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Abstract. This paper describes the significance of the iterative approach and the structure 

damping analysis which help to get better the performance and validation of shunt 

capacitive RF MEMS switch. The micro-cantilever based electrostatic ally actuated shunt 

capacitive RF MEMS switch is designed and after multiple iterations on cantilever structure 

a modification of the structure is obtained that requires low actuation voltage of 7.3 V for 3 

µm deformation. To validate the structure we have performed the damping analysis for each 

iteration. The low actuation voltage is a consequence of identifying the critical membrane 

thickness of 0.7 µm, and incorporating two slots and holes into the membrane. The holes to 

the membrane help in stress distribution. We performed the Eigen frequency analysis of the 

membrane. The RF MEMS switch is micro machined on a CPW transmission line with Gap-

Strip-Gap (G-S-G) of 85 µm - 70 µm - 85 µm. The switch RF isolation properties are 

analyzed with high dielectric constant thin films i.e., AlN, GaAs, and HfO2. For all the 

dielectric thin films the RF MEMS switch shows a high isolation of -63.2 dB, but there is 

shift in the radio frequency. Because of presence of the holes in the membrane the switch 

exhibits a very low insertion loss of -0.12 dB.  
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  1. INTRODUCTION 

RF MEMS switches are becoming prominent because of their low power consumption 
and high linearity [1]. Shunt capacitive RF MEMS switches are extremely useful in RF 
MEMS technology which has great potential in the design of reconfigurable antennas [2]. The 
frequency range of 1.5 - 15 GHz is the major band which will cover significant wireless 
applications like GPS, GSM, Wi-Fi, Wi-Max, and UMTS [3]. Potential major research 
challenges of Electrostatically actuated RF MEMS switches are how to reduce the required 
actuation voltage, improve their switching time and reliability. A proper iterative study helps 
to obtain better mechanical, electrical and RF properties of the switch. The cantilever-based, 
serpentine, fixed-fixed, folded membrane structures are popular in the design of MEMS 
devices. Among these, the cantilever based devices offer low actuation voltage and better 
switching properties [4-6].  

But, there is still room to improve the cantilever performance by the iterative analysis. 
Material science also helps to choose the most suitable thin film for the substrate, the 
transmission line and the membrane [7].  

2. RELATED WORK 

In the early decades, several researchers advanced the research on RF MEMS switches. 
Electrostatic, magneto static, piezo resistive, and thermal are the popular actuation techniques. 
Among these, electrostatic actuation offers major advantages [8]. However, there are still a 
few potential research challenges in electrostatically actuated RF MEMS switches, like 
improving the reliability, reducing the actuation voltage, and improving the switching time [9, 
10]. The prior iterative analysis obviously helps to improve the performance of the RF MEMS 
switches. Material science has a prominent role in the selection of thin films for the 
transmission lines and the membranes. Silicon or glass materials are generally used for the 
substrate [11]. The CPW and the membranes are micro machined in Au, Al, Cu, and Ti. For 
capacitive MEMS switches the dielectric material used plays an important role in improving 
the RF properties [12]. The RF properties i.e., insertion and isolation losses of the switch truly 
rely on the capacitance ratio. The ratio of downstate capacitance to upstate capacitance is 
known as the capacitance ratio [13]. 

3. MATHEMATICAL ANALYSIS 

The rectangular cantilever critical stress analysis is indispensable because it primarily 

determines the switch reliability. The critical stress (σc) in terms of cantilever dimensions 

and the Young's modulus (E) can be expresses as [14],  
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Fig. 1 Cantilever membrane 
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For the cantilever membrane as shown in Fig. 1, the stiffness is equal to that of the 

spring constant (K). The mathematical equation can be given as [15], 
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The resonant frequency of the cantilever membrane can be written as   
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Where, m denotes membrane mass is given as m=ρ*l*w*t. The time required for the MEMS 

switch to come from the up state to the down state is known as the switching time. For an 

electrostatically actuated MEMS switch, the switching time can be expressed as 
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The capacitive switch insertion and the isolation properties truly depend on the switch 

capacitance ratio. The RF MEMS switch upstate and down state capacitance can be expresses 

as [16],  
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'A' is the cross sectional area among the membrane and the CPW strip, and ‘td’ is the 

dielectric thin film thickness. In terms of the return loss and the upstate and downstate 

capacitance the insertion losses (S21) can be expressed as  
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The isolation losses (S21) depend on the characteristic impedance and the RF frequency 

(f0) of the switch and can be expressed as  
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4. MEMBRANE ITERATIVE ANALYSIS 

A rectangular cantilever structure as shown in Fig. 2, is considered from the point of view 

of the desired radio frequency requirement. Its dimensions are given in Table 1. We have 

performed the iterative analysis which helped decrease the required actuation voltage.  

      

Fig. 2 Performance improved cantilever structure with bottom electrode.  

Table 1 Performance improved cantilever structure dimensions. 

Parameter Variable Value (µm) 

Cantilever 

Cl 220 

Cw 200 

Ct 0.5 

Slot1 
l 10 

w 160 

Slot2 
l 5 

w 180 

Perforation -- 5x5 

Bottom 

Electrode (BE) 

BEl 120 

BEw 200 

BEt 0.6 

Overall we have performed the multiple iterations on cantilever membrane by varying the 
membrane thickness, by placing slots and by incorporating the perforation.  The iterations 
are started with 220 µm length, 200 µm width and 1 µm thickness cantilever designed 
with gold material as shown in Fig. 3. 

In the design of RF MEMS switches, the validation of the membrane properties is 
very important. The reliability of the switch depends on the multiple parameters in the 
membrane damping analysis.  With the primary goal of the switch validation, we have 
considered membrane damping in every iteration. On the whole, we have observed the 
cantilever damping up to 8000 µs. In this iterative process, we have noticed a few 
important points i.e., the incorporation of slots into the membrane leads to an increase in 
the damping duration but also helps to reduce the actuation voltage. Incorporating holes 
into the membrane helps to reduce the damping duration but at the same time it leads to 
an increase of the actuation voltage.  



 Damping Analysis to Improve the Performance of Shunt Capacitive RF MEMS Switch 385 

 



386 L. N. THALLURI, K V V KUMAR, K. R. SEKHAR, N B BABU D.3, S S KIRAN, K. GUHA 

 

Fig. 3 Cantilever Structure Iterative Analysis 

However, we have considered the 6th iteration membrane for the design of the final 

RF MEMS switch i.e., a gold membrane with two slots, perforation and 0.7 µm 

thickness. This requires an actuation voltage of 7.3 V for 3 µm displacement and 

switching time is 110 µs as shown in Fig. 4.  
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 (a) (b) 

Fig. 4 Cantilever membrane, (a) The displacement distribution under electrostatic actuation, 

(b) Displacement versus switching time 

 
Fig. 5 Eigen frequencies 
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In the RF MEMS switch performance analysis, Eigen frequencies help to analyze the 

deformation of the membrane during electrostatic actuation as shown in Fig.5.  The real 

advantage of introducing holes into the membrane is that it helps to improve the insertion 

properties of the switch. This facilitates the electrostatic actuation and at the same time 

the holes make the release of the membrane during the fabrication process easier. The 

membrane thickness reduction helps reduce the required actuation voltage but up to some 

level the damping duration becomes limited. However, if the membrane thickness is 

below 0.7 µm, the membrane damping duration exceeds the limits.  In the 7th iteration, 

we have notices that for a 0.6 µm thickness the membrane undergoes continuous damping 

which will lead to membrane collapse. So eventually, we have taken the membrane with 

0.7 µm thickness which requires 7.3 V for a 3 µm displacement. The designed membrane 

is resonating at 27 KHz in electrostatic actuation as shown in Fig. 6.  

 

Fig. 6 Resonant frequency 

The real advantage introduced by perforating the membrane is to ensure an improved 

stress distribution. Consequently, the reliability of the switch will improve. The stress 

distribution in the cantilever membrane is shown in Fig. 7. 

 

Fig. 7 Stress distribution in the designed cantilever membrane 
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5. RF MEMS SWITCH 

The RF MEMS switch is designed using performance improved rectangular membrane 

with slots and perforation. The CPW transmission line with silicon used as a substrate is 

shown in Fig. 8. The height of the silicon substrate is 800 µm.  

 

 

Fig. 8 Shunt capacitive RF MEMS switch with cantilever membrane 

A dielectric thin film of 1 µm thickness is placed on the top of the silicon substrate for 

better insulation. A CPW transmission line with G-S-G of 85 µm - 70 µm - 85 µm is 

micromachined in gold (Au). Unlike the traditional RF MEMS switches, in this work we 

have incorporated a separate actuation electrode of 120 µm -200 µm - 0.6 µm to be used 

for cantilever electrostatic actuation, which helps reduce the noise in the RF CPW line. 

HfO2 of 220 µm length and 70 µm width is used as a dielectric material. Its relative 

dielectric permittivity (εr) is 23. The complete switch dimensions are presented in Table 2.  

The electrostatic actuation with 7.3 V creates an electrostatic force of 7.5 x 10-7 N. The 

membrane spring constant is 0.25 N/m. The capacitance analysis results with high relative 

permitivity thin films are listed in Table 3. The designed RF MEMS switch  shows an 

isolation of -63.2 dB and an insertion of -0.12 dB as shown in Fig. 9 and Fig. 10, 

respectively. Our presented work is compared to the state of art as presented in Table 4. 
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Fig. 9 Isolation Losses 
 

 

Fig. 10 Insertion Losses 

Table 2 Shunt capacitive RF MEMS switch dimensions 

Parameter Description Value(µm)  Parameter Description Value(µm) 

Sl 
substrate 

dimensions 
800  dl dielectric 220 

Sw  500  dw  70 

St  800  BPl bias line 50 

G-S-G 

CPW  line & 

slots 

85-70-85  BPw  50 

d 120  g  10 

e 40  h  185 

f 300  i  50 

Table 3 Capacitance Ratio 

Material 
Dielectric 

constant (εr) 

Dielectric 

thickness (dt) 

Upstate 

Capacitance 

(Cup) 

Downstate 

capacitance 

(Cdown) 

Capacitance 

ratio = 

Cdown/Cup 

AlN 9.8 0.1 µm 73.9 fF 11 pF 148.8 

GaAs 12 0.1 µm 75.6 fF 13.5 pF 178.5 

HfO2 23 0.1 µm 77.3 fF 26 pF 336.3 
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Table 4 Our work comparison with state-of-art 

Parameter [17] [18] Our work 

Substrate Glass Silicon Silicon 

Insulator -- SiO2 SiO2 

Micro mechanical structure Cantilever Cantilever Cantilever 

Damping analysis is performed No No Yes 

Air gap (µm) 3 3 3 

Actuation voltage (V) 16 19 7.3 

Total Reaction Electrostatic Force (N) --- --- 7.5 * 10-7 

Displacement (µm) 3 3 3 

Spring Constant (N/m) --- --- 0.25 

Upstate & Downstate capacitances -- &  2.75 pF -- &0.02 pF 77.3 fF & 26 pF 

Insertion Loss (dB) -0.41 - 0.05 -0.01 to -0.12 

Isolation  Loss (dB) -20 -43 -20 to - 63.2 

6. CONCLUSION 

The micro-cantilever based electrostatically actuated shunt capacitive RF MEMS 

switch is designed and after multiple iterations on cantilever structure modification the 

proposed structure requires low actuation voltage of 3.34 V for 3 µm deformation. This 

low actuation voltage is a result of identifying the critical membrane thickness of 0.5 µm, 

and incorporating two slots and an array of holes into the membrane. A similar iterative 

approach is used to design the final RF MEMS switch. The RF MEMS switch is micro-

machined on a CPW transmission line with G-S-G of 85 µm - 70 µm - 85 µm. The switch 

RF isolation properties are analyzed for different high dielectric constant thin films 

including AlN, GaAs, and HfO2. For all the dielectric thin films the RF MEMS switch 

shows a high isolation of -63.2 dB, but there is a shift in the radio frequency. 
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