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Abstract. In this paper the concept of the strong Finite Element Method (FEM) 

formulation is explained first. Next, a brief review of strong basis functions that are 

used for quasi-static analysis of transmission lines with piecewise homogeneous 

anisotropic medium is presented. As numerical examples, effective relative permittivities 

of square coaxial lines with two anisotropic layers or one isotropic and one anisotropic 

layer are calculated by using the Galerkin version of the strong FEM formulation. 

High accuracy of the method is demonstrated for the layer thicknesses ranging from 0 

to 100% of the transmission line height. It is also shown that in the case of the half-

filled line, effective relative permittivity computed by the FEM is practically equal to 

the one obtained by a simple formula. 

Key words: strong FEM formulation, quasi-static analysis, anisotropic dielectric, 

square coaxial line. 

1. INTRODUCTION  

One of the frequent and multidisciplinary methods used for calculation of electromagnetic 

(EM) fields is the Finite Element Method. FEM belongs to the group of numerical methods 

that are used for approximate solving of the boundary value problems in mathematical 

physics (partial differential equations whose order is two or higher, with the given boundary 

conditions). In almost all the available literature the weak FEM formulation [1]–[3] is used. 

Weak formulation is based on basis functions that are not in the domain of the original 

differential operator (usually of the second order). Furthermore, most often low order 

approximations (i.e. of the first order) are used. On the other hand, only several published 

papers deal with the strong FEM formulation. First studies in this research area [4]–[6] 

have shown that strong formulation may have certain advantages in comparison to weak 

formulation. These advantages are reflected in the conceptual simplicity, simpler and 

more natural inclusion of boundary conditions and inherent higher order of approximation 

(the lowest order being three). A convenient choice of basis functions satisfies both 
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boundary conditions and results in much smaller number of unknowns for the same 

approximation order.  

For numerical examples in this paper, square coaxial lines with anisotropic layers are 

chosen, as a special case of the shielded planar lines. Shielded planar transmission lines 

with anisotropic dielectrics were subject to previous research, where their propagation 

characteristics were calculated by the use of various numerical and analytical methods. In 

[7] rectangular coaxial lines with homogeneous anisotropic dielectric were analyzed and 

their capacitance calculated by the use of an expanded charge simulation method and 

affine transformations. In [8] an analytical technique (the spectral domain technique in 

discrete Fourier variable) is presented for quasi-static analysis of rectangular lines with 

homogeneous and inhomogeneous anisotropic dielectric. In [9] several method classes 

(quasi-static, dynamic, empirical; analytical, numerical) and a number of methods (Method 

of Moments, Finite differences method, Transmission-line matrix technique, Modified 

Wiener-Hopf method, Fourier series techniques, Method of lines) were discussed and 

applied for calculation of the propagation characteristics of several typical planar structures. 

The paper, however, does not mention FEM. In [10] weak FEM formulation is applied to 

analysis of square coaxial lines with inhomogeneous anisotropic dielectric. In [4], [6] and 

[11] strong FEM formulation for anisotropic medium is presented and applied to analysis of 

shielded transmission lines with homogeneous anisotropic dielectric. Its high accuracy is 

demonstrated by comparison with results obtained by other numerical methods and by the 

commercial software.  

This paper is aimed to generalize the strong FEM formulation for anisotropic 

homogeneous medium to anisotropic inhomogeneous (piecewise homogeneous) medium 

and apply the method to calculation of effective permittivity of such square coaxial lines. 

To the best of authors’ knowledge, there are no published papers on the strong FEM 

formulation applied to those structures. 

Considering square coaxial lines as an example of a simple geometry, they are not 

only an excellent benchmark for numerical methods, but are also advantageous for 

practical measurements of constitutive parameters of anisotropic materials [12]. 

2. STRONG AND WEAK FORM OF BOUNDARY VALUE PROBLEM,  

STRONG AND WEAK FORMULATION  

Let the computational domain , be filled with anisotropic (possibly inhomogeneous) 

medium of parameters ε  and  and bounded by 1 2   . In  and on , let the 

following differential equation and boundary conditions be given: 

                                                ( )f f g    ,                                             (1) 

 0 1, onf V  , (2) 

 20
( ) , onnf A n . (3) 

In (1) f denotes the unknown function, function g represents sources, i.e. excitations, V0 

and An0 are known values on the boundary. If a domain is spatial (3-D), it is bounded by 

surfaces. If it is a surface (2-D), it is bounded by lines (contours). By introducing vector 
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grad fA , differential equation (1) is written in the form div f gA . In a 3-D 

case and for a diagonal tensor diag[ ]xx yy zz    , equation (1) can be written in Cartesian 

coordinate system as a compact operator form, 

 ,gLf   (4) 

where operator L is defined by 

 ε ε εxx yy zzL
x x y y z z

 . (5) 

Expression (2) represents Dirichlet boundary condition, whereas expression (3) 

represents Neumann boundary condition. If the parameters of the medium have abrupt 

changes on the surface (in 3-D problems) or on the contour (in 2-D problems) that separates 

mediums 1 and 2, it is necessary to satisfy Dirichlet and Neumann boundary conditions on 

the boundary between mediums, i.e. continuity of both function f, f1 = f2, and its generalized 

first derivative, 1 2A n A n  ( 1 1 2 2( ) ( )f f n n ), where n is the unit vector 

normal to the boundary and directed into medium 1. In the literature [1]–[3], the problem 

defined by (1)–(3), which contains a differential equation with boundary conditions, is 

referred to as the strong  form for a given contour problem. In the given case, the strong 

form contains second derivative.  

The solution of equations (1)–(3) is adopted in the form of approximation function, 

usually a polynomial with initially unknown coefficients. In general, mathematical 

functions can exhibit different orders of continuity: C 

0
 represents the continuity of the 

function itself, C 

1
 – continuity of both function and its first derivative(s). In general, C 

m
 

continuity represents continuity of function and its derivatives up to the m-th order. When 

the problem is described by a system of partial differential equations, strong formulation 

requires that the approximation function be in the domain of the original differential 

operator, i.e. of the operator in the strong form, throughout the entire domain  [13]. This 

means the continuity of both function and its derivatives up to the order one less than that of 

the original differential operator [3]. The strong form requires the strong formulation.  In 

case of the approximation function in equation (1), or alternatively eq. (4), we introduce the 

concept of a generalized C 

1
 continuity, as the continuity of the expression  ε ( / )xx f x  

with respect to x, ε ( / )yy f y  with respect to y and ε ( / )zz f z  with respect to z, so that 

( )f   is regular. This also implies that both boundary conditions (continuity of f and 

n  A) must be satisfied on every boundary inside , including boundaries between finite 

elements, if the problem is solved by FEM. Approximation function is represented as a sum 

of basis functions multiplied by initially unknown coefficients. Sufficient condition that the 

approximation function is a generalized C 

1
 function, i.e. that the formulation is strong, is 

that basis functions are generalized C 

1
 functions. Such functions are called strong basis 

functions for a given problem, both in homogeneous (constant ε  and ) and inhomogeneous 

( ε( , , )x y z , ( , , )x y z ) medium [4],[6].  

In order to solve problems easier, conditions of the strong form are commonly 

weakened, through integration, resulting in a wider class of possible approximate solutions. 

An arbitrary test (weighted) function w and the integral of the weighted residual for 

equation (1),  
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 ( ( ) )d 0w f f g



   , (6) 

are introduced. The first term inside the integral (the term that contains the second 

derivative) can be transformed by the use of the Gauss-Ostrogradski theorem [1],[14], 

 

( ( ))d div d (div( ) )d

d ( ) ( ) d ,

w f w w w

w w w f f w

  

   

   

   

A A A

A dΓ A dΓ
 (7) 

so that equation (6) can now be written in the form 

 ( ) (( ) )d 0w f f w w f wg

 

   dΓ , (8) 

where only first derivatives exist. Equation (8) represents the weak form.  

Weak form of equations, instead of using the original operator L, in which C 

1
 is 

required, uses the extended operator (not explicitly expressed) that requires only C 

0
 

continuity. This means that on interelement boundaries only C 

0
 continuity is required. Such 

approximation is the weak formulation. In weak formulations approximation functions have 

one order lower continuity in comparison with the strong formulation. In the weak 

formulation, boundary condition for normal components of vector A are not exactly 

satisfied. They are satisfied in approximate sense, through the weighted residuals. This 

introduces artificial charges at interelement boundaries. Details on this can be seen in [13]. 

Both strong and weak formulations can be applied in the weak form.   

3. BASIC FEM METHODOLOGY FOR A 2-D CASE AND AN ANISOTROPIC DIELECTRIC  

Let now the domain  be two-dimensional, e.g., uniform with respect to the z-axis, 

filled with linear, anisotropic dielectric without free charges, in which the distribution of 

electrostatic potential, V(x,y), is the unknown function. Let dielectric be discontinuously 

inhomogeneous. In this case 0  and differential equation for potential V is 

 s sdiv ( grad ) 0V , (9) 

where divs and grads are surface divergence and surface gradient, respectively. In case of 

2-D problems and for the particular choice of coordinate axis along the crystallographic 

axis, diag[ ]xx yy    [9]. In this paper we will consider only such (diagonal) permittivity 

tensors. Computational domain is divided into M finite elements. Let the elements be 

rectangular and homogeneous, so that the surfaces of discontinuity of   coincide with 

interelement boundaries. Exact solution V(x,y) is substituted by approximate solution 

expressed as a linear combination of basis function with unknown coefficients, 

1

N

j jj
V f a f


  . Following the Galerkin procedure [1], the system of linear algebraic 

equations for unknown coefficients is obtained, 

 [ ][ ] [ ], , 1,..., ,ij j iK a G i j N   (10) 
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 (grad )( grad )dij i j

S

K f f S ,   lDfG nii d

2

0


 , (11) 

where Dn0 = xx,yy(V/n) is a known normal component of the electric induction vector  

D on the contour 2 with indices xx and yy corresponding to the orientation of the unit 

normal n, i and j are global indices of basis functions and S  is the union of all the finite 

elements surfaces, eM
e SS 1  . The approximate solution f  is obtained by solving the 

system of equations (10) [5]. The matrix of this system, [Kij], is a sparse matrix. Such 

systems are usually solved by using specialized computer routines for sparse systems (in 

this paper we used [15]). 

4. STRONG BASIS FUNCTIONS FOR ANISOTROPIC MEDIUM  

Unlike conventional node-based functions [1]–[3], we will use basis functions that are 

not node-based and are of the strong type. 2-D basic functions for strong formulation are 

obtained by mutual multiplying pairs of 1-D basis functions for the strong formulation 

[16], 

 

2

2

2 1

2

2

( 1) ( 2), 1

( 1) ( 1) , 2
2

1
( ) ( 1) ( 1) , 3,..., 1

4

( 1) (2 ),

( 1) ( 1) , 1.
2

e

k
k

e

u u k

L
u u k

f u u u k n

u u k n

L
u u k n

 (12) 

In 2-D strong formulation all basis functions are products of the two 1-D basis 
functions of the two orthogonal coordinates u and v. Thus, continuity of the function’s 
first derivative (C 

1
 continuity) on all the boundaries between elements is automatically 

satisfied.  Basis functions in this case (except the first two, for j = 1, j = 2 and last two, 
for j = n, j = n + 1) are polynomials of different order and as such they are linearly 
independent. The order of all the other four polynomials is 3, but it is easy to show that 
they are linearly independent, i.e. none of them is a linear combination of the others. 
Strong formulation of 2-D problems has the minimal order of basis function equal to 3. A 
complete set of 2-D strong basis functions consists of singlets (basis functions defined 
over a single finite element), doublets (basis functions defined over two adjacent 
elements) and quadruplets (basis functions defined over a maximum of four adjacent 
elements that have a common node) [5], [17] . 

In Fig. 1 are shown one singlet and two kinds of doublets in the x-direction, respectively. 
Analogously, there are two kinds of doublets in the y-direction. D1-x doublet provides C 

0
 

continuity, whereas D2-x doublet provides C 

1
 continuity. In Fig. 2 are shown four kinds 
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of quadruplets, where Q1 provides C 

0 
continuity whereas Q2-x and Q2-y provide C 

1
 

continuity in the x and y direction, respectively. 
 
 

 
 

Fig. 1 (a) Singlet, (b) D1-x doublet, (c) D2-x doublet  

 

 

Fig. 2 Quadruplets: (a) Q1, (b) Q2-x, (c) Q2-y, (d) Q3  

Two-dimensional strong basis functions for anisotropic mediums can be formed as [6] 

 , ,( , ) ( , ) ( ) ( ) e
j k l k l k lf u v f u v f u f v F  , (13) 

where F 

e

k,l is a constant factor defined within e-th element, providing Dn continuity across 

the interelement boundaries (retaining continuity of potential V over the boundaries at the 

same time). This factor is required only if k and/or l are equal to 2 or n + 1. From this 

condition is derived general continuity of strong basis functions.  

For piecewise homogeneous anisotropic dielectric, a complete set of strong basis 

functions can be applied under certain conditions. We will consider here a case where 

dielectric is homogeneous in the x-direction and piecewise homogeneous in the y-

direction (Fig. 3). Let us find which basis functions (singlets, doublets and quadruplets) 

can be accepted in this case. All the functions that have zero derivative at their boundaries 

can be automatically accepted, as they do not participate in the Neumann boundary 

condition. These are all the singlets, doublets D1-x and D1-y and the quadruplet Q1. 

Doublet D2-x is defined in the homogeneous region, so no modification is needed; it is 

directly accepted into the set of basis functions. Doublet D2-y spans over two homogeneous 

elements of different  . In order that it can be accepted in the collection of strong basis 

functions, it must provide continuity of Dn between the two elements. One way to 

establish this is to multiply it by the factor , r1/e e
k l yyF   , which is different for the two 

elements [6]. (Relative permittivity is used here for simplicity.) Considering the inclusion 
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of the quadruplet Q2-x the sufficient condition 
1 2 3 4
r r r r/ /xx xx xx xx     is automatically 

satisfied, as both fractions are equal to 1 and no additional factor is needed. Considering 

the inclusion of the quadruplet Q2-y the sufficient condition 
1 3 2 4
r r r r/ /yy yy yy yy   

 
1 3 2 4
r r r r/ /yy yy yy yy     is also 

automatically satisfied. However, now the factors are needed, as direction of derivative is 

across the boundary between two different mediums. The simplest choice is , r1/e e
k l xxF    

for all the four elements in Fig. 3. Finally, for the quadruplet Q3 sufficient condition is 
1 2 2 1 3 4 4 3
r r r r r r r r( ) /( ) ( ) /( )xx yy xx yy xx yy xx yy        . As both fractions are equal to one, this condition 

is satisfied. Then, the simplest choice is , r1/e e
k l yyF   . With these additional factors all the 

singlets, doublets and quadruplets are approved to participate in the set of strong basis 

functions. Some of those doublets and quadruplets are in the next step (enforcing Dirichlet 

boundary conditions on the conductor surfaces) simply omitted from the set. The remaining 

basis functions enter the Galerkin procedure to determine the unknown coefficients. 

 

Fig. 3 Two-layer anisotropic medium divided into four finite elements: e
1
, e

2
, e

3
 and e

4
 

In this way it is shown that in the case when the boundary lines between domains of 

different parameters are straight, mutually parallel lines, the complete set of strong basis 

functions can be applied. 

5. NUMERICAL RESULTS  

Applying the Galerkin version of FEM [4]–[6],[10],[18], using the complete set of 

strong basis functions, we have calculated effective relative permittivity, re, of square coaxial 

lines shown in inset of Fig. 4. We performed verification comparing results obtained by the 

strong FEM formulation with those obtained by the weak FEM formulation from [10], by 

the other available software FEMM [19] and, in special cases, with simple analytical 

formulas.  

In Fig. 4 dependence of re on the relative height of a dielectric layer, h/b, above which 

is air, is shown for the three anisotropic dielectrics. Fig. 5 shows the same dependence but 

in the case where both layers are dielectrics; in three cases both dielectrics are anisotropic 

and in one case combination of isotropic-anisotropic dielectrics is applied. 
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Fig. 4 Effective relative permittivity as a function of the dielectric relative height, h/b,  

for three different anisotropic dielectrics over which is air, obtained by using 

strong FEM formulation, weak FEM formulation [10] and the commercial 

software FEMM [19], for b/a = 3 

 

Fig. 5 Effective relative permittivity re as a function of the dielectric relative height, h/b, 

for three different cases of double-layered anisotropic dielectrics and one example 

of isotropic-anisotropic dielectrics, for b/a = 3 
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These dependencies are shown for the following anisotropic dielectrics
*
: Boron 

Nitride, BN (rxx = 3.4, ryy = 5.12), Sapphire (rxx = 9.4, ryy = 11.6), Epsilam 10  (rxx = 13, 

ryy = 10.3), α-quartz (rxx = 4.52, ryy = 4.637) and PTFE Glass (rxx = 2.15, ryy = 2.34). 

These dielectrics are uniaxial crystals, for which cutting the layers perpendicularly to the 

axis of symmetry (optical axis, here a y-axis) results in a diagonal permittivity tensor [9]. 

Relative height of the dielectric substrate, h/b, is varied from 0 to 1. Excellent mutual 

agreement of all the groups of results on both diagrams can be observed.  

Another comparison can also be made. If the line is completely filled with an 

anisotropic dielectric, effective relative permittivity is re r r( ) / 2xx yy     . Here, a dash 

over re denotes both the average value and that it is obtained by the formula and not by 

the FEM. Applying this expression, the effective relative permittivity is re = 11.65 for 

Epsilam 10, re = 4.26 for BN, re = 10.5 for Sapphire, re = 4.5787 for α-quartz and for 

PTFE Glass is re = 2.245. Differences between values obtained by strong FEM 

formulation and the formula, although both groups of values are approximate, were found 

to be less than 0.5% (see results from Fig. 5, h/b = 0.0,1.0).  

For the half-filled line (h/b = 0.5) with two anisotropic dielectrics (or with one 

isotropic and one anisotropic dielectric), approximate formula 

 
r 1 r 1 r 2 r 2

re
4

xx yy xx yy   
  (14) 

can be used. Table 1 shows relative permittivity of the square coaxial transmission line 

half-filled with two anisotropic dielectrics, re

strongFEM 
(h/b = 0.5), compared with re , 

calculated from the above formulas. Excellent agreement can be observed. (Derivations 

of the above formulas are given in Appendix III.) 

Table 1 Relative permittivity of the square coaxial transmission line half-filled with two 

anisotropic dielectrics or one anisotropic and one isotropic dielectric 

Dielectrics Sapphire / 
Epsilam 10 

BN / 
Sapphire 

Epsilam 10 / isotropic 
dielectric, 13r   

)5.0/(
FEMstrong

re  bh  11.0786 7.4004 12.3249919 

re  11.075 7.38 12.325 

(%) 0.033 0.276 0.0008 

Comparison between the number of unknowns required for the accuracy better than 

0.5% can be made. For the weak FEM formulation the number of (rectangular) mesh 

elements was 512 and the number of unknowns was 4416 [10]. For the strong FEM 

formulation in this paper and the same mesh of 512 elements the number of unknowns is 

1472. The order of basis functions was nx = ny = 3 for both formulations. For low-order 

weak formulation [18] number of (triangular) mesh elements was between 5895 and 6019 

and the number of unknowns between 3097 and 3177. 

                                                           

* Permittivity values taken from  [9] and [20]. 
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6. CONCLUSION  

In this paper the strong FEM formulation for piecewise homogeneous anisotropic 

medium with a diagonal permittivity tensor was defined for the closed quasistatic 2-D 

problems. It is shown that for such a medium, the complete set of strong basis functions 

(singlets, doublets and quadruplets) can be used. The square coaxial transmission line has 

been analyzed by the presented method. Obtained results for effective relative permittivity 

for the line partly or completely filled with anisotropic dielectric have shown that the 

strong FEM formulation of the third order is exceptionally accurate. Calculated values 

are found to be in excellent agreement (better than 0.5%) with those obtained by the other 

available software and by simple approximate formulas. For the same accuracy, number of 

unknowns for the strong formulation was less than one half of the number of unknowns 

required for the weak formulation.  

Practical scope of the method is the analysis of all closed (shielded) planar transmission 

lines with anisotropic dielectric whose permittivity tensor is diagonal. Perspectives of the 

method are its generalizations to 3-D and open problems. 

Acknowledgement: The paper is a part of the research done within the project TR-32052 supported 

by the Serbian Ministry of Science. 

APPENDIX I.  

POSSIBILITY OF EXTENSION OF THE METHOD TO A NON-DIAGONAL PERMITTIVITY TENSOR 

Presented strong FEM formulation is based on basis functions that automatically 

satisfy both boundary conditions (for Et and Dn) at interelement boundaries, provided 

that permittivity discontinuities coincide with those boundaries. Let us examine, for 

example, doublet D1-x (Fig. 1b) in this regards. This doublet should provide both non-

zero function value and zero normal component of the field at the interelement boundary. 

For non-diagonal permittivity tensors of the two elements forming a doublet, 
[ ; ]e e e e

e xx xy yx yy     , e = 1,2, from continuity of the function along the boundary follows 

E1t = E2t and from the doublet property follows E1n = E2n = 0. Next, D1n =  
1 1

1 1xx n xy tE E  , 

D1n = 
2 2

2 2xx n xy tE E  . As, in general, 
1
xy  

2
xy, it follows that D1n  D2n, thus this doublet in 

this case does not satisfy boundary condition for Dn. Multiplying parts of the doublet 

inside each of the two elements by different factors in order to satisfy boundary condition 

for Dn would ruin the boundary condition for Et. The same reasoning is valid for the 

quadruplet Q1 (Fig. 2a). Without doublets D1-x, D1-y and quadruplet Q1, approximation 

is not possible, as, e.g. the function value will be forced to zero in nodes. Thus, the 

presented method is not applicable in this case. This, however, is not a significant 

shortcoming, as anisotropic substrates are in practice often cut perpendicularly to their 

optical axis, which results in a diagonal permittivity tensor.  



 Analysis of Square Coaxial Line with Anisotropic Substrates by Strong  FEM  Formulation 635 

APPENDIX II.  

POSSIBILITY OF EXTENSION OF THE METHOD TO ARBITRARY SHAPED 2-D GEOMETRIES 

Presented strong FEM formulation is based on basis functions that automatically 

satisfy both boundary conditions at interelement boundaries which, by themselves, should 

coincide with u or v coordinate lines. Also, permittivity tensor must be diagonal with 

respect to the applied coordinate system. Thus, any deformation (transformation (x, y) = 

f (u,v)) of originally straight u-v coordinate lines that 1. preserves mutual orthogonality of 

lines, 2. provides that discontinuities of dielectric coincide with either u- or v-lines and 3. 

preserves the diagonal property of   ( diag[ ]uu vv   ) is possible. E.g., for a coaxial 

line with isotropic dielectric and dielectric discontinuities either along the radial or along 

the angular coordinate of a polar coordinate system, the u-v mesh (and the corresponding 

finite elements) that coincides with polar coordinate lines enables the strong FEM 

formulation. For anisotropic dielectric, however, the diagonal property of   for the 

curved u-v-coordinates is very unlikely to be provided in practice, so the presented FEM 

formulation for the curved geometries and anisotropic dielectric is practically not possible. 

APPENDIX III.  

ON THE EXPLICIT FORMULAS FOR EFFECTIVE PERMITTIVITY USED IN THIS PAPER 

Distribution of the electrostatic potential, V(x,y), inside the TEM line with 

homogeneous isotropic dielectric is independent of its permittivity, as it is the solution of 

the Laplace equation, V = 0. For a square coaxial line, due to symmetry, along x- and y-

axis (according to the coordinate system shown in inset of Fig. 4) is also En = 0  

(component normal to the axis). Therefore, if this line is half-filled with isotropic 

dielectrics, potential distribution inside each of the two dielectrics is the same as the 

whole line is filled with that dielectric and independent of permittivities, so its 

capacitance per unit length is C' = (C'1 +C'2)/2, where C'1,2 are values for the cases when 

the line is completely filled with dielectric 1 or 2. From this follows that effective relative 

permittivity is re r1 r2( ) / 2   .  

For the TEM line with homogeneous anisotropic dielectric with a diagonal permittivity 

tensor, distribution V(x,y) is the solution of equation rxx
2
V/x

2
 + ryy

2
V/y

2
 = 0, so it 

depends on rxx and ryy (more precisely on their ratio). In the case of the square coaxial 

line, along the x- and y-axis is again, due to symmetry, En = 0, but we note that now 

V(x,0) and V(0,y) depends on rxx and ryy. For a given ratio b/a, the capacitance per unit 

length of the line is C' = f (rxx, ryy) = f (ryy, rxx). After the change of variables, p = 

rxx + ryy, q = rxx  ryy, this transforms to C' = g(p,q) = g(p,q). In the special case of the 

isotropic dielectric (q = 0), r 0 0( ,0) / 2xxg p C pC . From those properties follows that 

the Taylor series of g(p,q) around q = 0 and arbitrary p, up to linear terms is g(p,q) 

 g(p,0). Thus, for small rxx  ryy, re 0 r r( , ) / / 2 ( ) / 2xx yyg p q C p   .  

For the same line, but half-filled with two anisotropic dielectrics with a diagonal 

permittivity tensor, potential distribution is not simply composed of the two distributions 

from the two cases when the line is completely filled with one or the other dielectric, 

because V(x,0) and V(0,y) (and thus, Et on dielectric boundary) depend on elements of the 

two permittivity tensors. For the capacitance per unit length of such a line, formula 
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C'  (C'1 +C'2)/2 is now an approximation for small rxx1  ryy1 and rxx2  ryy2. After 

substitution C'12 = re1,2C'0 and re1,2  (rxx1,2 + ryy1,2)/2, an approximate formula 

re  (rxx1 + ryy1 + rxx2 + ryy2)/4 is obtained. This formula is exact in the limiting case 

r 1 r 1xx yy   and r 2 r 2xx yy   (isotropic dielectrics).  
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