence are inherently 

controversial. And, just like in the case of defining AI, there are collections of definitions 

(e.g., [14]) and broad statements and commentaries that outline only vague conclusions 

about the nature of intelligence, its origins and current scientific evidence. 

This article adopts two broad statements of this kind, which describe intelligence as: 

―A very general mental capability that, among other things, involves the ability to 

reason, plan, solve problems, think abstractly, comprehend complex ideas, learn 

quickly and learn from experience. It is not merely book learning, a narrow 

academic skill, or test-taking smarts. Rather, it reflects a broader and deeper 

capability for comprehending our surroundings – ―catching on,‖ ―making sense‖ 

of things, or ―figuring out‖ what to do.‖ [15] 

―Ability to understand complex ideas, to adapt effectively to the environment, to 

learn from experience, to engage in various forms of reasoning, to overcome 

obstacles by taking thought... Concepts of ―intelligence‖ are attempts to clarify 

and organize this complex set of phenomena.‖ [16]  

Note, however, that all such statements and attempts to define (or, at least, characterize) 

intelligence can lead to a vicious circle. One now needs to define each of these abilities, like 

understanding, thinking, reasoning, learning, adapting, etc. This is equally difficult as 

defining intelligence, since ―although considerable clarity has been achieved in some areas, 

no such conceptualization has yet answered all the important questions, and none commands 

universal assent‖ [16]. Moreover, there can be substantial individual differences in 

performance related to these complex abilities, and they can vary even for the same person 

in different domains, under different circumstances, and so on. Mechanisms to measure this 

performance do exist (e.g., IQ), but judgement can be based on different criteria. 

2.2. How intelligent is an AI system? 

Given the extremely high complexity of intelligence itself and of the abilities 

associated with it, developers of AI systems typically focus only on some narrow aspects 

of intelligence or to a specific dimension of intelligence, such as knowledge representation, 

reasoning, learning, and image analysis and interpretation.  

Unfortunately, this can lead to big differences in judging how intelligent is an AI 

system.  
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2.2.1. The Turing test 

As early as 1950, Alan Turing suggested that a program/machine should pass a 

behavioral intelligence test if it was to be called intelligent [17]: it should have a 5-minute 

typed-messages conversation with a human interrogator, and the interrogator then has to 

guess if the conversation was with a program or with a person; the program/machine 

passes the test if for at least 30% of the time the interrogator believes she/he is making 

this conversation with a person [12]. 

The modern-time interpretation of the Turing test [12] is that such a program/machine 

should be able to communicate successfully with the interrogator using a natural 

language, should be capable of representing and storing information and knowledge about 

what it hears and using that knowledge for reasoning when answering questions and 

drawing conclusions. In addition, it should be able to learn new knowledge and patterns 

and to adapt to new situations, as well as to perceive objects using its sensory input and 

manipulate the objects accordingly (robotics). 

Ever since the Turing test was proposed, it has created intense debates. Philosophers have 

argued that there are things that machines cannot do, others have cited mathematical proofs that 

some questions are in principle unanswerable by formal systems, and some strongly support the 

stance that human intelligence is much too complex to be captured by machines. However, in 

recent years there have been several announcements about AI systems passing the Turing test 

[18], [19], [20]. These typically initiate counter-arguments and stay confined to academic 

circles; so far, there has been no much reaction from technologists. 

2.2.2. Weak AI vs. strong AI 

Weak AI systems are those that can act as if they were intelligent, i.e. they can 

simulate human cognitive function. They can only appear to think, but definitely lack 

consciousness. They can follow certain rules and pre-programmed behaviors – even 

complex ones – but cannot do anything beyond these rules and behaviors. For example, a 

chess-playing program cannot be used as a personal assistant and vice versa. As J. Searle 

puts it [21]: ―According to weak AI, the principal value of the computer in the study of 

the mind is that it gives us a very powerful tool. For example, it enables us to formulate 

and test hypotheses in a more rigorous and precise fashion. But according to strong AI, 

the computer is not merely a tool in the study of the mind.‖ 

In contrast to weak AI, the hypothesis of strong AI is that an AI system should 

actually have human cognitive abilities and states, not just simulate them. Strong AI is not 

about building tools that help test psychological explanations; it is about building systems 

that ―are themselves the explanations‖ [21]. In other words, according to strong AI, 

intelligent programs should have their own autonomous perception, beliefs, emotions, and 

intentions; they should be minds. 

Current systems called ―AI systems‖ are typically developed with the weak AI 

hypotheses in mind [12]. Developers are happy if their programs work, and do not care 

much if people call them real intelligence or just simulated one.  

A related problem is the level of sophistication of an AI system. Current AI systems 

can easily beat even the best human players in computer games or in the games of chess 

and Go, but can neither understand nor feel the meaning of fairy tales and stories for 

young children [22], let alone capture their bottom-lines and morals.  
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2.2.3. AI effect 

Critics of weak AI often discount a successful AI technology with not viewing it as being 

real intelligence, regardless of the fact that it was once considered AI [23]. This is called AI 

effect: before the technology becomes part of everyday life, i.e. before it comes out from the 

confines of AI research labs, it has a special aura; it looks magic and truly intelligent. Once it 

is better understood by the majority and gets built into products and tools used by many, the 

thrill is gone – it loses the ‗AI‘ label and becomes just technology. 

As a side effect, advancements in technologies that have once lived under the AI 

umbrella sometimes make these technologies break away from the ‗AI‘ label and get re-

branded: expert systems have come out of the AI auspices and become a technology per 

se, artificial neural networks are often called just neural networks, and everybody says 

just chatbots, not AI chatbots. 

Some see the cause of AI effect in the difference between the strong AI and weak AI 

concepts [24]. Those who are ready to remove the ‗AI‘ label from technology originating 

from AI research typically align themselves with the strong AI approach: if an AI problem 

has been solved, it‘s no longer AI; true AI is a problem that has not been solved yet. A 

possible way out is to take a different perspective: since AI today is typically weak AI, 

perhaps a down-to-Earth question to ask is ―Can a specific problem be solved with weak AI 

or not?‖ 

It is also a good idea to occasionally ―see the world differently‖ – what do researchers 

in other, more-or-less related disciplines, have to say about intelligence? 

2.3. Intelligence seen from different research perspectives 

There is a dichotomy in explaining AI from technological and other perspectives. 

While technology-centered AI development focuses on systems that work accurately and 

fast, have exciting functionality and demonstrate certain aspects of intelligent behavior, 

experts in other disciplines are more interested in advancing the understanding of the 

phenomenon of intelligence. 

2.3.1. Neuroscience 

Neuroscientists have made some progress identifying various neurological factors 

relevant for intelligence [25]. It is now known that intelligence and functioning of the 

brain are related to the overall brain volume, cortical thickness, white matter volume, grey 

matter volume, white matter integrity, neural efficiency, etc. But it is also known that such 

factors are only partly responsible for differences in intelligence among different humans 

(as well as among different members of other species). Popular techniques/technologies 

used in non-invasive scanning of human brain include electroencephalography (EEG), 

magnetic resonance imaging (MRI), functional MRI (fMRI), etc. For example, recent uses 

of powerful MRI scanners have enabled analysis of functional units inside the layers of 

the human cortex (responsible for high level of cognition) and seeing for the first time 

how information flows between collections of neurons in a live human brain [26]. Note 

that this is extremely important for neural network research in AI – neural networks as we 

know them today are models based on never-proved assumptions of how neurons 

exchange information. Moreover, such scanners have brought neuroscientists one step 
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closer to understanding of human memory. Likewise, an analysis of over 18.000 MRI 

scans of people over 44, paired with four cognitive tests from the UK Biobank study has 

revealed that the brain size has only a minor correlation with intelligence, biological sex 

has no impact on intelligence, and intelligence is largely influenced by different brain 

regions [27]. 

Note, however, that neuroscientists admit that although now we have considerably 

more evidence about how human brain functions and what regions of the brain are 

responsible for intelligence, we still don‘t know what intelligence really is; a lot of further 

research is needed to fully understand it. That‘s why some neuroscientists take a different 

approach. Due to the fact that human brain is extremely complex, they make attempts to 

understand how the brain of simpler species works. For example, a notable success has 

been achieved with studying the brain of fruit flies (Drosophila melanogaster) using 

electron microscopy – the entire brain of an adult female fly has been imaged at synaptic 

resolution [28]. However, a fact very relevant for AI research is that in spite of now 

having an unbiased mapping of synaptic connectivity of the fruit fly, synthesizing its brain 

– the size of a poppy seed – is not even at sight. 

2.3.2. Psychology 

Research and experiments in cognitive psychology have led to theories about how 

humans represent knowledge and how they process it in order to make inferences and 

decisions, create explanations, analyze situations at hand, reach conclusions and so on. 

The knowledge represented pertains both to external world and to internal mental states, 

like beliefs, emotions, attitudes and desires [29]. Information perceived from the world 

(both external and internal) gets encoded into mental representations and is either 

processed immediately, or is stored in memory for later retrieval and processing. 

There are several basic forms of mental representations: spatial (e.g., the placement of 

objects in a room), feature (such as dogs bark, can run, have four legs, are faithful,…), 

network (like Irish setter is a setter, Irish setter is red, Irish setter has bird sense, Irish 

setter is a dog, dog is an animal), and structured (like a plate is on the table, a drawer is 

under the table, the drawer is closed,…). These forms themselves have their structures. 

There are also specific processes associated with each form, capable of accessing and 

using information and knowledge represented within a specific form. For example, in the 

network representation example shown above, the is a relation between Irish setter and 

dog enables accessing dog features indirectly and inferring that Irish setter can bark. 

A powerful tool of human thought processes is abstraction. It enables ignoring some 

information (i.e., not representing it, abstracting it away). This is very important in terms 

of the efficiency of processing the information that did get stored within the 

representation – it can be found and accessed more quickly, since the search space is 

more compact without the information that got abstracted away. 

Cognitive science lays the bridge between cognitive psychology and AI. It develops 

computational models of different forms of mental representations and their related 

processes. Note, however, that these models only theoretically mimic human thought. In 

reality, we know very little about how knowledge is represented and processed in human 

brain [30], in spite of valuable recent discoveries like the one that has revealed the brain‘s 

code for facial identity [31]. Researchers are only beginning to tackle important problems 
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like the relation between consciousness and intelligence [32] and the one between 

intentionality and intelligence [33]. 

2.3.3. Philosophy 

Ever since the inception of AI, philosophers have been intrigued with it. The already 

mentioned work related to strong AI ([17], [21], [22]) is but a tiny bit of discussions on 

the topic. Chapter 26 of [12] surveys philosophical pros and cons related to AI in much 

more details. 

Some of the more recent considerations and debates in this area include V. Vinge‘s 

notion of (technological) singularity [34], built upon the earlier I.J. Good‘s concept of 

intelligence explosion [35]. Essentially, singularity means that if humans can create 

intelligence smarter than their own, then it could do the same, only faster. The concept 

has been further explored by R. Kurzweil [36], who projected that, given the pace of 

technological development, by Mid 2040s global computing capacity will exceed the 

capacity of all human brains, which will be a precondition for singularity.  

Numerous philosophical speculations and debates have followed, on the grounds that 

human brains cannot even comprehend such a superior intelligence. Some have expressed 

fear that singularity can ultimately lead to the extinction of humans. Others strongly oppose 

this view, arguing that humanity has already entered ―a major evolutionary transition that 

merges technology, biology, and society, where digital technology has pervaded the fabric of 

human society to life-sustaining dependence‖, transition that will ultimately lead to Real AI 

(RAI), as ―a globally distributed hybrid cyber-physical human intelligence converging all the 

emerging technologies: RAI = World Big Data + AI + ML (DNNs) + Cloud AI + Edge AI + 

IoT + 5G + Blockchain + Autonomous Things + Self-Driving Cars + Virtual Reality and 

Augmented Reality + 3D Printer + Quantum Computing + Smart Spaces + …‖ [37]. 

Notably, natural intelligence is included in the concept of RAI. 

Yet other opinions exist, expressing the view that intelligence might be simpler than 

we think [38], since the way that humans perceive the world is hierarchical in nature, 

relying on simple patterns at the lower levels and increasing in complexity at the higher 

ones [39]. This is to say that the essence of perception, thinking, reasoning and other 

intelligent processing is actually pattern recognition – a long studied area in AI. All RAI 

is viewed as a combination of a) relations/patterns/causality between entities in the 

environment, b) representation of a), and c) perception, cognition and reasoning in order 

to establish understanding of the environment and provide rational interaction with it. To 

this end, P. Domingos has introduced the concept of master algorithm [40], as a blend of 

different approaches to strong AI and to ML in particular – symbolic, connectionist, 

evolutionary, Bayesian and analogy-based – where different ML algorithms synergistically 

contribute to an asymptotically perfect understanding the world, the brain and intelligence. 

Philosophers also study higher-level concepts and their relations to intelligence, 

starting from the much quoted and thought-inspiring book Gödel, Escher, Bach: An 

Eternal Golden Braid by D. Hofstadter [41]. These include deep links between art, music, 

creativity, algorithms, imagination and abstract math, subtly reflected in and subsumed by 

intelligence. For example, S. Mahadevan has proposed the new concept of imagination 

machines as ―a powerful launching pad for transforming AI‖ beyond the ―current realm of 

learning probability distributions from samples‖ [42]. Using numerous examples from 
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arts, literature, poetry, and science, he envisions a new field of study in AI, imagination 

science, where researchers would explore various ways of automating tasks like 

―generating samples from a novel probability distribution different from the one given 

during training; causal reasoning to uncover interpretable explanations; or analogical 

reasoning to generalize to novel situations‖. 

3. CURRENT FOCUS IN AI 

Given the difficulties in setting the scope and the boundaries of AI, reconciling 

somewhat different approaches to it when it‘s seen from the perspective of scholars of 

different backgrounds, as well as in resolving controversies that surround it, a pragmatic 

approach is to focus on its most popular subareas (at any given point in time). 

At the time of writing this article (July-August 2020), the ―popularity bar graph‖ of 

these subareas, published at the AI Topics
14

 Website (curated by the highly authoritative 

Association for the Advancement of Artificial Intelligence, AAAI
15

), looks as in Fig. 2. 

The popularity is measured by the number of entries in the AI Topics repository, related 

to specific topics.  

It is obvious that ML is currently the most popular subarea of AI – out of the total of 

336.000+ entries, about 160.000 are tagged ML. There are two major reasons for that. 

One of them is the flood of data that applications, businesses, different institutions, social 

networks, etc. generate. People want to make sense out of this extremely vast amount of 

data in order to improve their businesses and other activities, and ML comes as a rescue – 

it enables building a mathematical model based on sample data, known as ―training data‖, 

in order to make predictions or decisions with previously unseen data, but without being 

explicitly programmed to do so [43]. To build models and make predictions, ML closely 

relies on computational statistics, mathematical optimization and exploratory data 

analysis; thus, it is also referred to as predictive analytics. The models themselves come in 

various forms, such as neural networks, regression analysis, decision trees, support vector 

machines, etc. 

Drilling down the graph shown in Fig. 2 reveals that out of the nearly 160.000 ML 

entries about 54.000 are related to neural networks (NNs), and about 32.000 are related to 

statistical learning. Among the different types of neural networks, currently most popular 

ones are deep neural networks (DNNs) that enable so-called deep learning (DL) [44], [45], 

[46]. Important types of DNNs include: convolutional neural networks (CNNs, typically 

used for image analysis, facial recognition, visual search, etc.) [44], [45]; recurrent neural 

networks (RNNs, useful in natural language processing, speech analysis, text analysis and so 

on) [44], [45]; and generative adversarial networks (GANs, often used to generate examples 

for image datasets, photographs of human faces, realistic photographs, cartoon characters 

and face frontal views, as well as to perform image-to-image translation, text-to-image 

translation, semantic-image-to-photo translation, and more) [47]. 
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Fig. 2 The bar graph of popular AI topics at the time of writing the article (source: AI 

Topics Website, https://shorturl.at/sAU28) and the parts/chapters of the most popular 

AI textbook [12] (right) 

The other reason for ML being so popular nowadays is the computational power of 

current ML technologies. The idea of learning new knowledge from data has been 

attractive in AI for decades, but only recently the computing technology has advanced to 

the level that has made it at least partially possible. Where it is not easily possible – e.g., 
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requires too long processing time to build models that make predictions with a 

satisfactory level of accuracy – special-purpose computer hardware is usually the best 

solution. It can be a costly one, but it‘s a situation that further accelerates hardware 

development. 

It should be also noted that ML and especially DNNs have become pervasive in other 

popular subareas of AI indicated in Fig. 2, notably in natural language processing (NLP) 

and in robotics. In NLP, application of DNNs has led to many advancements in language 

modeling, capturing semantic properties of words, natural language generation, machine 

translation, word- and sentence-level classification, sentiment analysis, and more [48]. In 

robotics, detection and perception of objects, robotic grippers, fine grasping and object 

manipulation, scene understanding and sensor fusion, as well as collision avoidance, are 

all greatly improved with careful use of DNNs [49]. 

The bar graph shown in Fig. 2 is actually much more accurate than the current, 

informally established public view of AI. This public view can be often seen in media and 

in popular press, blog posts and forums all over the Web: AI ≡ ML! A very frequent 

modality is AI/ML, and so is a less inaccurate ―AI and ML‖. There are also variations in a 

bit narrower scope, like ML/NN, ML/DL and the like. This has prompted more 

knowledgeable people to spawn all over the Web a series of images like the one on the 

left in Fig. 3, depicting the subsumption relationship between AI, ML and DL. However, 

the diagram on the right in Fig. 3 captures more details from the above discussion. 

 

  
 

Fig. 3 Relationship between AI, ML and DL (left; after [50]) and a more detailed view 

based on the bar graph from Fig. 2 (right) 

 

The righthand side of Fig. 2 shows the table of contents of the most popular AI textbook 

today, Artificial Intelligence – A Modern Approach [12]. Note that there is only a minor 

overlap with the bar graph on the left side. It further explains the diagram on the right side of 

Fig. 3 – many of the remaining topics still are part of AI (the outer circle in Fig. 3), but they 

are not in focus (which usually means lack of funding as well). A notable exception to this 

end is the broad subarea of AI – representation and reasoning (the second highest bin of the 

bar graph in Fig. 2). It has always been, and still is, in the core of AI. AI textbooks typically 

discuss only classical topics from this subarea (propositional logic, predicate logic, 

production rules, reasoning with uncertainty, fuzzy logic and systems, probabilistic 

reasoning and the like). However, there is a thriving research there as well (although it still 
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does not manage to catch much of the public attention) – new representation techniques and 

new efficient reasoning mechanisms have been devised recently [51], [52]. These largely 

pertain to topic modeling, knowledge graphs, conceptual modeling, representation of 

different types of thinking, knowledge interwoven with imperfect data, semantic 

summarization, the tradeoff between expressiveness and tractability, and constructing 

explanations. 

The AI Topics Website largely reflects the views and interests of the AI community. 

However, views from other communities also matter. For example, Fig. 4 shows 

economic perspective on strategic development of AI. ML is still there, but obviously this 

community puts more emphasis on industrial and social aspects of AI, as well as on 

emerging topics such as AI ethics and AI education and awareness. Notably, this 

perspective considers AI to be at the same level with robotics. 

 

 

Fig. 4 Current focus in AI as seen by the World Economic Forum (source: https://intelligence. 

weforum.org/topics/a1Gb0000000pTDREA2?tab=publications) 

4. AI HYPE 

The current wave of interest in AI is certainly unsurpassed in the entire history of the 

field. There have been periods in the past when breakthroughs in AI have received a lot of 

interest, attention and investments, but then they have been typically followed by periods 

of disillusionment, AI effect and lack of funding (usually referred to as ―AI winters‖). 

This current wave is not only the strongest, but also the longest one. Popular media cover 

it on a regular basis. Industry, businesses and services invest in AI more than ever before. 

Year after year universities announce and start new courses and even entire study 

programs related to AI. Governments open new funding programs and institutions to 

support further development of AI. Well-known businessmen, investors, entrepreneurs 
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and even some of the leading AI experts make statements that contribute to the hype 

(Mark Cuban: ―Invest in AI technology or risk becoming ‗a dinosaur‘ very soon.‖
16

; 

Sundar Pichai: ―AI is probably the most important thing humanity has ever worked on‖; 

Koray Kavukcuoglu: ―We believe AI will be one of the most powerful enabling 

technologies ever created – a single invention that could unlock solutions to thousands of 

problems.‖
17

; Azamat Abdoullaev: ―Whoever creates Real Artificial Intelligence will rule 

the world.‖
18

; Andrew Ng: ―AI is the new electricity.‖
19

). Claims like ―AI will completely 

revolutionize our society‖ are all over the media, and everyone wants to be involved in 

the technology race [53]. 

There are several reasons for all the buzz and excitement. The already mentioned 

technological advancements and largely increased computational power are an important 

enabler of AI developments, and the available enormous amounts of data come hand in hand 

with it. Likewise, there really have been impressive recent developments that in part justify 

the hype. For example, some machines can outperform humans in extracting information 

from images and identifying objects on images [7], [53]. Similarly, in NLP, the latest 

generative model from OpenAI
20

, called GPT-3, can generate amazing human-like text on 

demand [54]. 

Also, the strategic onlook called Industry 5.0 [55] puts the interaction and 

collaboration between man and machine right up front and sees AI as one of the major 

pillars of future industry developments. Promoters envision this important AI trend to 

make highly automated manufacturing and self-managed supply chains a reality very 

soon.  

Today's technology development leaders like Facebook, Google, Tencent, Amazon, 

Alibaba etc. all have a great business interest in developing AI-powered systems and 

applications, and they advertise their efforts. Again, their own success with their AI products 

is undeniable, and there is no compelling reason why one should believe that they will not 

manage to make next major shifts in that direction. 

However, all this interest and attention raises also an important question: Can AI 

really live up to the hype? 

There are opposing opinions, stating that AI has been overhyped and that current AI 

systems are not very intelligent and thus are very limited. Some already see a decline in 

the hype, starting from the Gartner hype cycle for AI 2019 that indicates that ML, NLP, 

DNN and other AI technologies are already on the downward slope of the curve, in the 

section called the trough of disillusionment [56]. They remind the AI community and the 

wider public of earlier AI hypes that have crushed by failures (e.g., ―the 5th generation of 

AI‖)
21

. They also argue that significant AI results achieved in the past have become part 

of other disciplines and are no longer considered AI. 
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20 https://openai.com/ 
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Some of the more extreme views in the stream opposing the AI hype even insist that 

consulting firms deliberately create the fear of missing the AI wave and scare companies 

into paying for AI projects
22

. They warn that typical AI applications rarely bring high 

payoff to companies. AI can be very hard to afford, given the cost of AI specialists and 

specialized hardware.  

Mocking the AI hype comes along the same lines. A famous meme
23

 from 2018 makes a 

parallel between concepts in computing – "then" there were application, program, operating 

system, script, shell, batch file, service, etc.; in 2010, they have been all replaced by app, app, 

app,…; in 2018, their names became AI, AI, AI,… 

Note, however, that it is not as clear cut (i.e. just promoters vs. opponents) as it might 

look. The general attitude to AI has changed notably. Once it was not so popular and 

profitable to start a business with AI. Nowadays, companies proudly wave their AI flags. 

It has become almost a matter of self-esteem for a company to say that it is not making 

just ordinary applications, but ones that can learn, talk, perceive objects and so on – much 

like people – using AI. 

When someone makes a pilot study and comes up with results like ―In the future, AI 

will shorten your commute even further via self-driving cars that result in up to 90% 

fewer accidents, more efficient ride sharing to reduce the number of cars on the road by 

up to 75%, and smart traffic lights that reduce wait times by 40% and overall travel time 

by 26%‖ [1], opponents call it guessing, incomplete, wishful thinking and the like. 

However, people ask: ―How safe are self-driving vehicles? I‘ve heard of an accident 

caused by malfunction of such a vehicle.‖ Promoters of self-driving vehicles often answer 

with a counter-question: ―How many accidents like that have you heard of?‖ True, self-

driving cars are not that many yet, so the chance of accidents caused by them is still low. 

If one thinks in terms of percentages/proportions – what are the proportions of the rides 

that ended up as accidents when a driver was behind the steering wheel, and those that 

had no driver? An alternative way of thinking about the same problem is: there are no 

drunk or mad drivers in self-driving cars. Again, the debate is huge, but laymen are very 

surprised here: some people believe not only that the safety of self-driving cars is not 

lagging behind that of human-driven cars, but that self-driving cars are safer
24

. They 

found the grounds for such an opinion in the fact that such vehicles can use much more 

information than human drivers – information from vehicle-to-vehicle messaging, from 

ultrasonic and infrared imaging, from automated external traffic-control systems, and so on. 

Of course, critics will reply that Level-5 (fully automated) self-driving will never be 

possible because the AI built into self-driving vehicles belongs to a very narrow domain 

and lacks a wider, human comprehension of the world; thus, the critics say, using a non-

humanlike way of achieving intelligence, fully automated and truly intelligent self-driving 

cars will always ―be right around the corner.‖
25

 

All in all, controversy is already there, but perhaps paradoxically – it only contributes 

to the hype.  
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5. LIMITATIONS OF WHAT IS CALLED AI TODAY 

A good question to ask about the systems that are called AI today is: What exactly can 

these systems do? 

A short answer might be: typically, one thing. 

For instance, a self-driving car can maybe outperform human drivers in terms of safe 

driving, communicating with other cars and relevant services to exchange information about 

road conditions, and even inform the passengers about the route, the driving time, and the 

like. But it cannot infer how to answer questions like: Who wrote the famous lyrics Words 

are flowing out like endless rain into a paper cup?; or, What does the term Lonely Planet 

stand for? Likewise, after seeing many thousands of images of leopards, a DNN can learn to 

recognize them with very high accuracy. But it typically breaks when shown an image of a 

similar animal, like a cheetah, or a lynx. It needs to undergo a time-consuming training 

process again, to see many thousands of images of cheetahs in order to learn how to 

recognize them. And the same goes for lynxes. Paradoxically, the process is the same even if 

it has to learn to recognize something completely different, say a tree. The idea of training 

another DNN on multiple datasets (e.g., leopards, cheetahs, lynxes and trees) would not 

work because of feature interference. Even if it worked for a specific multiset, it would face 

the same problem when possibly adding yet another dataset to the multiset. Efforts to solve 

this problem do exist (e.g., the proposed multi-modal DL architecture [57] with separate 

models tuned for each specific dataset in a multiset), but the need for training the resulting 

DNN again for each new dataset remains. 

Actually, the problem is that DNNs are not capable of learning the underlying principles 

of recognizing similar objects and differentiating them from the starting category of objects.  

Just like the fact that AI and ML are not the same things, and that ML is not simply 

―AI that improves itself‖ (an idea often found in the popular press), DL is not ML. DL 

can be superior in learning how to recognize images or natural language, but they are not 

a magic wand. When it comes to mundane tasks like regression and classification from 

structured data, like data sourced from a relational database, DL is of little use. In such 

cases, statistical techniques like gradient boosting [58], e.g. XGBoost [59], are a better 

choice. Similarly, as Scott E. Fahlman puts it,
26

 concept detection in NLP using DL works 

well if a dictionary of words or word patterns representing the concepts of interest is 

available. Otherwise, traditional symbolic reasoning might be more suitable. On the other 

hand, symbolic knowledge representation and reasoning techniques are also far from 

being good in achieving human-level performance in any non-narrow domain, let alone in 

commonsense reasoning. 

ML technology of today is also very limited in terms of generalizing from examples, as 

well as in terms of learning concepts efficiently and quickly based on a small set of the 

concept features and on just a few examples. A general problem of most currently popular 

ML approaches is that they need a lot of data to make statistical inference about possibly 

existing patterns in the data with acceptable accuracy. The data is typically noisy, and given 

enough data and enough computing power ML can be successful. However, humans are 

capable of learning from just a handful of examples and clear data.
27

 Moreover, a few 
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examples and clear data make it possible for humans to clearly formulate the knowledge the 

examples convey, to use this knowledge in further reasoning and to explain their reasoning.  

Contrary to that, much of ML today works like a black box (with a notable exception of 

decision trees, which are easily interpretable and explainable). It is especially true for NNs, 

most notably DNNs. For example, DNNs for image classification can include millions of 

parameters in their convolutions, ReLU and max pooling layers, which is inherently 

incomprehensible for humans; explaining how everything works inside such networks is 

currently an illusion.  

Another serious limitation of today‘s systems called AI is that they are pretty 

straightforward, which is not typical for intelligent behavior. For example, humans typically 

drift away in conversations, they change topics, insert jokes and colloquial phrases here and 

there, and make conversation spontaneous. AI systems don‘t. True, they can answer questions 

like ―When do I have my next meeting?‖ and ―How long does it take to get from A to B by 

car?‖ quite accurately, but they cannot answer any more imaginative questions, like ―If Bach 

was still alive, would he play blues?‖. In the words of S. Mahadevan, today‘s AI is designed to 

answer ―What is‖ questions, but not ―What if‖ questions; the latter ―would simply befuddle any 

AI system‖.
28

  

Many systems called AI today are also easy to fool. Studies have shown that DNNs are 

actually very brittle and vulnerable to attacks – making some tiny changes in input images 

through deliberate adversarial perturbations (like adding some fuzz, noise) [60], even 

changing only one pixel [61], can lead to a completely wrong classification of the image in a 

lot of cases. Now, if one thinks of some real-world applications of DNNs, such as self-

driving vehicles, such a one-pixel change can be fatal – what if a raindrop ―changes this one 

pixel‖ in such a way that the car ―believes‖ that a pedestrian is another car? Or, what that 

one pixel can do if a medical decision is to be made based on a number of images of a 

tissue? Similarly, an image of a bicycle or a guitar pasted for adversarial purposes over (a 

part of) an image of a monkey can fool the DNN to classify the animal as a human [62]. The 

problem here, again, is the black-box nature of DNNs – it is simply difficult to figure out 

what exactly DNNs are doing inside their hidden layers when they are predicting the class of 

an input data item, let alone resemblance to how human brains work. Yes, they are always 

repeating the same algorithmic steps and are making classifications based on some statistics, 

but humans often have trouble understanding why such statistics are dominant. DNNs do not 

model human brains, simply because it is not known how human brain works. More data fed 

into a DNN can make it more accurate, but not intrinsically human-smart. Also, feeding 

more data into a DNN cannot account for all possible situations, not even for all possible 

typical data items; the datasets used contain data from different sources, hence a great deal 

of repetitive data. 

Given all this discussion, one can ask the question: Where is the intelligence there? 
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6. REALITY CHECK AND PRACTICAL CHALLENGES 

Applying AI to solve practical problems in the real world usually brings up conditions 

different from those that govern academic research in the field. The understanding of AI (or 

the lack of such understanding?) in companies and institutions comes from business 

objectives, which typically command development of technology with more ―intelligence‖, 

i.e. with practical AI (roughly corresponding to weak AI) and is intentionally limited
29

. Few 

companies are interested in developing general AI (strong AI), i.e. sentient behavior. Both 

practical and general AI development require expertise from multiple fields, since ―AI is not a 

single thing‖. 

6.1. Human-driven AI vs. autonomous AI 

Much of practical AI is human-driven. For example, one can see ML as predictive 

analytics – it creates predictions that inform human decision makers. But all steps in the 

process – from collecting data into dataset(s) and wrangling with the data to make it suitable 

for feature engineering, building the model(s), testing them, fitting them and creating 

predictions – are essentially driven by data engineers / ML engineers. The tools they use do 

not learn themselves, i.e. to not have a built-in self-improvement logic. Even if such a logic 

was built in the ML tools, it would still be pre-programmed by human AI specialists. Jeff 

Bezos calls this human-powered pseudo-AI ―AAI‖ – artificial artificial intelligence.
30

 

In contrast, autonomous AI (general, strong AI) reflects ―the very nature of intelligence … 

[i.e.] it is self-guided, self-expanding and self-inspired.‖
31

 For instance, an ML tool capable of 

improving its own code, deciding by itself which ML model to use to make predictions, and 

making different inferences about datasets by itself, would be an autonomous ML tool. To the 

best of the author‘s knowledge, such tools do not exist in practical AI today. 

6.2. AI as a marketing term 

Sadly, due to the AI hype the label ―AI‖ has largely become a marketing term, and the 

press and online posts support that situation. It has become ―a matter of honor‖ for 

companies and institutions to put the label ―AI‖ in their products and profile descriptions, 

whereas in reality much of the products and activities labeled ―AI‖ are at best applied 

statistics, business analytics and informed human decision-making. 

In marketing, rebranding is a powerful tool. If one looks carefully at the history of terms 

used to describe parts of research and development often attributed to AI, then they will see 

that once upon a time there were ―pattern matching‖ and ―pattern discovery‖. Later on, there 

came ―data mining‖ and ―knowledge discovery‖ – slightly different, but cultivated on the 

same soil as their predecessors. Nowadays, all of them are simply rebranded ―AI‖ (or ―ML‖, 

or ―DL‖). From the marketing perspective, it was actually a clever decision: ―AI‖ is catchier, 

cooler, more appealing and more promising. 

Still, just like in any marketing campaign, the reality is different. Today‘s dominating 

weak AI does the job in specific narrow application areas, but when compared to general 

human intelligence – it lives in a galaxy far, far away. As a famous tweet says: When you‘re 
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fundraising, it‘s AI. When you‘re hiring, it‘s ML. When you‘re implementing, it‘s linear 

regression.
32

 

There are also warnings that the hype and hysteria around AI can possibly do harm to 

further AI development [63]. Part of them are based on the fact that the labels ―AI‖ and ―ML‖ 

are (over)used only to boost sales.
33

 As in the tweet mentioned above, ―ML‖ advertises and 

masks much less popular terms like ―regression‖ and ―classification‖ that would actually 

describe the essence of ML (and the absence of human-like learning in it) in a more realistic 

way. However, this ―sales pitch‖ bubble can burst soon, because of the dangers associated with 

raising expectations too high, without thinking about the real chance of delivering their vision.  

Both heavy promoters of AI (often being CEOs in big-name companies, where weak AI 

is an essential part of their business model) and doom forecasters (predicting massive 

unemployment due to AI development, existential threat, singularity and even destruction of 

our civilization – like Stephen Hawking, Elon Musk and Bill Gates, to name but a few) have 

originally further advertised AI with their statements [63]. However, there is little evidence 

in support of both big promises and big doomsaying. As market research shows, productivity 

in many countries is slowing down (and not rising) due to automation supported by practical 

AI, and unemployment is recently at its historical low [63]. Moreover, a 2019 survey 

conducted by a UK-based investment firm has shown that about 40% of Europe‘s ―AI 

companies‖ don‘t use AI in any way essential to their business [64]. 

Unfortunately, such facts possibly indicate that the warnings expressed in [63] might 

be right: once again, as 2019 Gartner curve shows [56], the disillusionment caused by 

over-advertised but unfulfilled AI promises has started. 

6.3. AI seen from different practical perspectives 

Different disciplines intersect in what the label ―AI‖ means in the AI community; in a way, 

as discussed in section 2, it‘s a catch-all term encompassing subsets of computer science, 

engineering, statistics, computational linguistics, mathematics, cognitive psychology, 

neuroscience, philosophy, etc. Even subareas of AI represent intersections of different other 

disciplines. For example, ML is considered by some as ―a rebranding of tools from linear 

algebra, approximation theory, numerical optimization and statistics.‖
34

 

Interesting questions here are: What does current AI look like from the perspective of other 

relevant disciplines? What are the roles of these disciplines in AI? What about industry, 

employers‘ expectations and job market? What is the role of AI in a context wider than that of 

technology development? 

6.3.1. The role of statistics 

Most ML today heavily depends on statistics; so much, that one can often hear that AI 

is just statistical fitting (or curve fitting).
35

 Such statements draw from the fact that, in 

most ML, conclusions and predictions are made from a large set of training data. In spite of 

the fact that humans learn differently, from very few examples and making interconnections 

between different subject areas, experiences and new facts, statistical approaches and NNs in 
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ML are dominant in today‘s AI. S. Mahadevan has put it nicely: ―Trying to do ML without 

knowing statistics is like to trying to build engineering structures without physics.‖
36

 

In contrast, symbolic AI – by far less popular today than in the past – is often called 

GOFAI: Good Old-Fashioned AI. It is important to understand that GOFAI, in particular its 

knowledge representation and reasoning approaches, are not dismissed. Not at all. They bring 

declarative way of specifying how things should be conducted, strong formalisms of logical 

reasoning, and also the power of generating explanations. These features can be nicely 

combined with statistical approaches; for instance, using symbolic approaches rigor can be 

brought to defining ML pipelines and what exactly they should learn using statistics. In other 

words, while statistical approaches can process very large, complex data sets, cognitive 

approaches coming from symbolic AI, like reasoning and problem-solving can bring more 

human-like flair to AI in order to use AI to its currently possible full potential. 

ML/Statistical algorithms alone cannot do it; ironically, even some statisticians call ML 

algorithms ―very, very stupid‖.
37

 On the other hand, statistical approaches in areas like 

image recognition and NLP are essential today. It is important to always remember that 

both statistical and symbolic approaches have their pros and cons. 

Note, however, that although much of ML is built on statistics, there is an important 

difference in approaches between the two: classical statistics always starts from a 

hypothesis to test, even before the data is collected; ML first collects huge datasets and 

then applies exploratory statistical analysis in hope to discover some patterns in data and 

then use them as the model for making predictions.
38

 

It is up to AI course designers at universities to make the role of statistics in AI clear. 

Unfortunately, it is not always so. In an EDEN Webinar from November 2019 on AI in 

Higher Education [65], complaints have been put up about courses that have the label 

―AI‖ in the title, but are essentially just statistics. 

6.3.2. Industry perspective 

Google search for ―best careers for 2020 and beyond‖, ―best IT career paths for the 

next decade‖, ―most in-demand IT jobs‖ and the like, shows controversial results
39

. A 

number of Websites ranking such careers does not mention AI and its subareas at all. The 

―closest‖ jobs they mention are those of mathematicians, statisticians, operations research 

analysts, business analyst, market research analysts, marketing specialists (if one assumes 

that these skills are applied in developing ML models to make analyses). Some Websites 

rank data analysts, data scientists and data engineers high. Only two such Websites explicitly 

rank AI architect and robotics engineer high. 

A similar search on Indeed.com
40

, driven by queries like ―AI‖, ―ML‖, ―AI engineer‖, 

―ML engineer‖, ―robotics engineer‖ and the like, has vaguely reflected the bar graph shown 

in Fig. 2. However, the ―software engineer‖ query had the number of hits higher by an order 
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of magnitude than the one for ―AI engineer‖
41

. Indeed‘s list of 25 best jobs for 2020
42

 

includes neither AI nor ML explicitly (―data scientist‖ is at no. 8, ―data engineer‖ at no. 12). 

Related job descriptions reveal the usual AI ≡ ML misconception mentioned in section 3, 

as well as a frequent vagueness in postings (―Using various techniques, models and 

algorithms to solve AI problems‖, ―Applying multiple skills, functional and technical, on AI 

problems‖, ―Building prototypes of AI applications‖, …). However, ―Strong statistical and 

math background‖, ―Programming experience (Java, C/C++, Phyton, Ruby...)‖, 

―Mathematical and statistical programming experience (R, SAS, SPSS, Phyton...)‖  and the 

like are very frequent accompanying elements in these job announcements as well. In other 

words, there is much greater demand for job applicants with programming skills and 

knowledge of statistics than for ―pure‖ AI specialists. 

A forum discussion about which undergraduate computer science courses should an 

aspiring ML engineer take
43

 lists in the answers AI, ML, probability, statistics, linear 

algebra, data science, algorithms, and theory of computation, augmented with an 

introductory course in psychology. Although psychology might look to some as an ―outlier‖ 

in this list, it actually helps aspiring ML engineers develop a set of skills different from the 

―core‖ ones – AI, ML, math, statistics – but also very important in practical work. When ML 

engineers do not have a good knowledge of the data they have to work with, they have to 

familiarize with it. In practice, it means attending meetings with the clients and putting a lot 

of effort in clarifying every single attribute in a dataset. 

All these observations should be put in the perspective of expectations from both the 

industry and the job applicants. Actually, many companies expect job applicants to do a lot 

of data analytics and statistics, rather than DL modeling that is used more frequently in 

academia
44

. Likewise, most modeling in industry in terms of ML modeling will be traditional 

modeling, starting from relational databases, not DNN and the like. In addition, due to 

companies‘ expectations, many positions that include ML tasks also comprise programming 

and software engineering. This often contradicts expectations of job applicants – although all 

ML includes some programming, it is very different from the programming associated with 

application development. 

Also, most companies use cheap and abundant hardware, which means that the ―more 

data‖ approach also incurs longer times to train models. Not understanding this important 

fact and expecting any ML model training to run fast without investing in expensive 

equipment is a serious misconception. A more-and-more applied strategy to alleviate this 

problem is to subscribe for cloud-based tools such as AutoML
45

, where training ML models 

relies on powerful external hardware and software. With tools like that, ML engineers can 

automate much of the model training, experimentation, fitting and evaluation, getting high-

accuracy predictions, but cannot eliminate programming associated with the demanding 

tasks that precede model building in the ML pipeline – data collection, cleaning and 

wrangling. 
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From the perspective of an individual company, the workplace roles, the jobs assigned to 

them and the entire set of business processes and culture should be all tuned well, in order to 

create new values and make profit. This leaves some room for structured planning and 

decision-making. A simple tool to use in this process can be a 2×2 matrix with 4 quadrants, 

defined along the horizontal Time-to-learn and vertical Utility axes [66]. The quadrants 

defined this way include Learn (high Utility, low Time-to-learn – the skills and roles that 

add value for the company quickly), Plan (high Utility, high Time-to-learn – the skills to be 

acquired only if they are really worth the investment), Browse (low Utility, low Time-to-

learn – easy to acquire skills, so stay aware in case their utility increases) and Ignore (low 

Utility, high Time-to-learn – the company does not have the time for these skills). With this 

tool, an AI company can simply list the skills it needs (e.g., ML modeling, statistics, data 

engineering, data collection and wrangling, etc.) and map them onto the four quadrants. The 

company then typically focuses on the Learning quadrant and defines the job roles and 

positions in a rather straightforward way. 

6.3.3. ML engineering and data engineering perspectives 

There is some difference between ML engineers and data engineers [67]. ML 

engineers use programming languages to collect data, clean it, wrangle with it, build and 

tune ML models and consider alternatives. The languages they typically use include SQL, 

Python and R. One of the most important and creative activities of ML engineers is 

feature engineering – what often differentiates successful ML projects from those that fail 

is the lack of deriving new, useful input features from existing ones.  

Data engineers take care of various data sources, formats, storage
46

, infrastructure, scaling 

and security, and, very importantly, integrating them in applications to make predictions – for 

example, deploying them in the cloud as microservices [68]. Experience and skills in data ETL 

(Extract, Transform, Load)
47

 are essential for data engineers, and so is SQL.  

These two (often intertwined) job roles make much of ―what it really looks like‖ to 

work in the area of ML in a company
48

, and is largely different from ML research [69]. 

Note also that many use the term ―data scientist‖ to encompass ML engineer, data 

engineer and business analyst roles. This often hinders the real nature of the work done by 

ML engineers, and some even call this term mislabeling.
49, 50 

As already mentioned, most of the real work of ML engineers is related to 

programming. ML model building and tuning takes up to 10-15% of their time (whereas 

data cleansing and wrangling are about 80% of the job). They work mostly on regression 

and classification problems, much less on DL problems, and their good command of 

descriptive statistics is understood. 

To some, it comes as a surprise that there are usually no entry-level positions for ML 

engineers and data engineers.
51

 But it stops being a surprise when one remembers that, for 

instance, the ML role assumes knowledge of AI and statistics and a long list of 

programming and other technical skills. It‘s a similar case with the data engineer role. 
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6.3.4. Strategic perspective 

No understanding of the current state of affairs in AI can be complete without at least 

briefly taking into account a more global, strategic perspective. 

To this end, the current view is that the strategic leaders in AI are just 9 big companies 

from China and US [70]: Alibaba (China), Amazon (US), Apple (US), Baidu (China), 

Facebook (US), Google (US), IBM (US), Microsoft (US) and Tencent (China). Amy Webb, 

the author of the book [70] specifies: ―These companies that are building the frameworks, 

the custom silicon, it‘s their algorithms, it‘s their patents. They have the lion‘s share of 

patents in this space. They‘re able to attract the top talent. They have the best partnerships 

with the best universities. It‘s these nine companies who are building the rules, systems and 

business models for the future of artificial intelligence. As a result of that, they have a pretty 

significant influence on the future of work in everyday life.‖
52

 

However, there is a big difference in how these companies work: those from USA are 

private companies, commercially oriented and with responsibility primarily to their 

shareholders; those from China, on the other hand, are independent but have to follow the 

leadership of the government. But in both cases, it is a relatively small group of people that 

make decisions, and the process is not very transparent. 

Application-wise, in USA it is Microsoft that is the leader in defense AI, and Amazon also 

has a number of contracts with the government related to AI development. Google has pulled 

out of the defense applications and has focused more on transportation, healthcare and 

consumer services. When it comes to DL applications, it is Nvidia Corporation that 

manufactures GPU units that power self-driving vehicles, cloud computing and so on, Deep 

Instinct is the leader in DL-based cybersecurity, and Microsoft‘s cloud computing service, 

Azure, can run complex DL-driven tools for medical imaging, robotics, NLP etc. In China, AI 

in transportation has reached an extremely impressive level, and intelligent service robots and 

drones, neural network chips, and intelligent manufacturing are also among the AI development 

priorities identified by the Chinese Ministry of Industry and Information Technology. 

6.4. Fear of AI vs. benefits of AI 

The rapid development of AI and the AI hype have created fear in many people, who 

seem to believe in the dark predictions mentioned in section 6.2. In a nutshell, the fear is 

that once intentions, thoughts, human-like behavior and other features of intelligence are 

coded into programs, machines will become very hard to control and will become 

inherently dangerous. On the way to this singularity, massive unemployment is almost at 

sight, in spite of the lack of evidence ([63], [64]) that it looks like that. 

Another concern is that the massive data being collected about everything, everywhere, 

every minute can become a downright threat to privacy and can endanger society by putting 

control over too many things into hands of governments or other small groups of people. 

For instance, it has been reported that in China the government has installed over 200 

million of surveillance cameras connected with a powerful face-recognition DL system [71]. 

As a result, each person captured on any of these cameras can be identified and an activity 

profile is then created for that person. Given the population of China, the technology behind 
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this system is certainly mind-blowing, but the concern is that such an activity profile is 

then fed into an AI-powered social credit system, meaning that for each person the 

government calculates a credit score/rating. Those with high scores enjoy benefits in e.g., 

online purchases, restaurants, hotels and while traveling; those with low scores don‘t. 

Sure, companies like Facebook and Google are collecting data about their users and are 

creating their profiles as well, and it is not clear how they are using these profiles. 

A lot of discomfort has also been created by a recent research at MIT, where a DL 

system called Norman
53

 has been trained using highly negatively biased data [72]. As a 

result, images classified in a neutral way by a standard DL image recognition system have 

been classified by Norman in a scary way. This has raised many concerns, like: ―Imagine AI 

that denies someone a loan because of their gender. Imagine AI that classifies someone as a 

criminal because of racial prejudice. What‘s the scariest part of artificial intelligence? How 

similar it is to us.‖
54

 

Others have rushed to respond quickly, e.g. ―There is no reason to give AI control over 

goals. There is only gain to be had in giving it control over means… No tool is designed to 

take over the goals of what it should be used for. Tools don‘t have their own motives.‖
55

 

They all pull up many examples of ―good AI‖, such as those surveyed in section 1, and their 

major counter-argument is summarized as ―Sometimes those goals, as decided by humans, 

are dangerous to other humans. But that‘s not out of control. That‘s just in the control of a 

dangerous human.‖
53 

The largely debated issue that many people will be left jobless and without purpose 

due to AI-powered automation of many jobs has its reasons. Truck drivers, factory 

workers, retail and food service assistants are not the only ones to be scared to this end, 

although their jobs are usually the first ones mentioned in the debates. Stock trading, legal 

analysis, as well as robotic surgery and medical diagnosis, treatment and care, are often 

quoted as highly skilled professions where AI will replace humans. 

More optimistic views see AI and data revolution as incentives to transform business 

processes and job roles. The AI assistant metaphor is their stronghold – they see AI-driven 

machines not as competitors for human jobs, but as companions that will do work that they 

can do better, and will simultaneously let humans focus on things unique to them, such as 

building relationships, making decisions in complex situations, showing empathy and the 

like. As G. Warner has nicely put: ―Which would you rather have: 1) a human doctor; 2) an 

AI doctor; or 3) a human doctor using AI?‖
56

 

Some jobs will certainly cease to exist due to further development of AI – as it has been 

the case due to different kinds of automation throughout the history of mankind – but some 

new will be created. In general, many jobs that entail creativity, social interactions, general 

knowledge, emotional and social intelligence, as well as manual dexterity will thrive; for 

example, change management specialists, human-computer interaction developers, ML 

infrastructure maintainers, data curation workers, mental health professionals, etc. An almost 

―classical‖ related question is ―Will AI replace programmers?‖ M. Fouts‘ answer, not 

without an irony, is: ―Every 10 years from 1960 to 1990 at least one major prediction by a 

prominent AI researcher was ―AI will make programmers obsolete in (8-)10 years‖. 1960 
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was 60 years ago and no programmer has ever been replaced by the use of AI software. 

Nobody has made that prediction since 2000, as far as I know. If AI is ever able to 

replace programmers, it won‘t be this century.‖
57

 

In debates on AI pro et contra, there is also a group of people who tend to be neither 

pessimists nor optimists, but cautious and more realistic, i.e. to see the things from multiple 

perspectives. Here‘s a comment coming from that party, in this case with regard to the 

recently developed GPT-3 natural language generator: ―A tool like this has many new uses, 

both good (from powering better chatbots to helping people code) and bad (from powering 

better misinformation bots to helping kids cheat on their homework).‖ [54]. 

Developing AI that brings benefits to the society is also a concern of governments and 

political institutions. For instance, European Commission has published a strategic document 

on development of AI for the benefit of the citizens of EU [73]. The document addresses 

many opportunities and challenges of AI, but also ―a number of potential risks, such as 

opaque decision-making, gender-based or other kinds of discrimination, intrusion in our 

private lives or being used for criminal purposes.‖ The guidelines on development of ethical 

and trustworthy AI [74] have been a precursor to [73]; these guidelines have established a 

framework for achieving trustworthy AI. The framework has set ethical principles and values 

for developing AI in Europe, with the idea to foster development of ethical and robust AI. 

Here ―robust‖ refers to the fact that AI systems can cause unintentional harm, so both 

technical and social robustness should be addressed when developing an AI system.  

6.5. Artificial General Intelligence 

Artificial General Intelligence (AGI), also sometimes called General Artificial 

Intelligence (GAI), has recently proliferated as more-or-less a synonym for strong AI and 

is used interchangeably with it, as well as with true AI, general AI and real AI (RAI). 

Conceptually, it is a close approximation of the concept of AI as it was originally 

envisioned in Mid 1950s – the technology that would be able to do anything that human 

intelligence can, without human intervention.
58

 

Intensive recent discussions about AGI and if it is achievable are largely a side effect of 

the AI hype. Critics of current AI notice that it is designed only to perform specific tasks, 

like image recognition and chess playing, tasks that are essentially based on mathematical 

logic. Fed by huge amounts of data and by pre-programed algorithms, and in some cases 

equipped by powerful sensory systems (e.g., modern robots and self-driving vehicles), in 

most mundane applications they do perform well. But if AGI tasks are set as objectives, 

current approaches simply hit the wall.  

An AGI system should also be free of any bias in its behavior, reasoning and actions. This 

is inherently impossible, if only for the reason of their human designers being biased in many 

ways (attitudes, objectives, culture and the like)
59

. For instance, Chinese and US AI developers 

would typically have different views of the AI objectives and purpose). Likewise, AGI is 

envisioned as observer-independent – also impossible with current technology – whereas 
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current AI is observer-dependent.
60

 For example, since human intelligent behavior is typically 

inseparable from emotions, it is highly unlikely that supporters of animal shelters will react to 

stray dogs the same way as people who have got bit by such dogs. Last but not least, an 

essential feature of AGI would be the ability to generalize and then make small variations of the 

generalized concept or behavior; current AI cannot do it, in spite of some attempts to provide 

formalisms to do it (e.g., based on description logics [75]). ―Throwing larger data sets at faster 

computers only works for a handful of problems and doesn‘t work very well at that… But none 

of these performances have resulted in a general method that works. Instead, so called data 

scientists carefully tune data sets used for training, AI companies are caught having humans do 

what they claim their AI software is doing, and progress has ground nearly to a halt.‖
61

 

Naturally, speculations on the feasibility of AGI have also revived the likewise 

speculative idea of RAI [37] and have even led to its elaboration into the concepts such as 

Super Intelligence, Artificial Super Intelligence (ASI), Universal Data Intelligence 

Framework and the like.
62

 But perhaps more importantly, they have also raised speculations 

about another AI winter. 

There have been two major AI winters in the past (in Early 1970s and Late 1980s / Early 

1990s). They have resulted from AI hypes that have preceded them, over-inflated buzz 

created by popular media and unrealistic promises made by companies and developers. 

These, in turn, have created extremely high expectations from industry and potential end-

users, which have eventually failed to become a reality and have led to the bubble burst 

effect. 

Some base their speculations about another AI winter at sight on making analogies with 

the previous two. Others
63

 also look at the Gartner hype cycle for AI 2019 [56], as 

mentioned in sections 4 and 6.2. Both of these parties express disappointment in current AI 

not producing commercial results. The hangover is even more obvious from the sheer reality 

that impressive results in DL and NLP typically come from costly hardware required to train 

the models with massive data
61

 [63]. This especially hits startups, which are beginning to 

realize that the magic label ―AI‖ alone is not enough to create a ROI. Even big players like 

Google, Microsoft and OpenAI are beginning to show signs of slowing down the 

innovation,
64

 since most of their huge ML models still keep mapping input to output, without 

any reasoning or building world models that AGI supporters demand.  

In summary, AGI still remains a myth. 

6.6. Challenges 

Still, although the hype seems to be declining, there are other opportunities and 

reasonable funding, and there are also intriguing challenges. Some of them are indicated 

in the Innovation Trigger / On the Rise section at the same Gartner hype cycle for AI 

2019 that shows the slight decline of interest in NLP, DL and computer vision [56]. 

Interestingly, AGI is there, but it is predicted to take more than 10 years before it 

becomes a reality. Other notable AI technologies on the rise include, e.g.: 
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 Decision intelligence. It is about how to apply ML in organizational decision-

making in order to initiate actions with beneficial outcomes. It also applies 

visualization to help decision-makers quickly grasp cause and effect chains [76]. 

 Neuromorphic hardware. In this special-purpose hardware, behavior of neurons in 

human brain is emulated directly in hardware, enabling exceptional and energy-

efficient performance during the training of DNNs.
65

 

 AI developer kits. This term denotes a set of technologies for straightforward 

building of AI applications for mobile devices, as well as in the form of Web 

services.
66

 

 AI PaaS (AI platform as a service). Platforms accessible as services for ML 

developers through a Web-based interface enable developers to build models, use 

models developed by others, and enjoy the model up- and down-scaling as 

needed.
67

 

 Edge AI. Much of data preprocessing and initial ML can be done by devices used 

to collect data (e.g., smart speakers), prior to sending data to more powerful 

computers and servers for further analysis.
68

 

 Explainable AI (XAI). In contrast to today‘s black-box nature of ML, where often 

even the system designers cannot explain why the model has predicted a specific 

output, XAI develops with the idea to make the output of an AI system understood 

by humans [77]. 

 … 

In addition to these practical development challenges, there is also a number of 

theoretical challenges that AI still has to take on its path of further expansion. For 

example, classical questions still without a good theoretical answer are: What exactly is 

happening inside a NN that makes it possible to train it to recognize images, voices, and 

so on? Why DL algorithms work? Similarly, how one can infer a suitable number of 

layers and nodes in a NN? It is still largely a matter of trial and error; there is no theory 

about it. Likewise, what is the real nature of human vision and can one build a computer 

vision system based on it, unlike building DL-based image recognition systems where a 

change of only one pixel can lead to misclassification of the entire image? Along the same 

lines, can ML work correctly without cleaning noisy data first? Human brain can. In NLP, 

how to enable semantic understanding of text?  

Further on,
69

 instead of just more-or-less accurately mapping a DNN input to output 

using some (often complicated) transfer function, is it possible to make the network infer 

some causal knowledge that connects the two? Can a DNN be trained to learn multiple 

tasks simultaneously? Can it be trained to self-improve over time, possibly in multiple 

phases, like in the developmental psychology of humans? Ultimately, can it be trained to 

become self-aware? 

These last questions can be tackled in multiple ways. At MIT, researchers have tried 

to make an AI system evolve on its own, in terms of automatically discovering complete 
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ML algorithms just using basic mathematical operations as building blocks [78]. 

Although preliminary results look modest – their evolutionary approach has enabled the 

system to discover two-layer neural networks trained by backpropagation – it is still 

extremely promising because of at least two reasons. The first one is the vastness of the 

search space. While their work has just scratched the surface, it is quite possible that the 

approach can help discover yet unknown NN algorithms and topologies. The second 

reason is of at least equal importance: this approach significantly reduces human bias due 

to a generic search space. 

Another group of researchers has made initial progress in developing NNs good for 

modeling and learning continuous processes (unlike all other NNs, including DNNs, that 

can model only discrete things, i.e. nothing that transforms continuously over time) [79]. 

These new NNs are called ODE networks, for Ordinary Differential Equations that 

parameterize the continuous dynamics of hidden units specified by a neural network. With 

other NNs, the way training is typically conducted is specifying the number of layers in 

advance, running the training and then finding how accurate the network is. In contrast, 

with an ODE network one specifies the target accuracy first, based on which the network 

configures and trains itself in the most efficient way until it achieves the pre-specified 

accuracy. The ODE approach is also featured by high memory efficiency. The drawback 

is that, unlike with other NNs, one cannot tell in the beginning of training how long it will 

take for an ODE network.  

7. CONCLUSIONS? 

This is another intentional question mark in a subheading. It is difficult to derive any 

definite conclusions about AI as a field today, since the only common denominator of so 

many different views and phenomena is – controversy. 

There is still no single, widely adopted and solid definition of what AI is. This is not a 

surprise, given the fact that there are still a lot of disagreements on what human 

intelligence is. In spite of that, there seems to be a good deal of agreement about the 

differences between weak AI and strong AI (AGI), Fig. 5. Still, due to the AI effect, many 

research results that initially take on the lure of AI, lose that lure over time and become 

―just technology‖. Part of the explanation for that is the fact that virtually all AI today is 

essentially weak AI, without generalized human cognitive abilities, hence incapable of 

solving intelligent tasks without human intervention. 

It is quite possible that AI effect will not stop until AGI is achieved (if it ever 

happens). It might also happen that when AGI is achieved the term ―AI‖ will gradually 

become obsolete and just part of the history of computing. 

But until that happens, the reality looks very different. AI cannot do so many things 

that in the world of humans are taken for granted – e.g., there is still no robot that can 

implement the moves of an old lady drinking her coffee without spilling the coffee
70

, and 

no DNN that can recognize the reasons behind a sudden change in a person‘s mood. True, 

advances in technology have accelerated the capture of data and information, and the 

technology we call ML can usually efficiently analyze this data, build models, and make 

predictions. But it cannot explain the models and predictions it has made, not at all. 
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The volume and intensity of the AI hype have created a situation of overselling AI 

both in industry and in academia. Many businesses declare that they are deploying and/or 

developing some AI; however, a recent survey has not confirmed it for about 40% of the 

sample. The offer of AI, ML, DL and similar courses is abundant at universities and at 

boot camps, and is largely profitable because of people‘s fear of missing out (despite the 

employers‘ reserved opinion about the certificates from such courses). The prophecies of 

AGI-coming-soon, which the general press is frequently throwing, only contribute to that 

fear. But few, very few realize some crucial misconceptions about AI, like the one that 

current AI systems still remain useful in narrow domains. The extreme view is that AI 

actually doesn‘t exist.
71

 

 

 

Fig. 5 A vision of AI 

AI has largely become a metaphor for data-intensive technology. Is it maybe a sign of 

a paradigm shift in the field? Long ago, achieving human-level intelligence, or AGI, has 

been the objective of AI research; supporters of the AGI idea believe that it should remain 

so. However, AI today seems to be obsessed with data, despite the fact that much of it 

achieves success only with static data or snapshots of data; but the problem is that data 

changes over time. Time-series analysis is an approach to tackle this problem, but it is 

also a data-intensive approach. Things like temporal reasoning, that once have been 

among the hottest AI topics, seem to be forgotten. 

Fortunately, in spite of so many controversies research in the broad field of AI is not 

dead. Researchers (and companies, like Amazon, Baidu, Facebook, Alibaba, OpenAI and 

Google) always detect and pursue interesting problems at different scales. They often fail 

to deliver results, but are not afraid to fail – curiosity always prevails over fear (although 

neither is possible to represent with current AI technology!). Failures indicate the paths 

not to follow, thus they can still be of some value in the next step. 
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Although nobody knows when and if AGI will be achieved or not, brilliant entrepreneurs 

and researchers alike keep suggesting how to pursue it. Alan Kay‘s affirmative attitude about 

true AI is: ―The history of learning how life works is ‗very suggestive‘ that intelligence [can be 

based on] special organizations of parts that do not at all have to be intelligent into systems that 

manifest intelligence… From the practical standpoint, it is hard to imagine that solutions will 

not be more intelligent and reflective than human beings right from the get-go (we are actually 

terrible thinkers, given what thinking is all about).‖
72

 Sridhar Mahadevan seems to share that 

opinion: ―Intelligence emerges from the synergistic interaction of simple entities embedded in 

complex environments… In this view, we think of intelligence not as an ability innate to a 

creature, but as a composite of the interactions of the creature with its environment.‖
73
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