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Abstract. Due to the increasing amount of spam email traffic, email users are in
increasing danger, while email server resources are becoming overloaded. Therefore,
it is necessary to protect email users, but also to prevent SMTP system overload
during spam attacks. The aim of this paper is to design and implement an autoscalable
distributed anti-spam SMTP system based on a Proof of work concept. The proposed
solution extends SMTP protocol in order to enable the evaluation of the client s credibility
using the Proof of work algorithm. In order to prevent resource overload during spam
attacks, the anti-spam SMTP system is implemented in a distributed environment, as a
group of multiple anti-spam SMTP server instances. Kubernetes architecture is used for
system distribution, configured with the possibility of autoscaling the number of anti-
spam SMTP server instances depending on the system load. The implemented system
is evaluated during a distributed spam attempt, simulated by a custom-made traffic
generator tool. Various performance tests are given: (1) The proposed system's impact
on client’s behaviour and the overall amount of spam messages, (2) The performance
of the undistributed anti-spam SMTP server during spam attack, in terms of resource
load analysis (3) Autoscaling demonstration and evaluation of proposed distributed
system s performance during a spam attack. It is shown that the proposed solution
has the possibility of reducing the amount of spam traffic, while processing tens of
thousands of simultaneous SMTP client requests in a distributed environment.
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1 INTRODUCTION

According to recent reports [1], approximately 50% of the overall email traffic
consists of spam. Spam represents the abuse of electronic systems and SMTP
protocol for the purpose of sending mass unwanted messages. Spam can
lead to serious attempts at a data breach or email users identity theft, also.
Furthermore, spam traffic is wasting valuable network and device resources
[2].

There are a lot of different anti-spam solutions and techniques recently
developed and applied in many different environments. In recent years,
many of them relate to the problem of email spam [2,3], spam in social
networking [4-6], etc. One of the main approaches in filtering spam messages
is based on the analysis of their contents. In the beginning, these solutions
were based on a set of user-defined rules. In recent years, there were many
proposed classification techniques, based on machine and deep learning [7,8].
These solutions can be time-consuming, but also can encounter a false alarm
problem. Furthermore, spam attackers find ways to manipulate contents and
structure of emails, so they can avoid content-based spam filters.

Another type of anti-spam solutions are reputation-based systems, which
analyse the identity of message sender. There are many different approaches.
For example, [9] verifies client’s identity by using public key cryptography.
Instead, this paper will propose solution which enables the evaluation of
individual client’s credibility using the Proof of Work (PoW) algorithm.
Numerous papers were published which studied the implementation of this
algorithm in various systems [10-12]. In general, the PoW algorithm can be
applied to any automated malicious online interaction problem (e.g. spam
comments, spam text messages), but it is important to take into account the
specific protocol, implementation and backward compatibility. Additional
communication is not always possible, or can be difficult to implement. To
the best of our knowledge, only in [10] the authors suggested the use of the
PoW concept as an anti-spam solution. They implemented an anti-spam
system on a Peer to Peer (P2P) network. The system from [10] differs from
the system proposed in this paper in terms of how the PoW algorithm is
implemented. Also, the anti-spam solution proposed in this paper is based
on client/server communication in a distributed environment, instead of the
P2P system.

The goal of this paper is to design and implement a distributed anti-spam
SMTP system based on a Proof of work concept. The proposed system does
not address the problem of receiving spam messages on the client, but affects
the first and biggest step in the existence of spam traffic - sending a large
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number of spam messages in a short period of time. In order to enable PoW
evaluation of the SMTP client, the extension of the SMTP protocol is de-
signed. A common problem during spam attacks is server resource overload,
which can cause denial of service. In order to prevent resource overload of
the proposed solution, the anti-spam system is implemented in a distributed
environment. Kubernetes architecture is used for distribution of multiple
anti-spam SMTP server instances, which make up the proposed anti-spam
SMTP system. Kubernetes is configured with the possibility of autoscal-
ing the number of SMTP server replicas depending on the system load.
The implemented system is evaluated during the distributed spam attempt,
simulated by the custom made traffic generator tool. Various performance
tests are given: (1) The client’s perspective on the proposed system and the
impact on the overall amount of spam messages, (2) The undistributed anti-
spam server’s performance during the spam attempt in terms of resource
load analysis, (3) Autoscaling demonstration and distributed system’s per-
formance evaluation during spam attack. It is shown that the proposed
solution significantly reduces the amount of spam traffic, while processing
tens of thousands of simultaneous SMTP client requests in a distributed
environment.

The paper is organized as follows. Section 2 gives a brief introduction
to SMTP and Proof of Work algorithm. Section 3 is devoted to process of
containerization and Kubernetes orchestration. Section 4 is the main section
and presents the design and architecture of the proposed anti-spam SMTP
system. Section 5 is devoted to the system evaluation during simulated spam
attempt, while the concluding remarks are given in Section 6.

2 BACKGROUND ON SMTP AND PROOF OF WORK

The SMTP protocol defines rules for sending and reliable transfer of email
messages through the network. The devices taking part in the transfer itself
are referred to as agents and their communication is defined by the SMTP
protocol.

Within communication of each two agents during email transmission,
the device sending the email has the role of SMTP client, while the device
which receives the email has the role of SMTP server. An email transaction
begins with the command MAIL, which the client uses to define the email
address of the sender. The second step is the definition of the email address
of the recipient using the command RCPT, etc. The responses from the
server ensure the synchronization of the activities in the SMTP client-server
communication and provide the information on the success of client’s actions.
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The basic communication between the SMTP client (C) and server (S) during
the successful transfer of a message is as follows [13]:

220 smtpServer.example.com Simple Mail Transfer Service Ready
: HELO smtpClient.example.com

: 250 smtpClient.example.com, pleased to meet you

: MAIL FROM: <from@example.com>

: 250 Sender OK

: RCPT TO:<recipient1@example.com>

250 Recipient OK

: DATA

354 Enter mail, end with ’.” on a line by itself

: From: "From Example” <from@example.com>

: To: Recipient Example <recipient@example.com>

: Date: Tue, 15 May 2020 16:02:43

: Subject: Hello

: Hello world!

: 250 Queued mail for delivery
: QUIT
221 Service closing transmission channel

Proof of Work systems emerged with the aim of verifying device’s cred-
ibility and preventing abuse of computer’s processing power, for example
during Denial of Service (DoS) attacks. The basic idea behind this con-
cept is to request relatively small amount of processing time from a device
which tries to access protected resource, with the aim of fulfilling the cri-
terion issued by the server. This prevents the underlying characteristic of
aforementioned attacks - a large number of access attempts at a resource
over a short period of time, without significantly affecting normal use of the
system [14].

The principle behind how a PoW system works is based on a typical
cryptographic scenario, during which the client who is requesting a service
or resource attempts to prove its credibility to the server [14]. Most often,
execution of mathematical or cryptographic functions represents a way of
investing sufficient processing time as proof of credibility. The functions
are not overly demanding, but are complex enough to ensure, in the case
where their multiple execution is required, significant processing time on the
client’s side. The task of the client is to solve time-intensive calculation
involving certain data many times over, until the obtained solution satisfies
the requirement issued by the server. After the client sends that solution, the
task of the server is to check its validity and identify the client as reliable or
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unreliable. A very important criterion of PoW implementation is that it has
to be difficult and time-consuming to calculate the solution on the client’s
side, while the solution validation on the server side does not require a large
amount of time [11].

3 CONTAINERIZATION AND KUBERNETES BACKGROUND

When developing software solutions, one of the common requirements is
portability between different platforms and environments. Also, the ability
to distribute and scale the developed application is an important prereq-
uisite for its efficient and reliable execution. Recently, these requirements
are commonly being met by introducing containerization into the software
development process [15].

3.1 Docker Containerization

Today’s application containerization technologies are based on research and
solutions designed years ago, in the field of virtualization. Virtualization en-
ables isolation of applications, but at the cost of significant impact on host
resources. In order to overcome these disadvantages, containers are pre-
sented. They provide functionality similar to those provided by the virtual
machines, while preserving host resources [16]. A container is a standard unit
of software that packages up code and all its dependencies so the application
runs quickly and reliably from one computing environment to another.

All containers running on a single device share its operating system,
which frees up significant amounts of device resources, in comparison to vir-
tual machines. Also, containers are easily portable between different devices
and cloud platforms [15,17].

The most commonly used container technology is Docker. Docker rep-
resents a set of software tools used for the development and distribution of
software packages, i.e. containers. Docker technology is used for packaging
the application and its runtime environment into a container, which can then
be executed on many platforms [18].

3.2 Kubernetes Orchestration

When developing software solutions that require a reliable and scalable sys-
tem that will balance the application load, the use of distributed container
systems is becoming more common. In such situations, it is necessary to



530 N. GAVRILOVIC, V. CIRIC

ensure automatic container communication and management using orches-
tration tools. Since its introduction in 2014, Kubernetes orchestrator has
grown to be one of the largest and most popular open source projects in
the world. It has become the standard API for building distributed cloud-
native applications, especially in big enterprises. Kubernetes enables the
distributed execution of software applications on a large number of separate
nodes that make up the Kubernetes cluster. The Kubernetes orchestration
enables the automation of all aspects of container coordination and manage-
ment and involves the process of placing, managing, scaling and connecting
containers. The Kubernetes cluster consists of master and worker nodes.
The master node (also called the Control Plane) manages the entire Kuber-
netes system, while the worker nodes are responsible for the execution of
containerized applications. Worker nodes are Linux hosts which constantly
listen for new tasks and execute assigned ones, and report state and changes
to the master node [19,20]. In order to define how the containerized ap-
plications are executed on the Kubernetes cluster, Kubernetes objects are
created at the request of the user. The main Kubernetes object and the basic
building block of the Kubernetes system is a Pod. A Pod can be defined as
a shared environment for the execution of one or more containers. It can be
seen as a wrapper around the container, which is necessary for the container
execution on the Kubernetes cluster. Each Pod is executed exclusively on
one node [20]. The Deployment Kubernetes object provides the ability to
easily create and manage multiple Pods. It provides additional Pod features,
which they do not originally have - self-healing, scalability, automatic rolling
update and rollback mechanism. In order to have a constant access point
to the containerized application that executes as a group of Pods, the Ku-
bernetes Service object could be used. The Service is associated with the
Pods and fronts them with a stable IP, DNS, and port. It also load-balances
requests across the Pods.

The client does not have to know the exact location and configuration of
the Pods, which can be unstable, change their location and network settings.
By using Service object, the Pods can be scaled, new Pods can be started and
previous versions of the Pods can be updated and shut down. The Service
object in front of the Pods observes the changes, and maintains a list of
active Pods ready to accept client connections. If external access to Service
is needed, the NodePort Service type should be used, because it exposes the
Service on each Node’s IP address and a static port, and makes it possible
to contact the Service from outside the cluster.
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4  DESIGN OF AUTOSCALABLE DISTRIBUTED ANTI-SPAM SMTDP sys-
TEM

The proposed anti-spam SMTP server, which uses PoW algorithm for SMTP
client verification, is implemented as a .NET Core application. The imple-
mented application was containerized using Docker technology in order to
enable horizontal scaling of lightweight, portable containers, which can run
virtually anywhere. The containerized anti-spam SMTP server is distributed
on the Kubernetes cluster in the cloud. Also, Kubernetes is configured with
the possibility of autoscaling the number of required server replicas depend-
ing on the system load.

The role of the proposed distributed anti-spam SMTP system is shown in
Fig. 1. The basic behaviour of the proposed solution is defined by the SMTP
protocol. Its basic network functionalities, as a device that forwards an email
to its destination (Fig. 1), have been upgraded with the implementation of
a distributed anti-spam system that has the possibility of verifying SMTP
clients, by asking for proof of their credibility. The proposed anti-spam
system has the role of a proxy, which checks SMTP clients before forwarding
their messages through the network, and marks the messages as spam if
needed (Fig. 1). It uses PoW algorithm to check the credibility of email
clients, by issuing a challenge that an SMTP client has to resolve by using
its processing power. Marking is done by adding the field X-spam-category:
spam to the header of the email message. In this way, the proposed anti-spam
SMTP system alerts the next SMTP server to which it forwards the message
about potential spam traffic, while containing all of the client’s processing
power which could be used for spamming. The role of the proposed solution
is to prevent further passage of spam emails through the network, but also
to slow down spam attacks, as will be described below.

A potential problem of the proposed anti-spam system could occur when
it is simultaneously abused by multiple clients, which can deplete its re-
sources because of a large number of parallel connections (a problem close
to DoS attacks). Taking that into consideration, the proposed anti-spam
system is designed to consist of many anti-spam SMTP server replicas (Fig.
1, replica 1 - replica N) distributed on the cluster, which can balance the
system load if necessary. Also, the proposed system is configured with the
possibility of autoscaling the number of SMTP server replicas depending on
the system load.
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Fig. 1: The role of the proposed anti-spam system

4.1 The proposed Kubernetes architecture

The proposed solution has been distributed on Kubernetes, using Docker
as containerization technology. The goal of distributed execution of the
proposed anti-spam system is a reliable, fault-tolerant SMTP system, which
is resistant to spam attacks and has higher total available resources.

The proposed Kubernetes architecture in which anti-spam system exe-
cutes is shown in Fig. 2. In order to simplify the architecture shown, only
two worker nodes are given. The figure shows a NodePort service named
smtp-service, created to allow external clients to access the proposed anti-
spam system. As can be seen, the proposed system is exposed on any of the
worker node IP addresses, in combination with NodePort defined value of
30001. The range of values that NodePort on the Kubernetes architecture
can have is from 30,000 to 32,767. In an SMTP production environment,
the destination port of the incoming traffic could be easily changed on the
router/firewall, from a standard TCP port value of 25 to the NodePort value
of 30001. The client’s request is forwarded from the node to the created
smtp-service object. Then, after analyzing the cluster and available run-
ning Pods, the smtp-service can reroute the request to one of the smtp-pod
objects, taking into account the current load of active Pods. Requests are
forwarded on configured internal port 5000.

The number of currently active Pods depends on autoscaling component,
which estimates current system load and creates additional Pods or shuts
some of them down if needed. Autoscaling enables automatic regulation of
the number of anti-spam SMTP server instances, depending on the system’s
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load, ie. the number and frequency of SMTP client requests. The configura-
tion of the proposed Kubernetes system is done so that initially there is one
anti-spam SMTP server instance, which is not replicated until the system’s
load indicates the need for a larger number of SMTP Pods that will serve
all of the client requests. The moment the system load reaches a configured
threshold, the system scales by adding new replicas.

The proposed system is autoscaled depending on two criteria - CPU
and memory usage. In particular, autoscaling will be performed when the
average Pods memory usage is greater than configured. Also, the number of
replicas will be increased when the average Pod CPU utilization reaches 50%.
When multiple metrics are specified, Kubernetes monitors both parameters
and performs the addition of new replicas when either of them reaches the
maximum defined value.

External client ﬁ

= L

Port 30001 Port 30001

smtp-service

Port 5000

L—.. ——11
smtp-pod smtp-pod

{
smtp-pod

Node 1 Node 2
IP: 10.10.77.234 IP: 10.10.77.235

Kubernetes cluster

Fig. 2: The proposed Kubernetes architecture

4.2 The role of the proposed system

The proposed solution filters traffic and marks messages as spam if it is
necessary. The SMTP client’s credibility check is performed immediately
after the proposed system receives the email. It has to decide whether the
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client is a potential spammer, and if so, how it will be challenged using the
PoW algorithm. The operation of the proposed system when processing a
client’s email request is presented by the algorithm in Fig. 3. The ini-
tial client evaluation can be performed using a reputation system. If the
client is estimated as reliable, SMTP communication continues without any
changes. An email message is sent through the network, to its destination.
An alternative flow of the communication occurs in the event that during the

[ Accept client connection J

[ Receive email message ]

[ Client reliability evaluation

Reputation
system
h

[Send email to its deslinaliun] [Require proof of client's wnrk]

’Check if the requliremem was metl

v

Send marked email ’

[Send email to its destinatinn] (X-spam-category : spam)

[ Close client connection ]

Fig. 3: The proposed anti-spam system algorithm, after receiving email re-
quest

communication, the client is estimated as a potential spammer. In that case,
its validation will be performed by issuing a challenge that the client has to
solve. If the client proves its validity, his email message will be forwarded
further through the network, without any marking of the message. However,
if the client does not prove its credibility, he is evaluated as a spammer, his
email message is marked as spam traffic and his spam attempt is slowed
down. The precise flow of communication between the SMTP client and the
proposed anti-spam system, during the PoW algorithm, will be given in the
next subsection.
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4.3 PoW algorithm implementation

The use of PoW algorithm gives the possibility of asking a potential spam-
mer for proof of credibility by requiring a certain amount of processing time.
The implementation of such a system requires certain changes in the imple-
mentation of the SMTP protocol.

At the beginning of the communication, the SMTP client provides the
server with information on the sender, recipient and overall message being
sent, as defined in the basic SMTP protocol. The server, after it has received
all the email data, has the possibility of transferring the email message to its
destination, the same way it does in protocol-defined communication in the
case of a valid consumer. However, if based on the evaluation of the sender,
the reputation system determines that the client might be unreliable, in this
paper we propose for SMTP protocol to require proof of credibility prior to
the transfer of the messages. With that aim in mind, changes were made to
the basic SMTP communication. The extended SMTP protocol is shown in
Fig. 4.

1: C: DATA

2: S: 354 Enter mail, end with "." on a line by itself

3: C: From: From Example <from@example.com>

4: C: To: Recipient Example <recipient@example.com>

5: C: Date: Tue, 03 March 2020 16:02:43

6: C: Hello world!

7. C:.

8: S: 250 Challenge number 03 md5 _shal sha256 sha512
9: C: Nonce: 79745 md5

10: S: 250 Queued mail for delivery

11: C: QUIT

12: S: 221 Server closing connection

Fig. 4: Extended SMTP protocol

The changes enable the server to send integer value, which represents
the weight (line 8 in Fig. 4). Its value determines the criterion which the
client has to meet. Along with the weight, the server sends the supported
hash algorithms (line 8 in Fig. 4). The client matches one of the acceptable
hash functions and computes it against the entire mail message, including
the header and the time stamps. By computing a hash function on the
entire email message, the client is required to generate a sequence that has
as many zeroes in the beginning, as was defined by the previously received
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weight parameter (line 8 in Fig. 4). The execution of the same hash function
on the same data sequence always results in the same output. That is why
the client has to append a nonce value to the data, based on which the client
calculates the hash value of the message. The only way to determine a nonce
value that satisfies the requirement of the server is brute force. The hash
function is sequentially executed several times, until the generated output
meets the server requirement, and with each function execution, the value
of the nonce changes.

A single execution of a hash algorithm on the data does not require sig-
nificant processing time. However, obtaining a satisfactory output sequence
is sufficiently rare to take away significant CPU time from the client. Once
the nonce value used to satisfy the issued requirement is found, the client
forwards it to the server, along with the hash function which has been used
(line 9 in Fig. 4). After receiving the nonce value from the client, it checks
it to ensure if the obtained value meets the set requirement. The check is
achieved through the execution of a single hash function on a previously
obtained email in combination with a recently received nonce value. It can
be noticed that a significantly greater amount of processing time is required
to solve the given problem on the client than the amount of processing time
required to verify the solution on the server. If the server determines that
the applied nonce value meets the previously set requirement, the email is
successfully transferred.

A valid client, unlike a spammer, rarely sends great number of email
requests over a short period of time. Thus, even if the valid email client has
been incorrectly evaluated by a reputation system as potentially dangerous,
the processing time needed for sending a small number of emails will not
render the use of the email service more difficult. Thus, valid user’s use of
the mail server has not undergone any noticeable changes. On the other
hand, a spammer who is trying to send great amount of emails, will have
to prove his credibility by executing PoW algorithm for each email message,
which will result in a significant CPU time. It is important to note that the
hash function is applied over the entire email (body and header), including
the recipient and the time stamp. In this way, due to the time stamp in the
header, it is assured that hash needs to be computed by the spammer every
time, even if the same message is sent over and over again.

The example given in Fig. 4 shows the successful PoW validation of the
email client. The server requires CPU time from the client by sending the
Challenge number with the value of 3, which denotes that the client must
generate an output sequence which in the beginning has precisely 3 zeroes
(line 8 in Fig. 4). In the given example, the value of the nonce parameter is
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79745 (line 9 in Fig. 4). It denotes that the value 79745, appended to the
data which make up the content of the email message, is the piece of data
that met the given requirement of the server.

Let us note that the proposed SMTP extension is backward compatible
with the original SMTP specification. In the case of a client who does
not support PoW, he will interpret the message containing the weight as a
confirmation of successful sending of email due to code 250, and close the
connection. In the currently implemented system, such an email will not be
sent. One of the ideas for future work is to implement marking of this type
of clients, so that they would be allowed to send a certain number of emails
without using the PoW algorithm, as long as their activity does not indicate
the possible presence of spam.

5 IMPLEMENTATION RESULTS

The proposed system is implemented and evaluated on the cloud, which
consists of six servers, with a total RAM capacity of cca. 400GB. Five
servers are IBM System x3550 models, with Intel (R) Xeon (R) CPU E5603
@ 1.60GHz processor type, with 8 logical processors. One server is HP
ProLiant DL380p Gen8 model, with Intel (R) Xeon (R) CPU E5-2620 v2 @
2.10GHz processor type, with 12 logical processors. The Kubernetes system
is implemented on Linux Ubuntu 16.04 virtual machines. Each machine has
2 logical cores and 8GB of RAM. The Kubernetes cluster consists of five
virtual machines of equal resources, one of which is the master node, while
the other four are worker nodes.

The experiment is set as follows: 1) an evaluation of the client’s effort and
the impact on the overall amount of sent spam messages, 2) an evaluation of
the spam attack impact on undistributed anti-spam SMTP solution, 3) the
system performance during the spam attempt when the SMTP solution is
distributed on the Kubernetes architecture. Also, automatic autoscaling of
the proposed solution, depending on the system load, will be demonstrated.
The evaluated client /server communication and the hash function used are as
given in Fig. 4. In order to simulate distributed spam attack and maximize
the system load, a custom traffic generator tool with the PoW support was
made.

5.1 The client’s perspective

Evaluation of client’s work for different weight values, is discussed in [21].
The results obtained in [21] are given in Table 1.
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Table 1: An evaluation of the client work for various weights

Weight Avg. time Standard Avg. # of | # of com-

deviation hash func- | pleted tests
tions

1 1.14ms 0.41ms 41 20

2 28.7ms 25.09ms 1728 20

3 4.35s 2.88s 223620 20

4 2.71min 1.81min 10996000 20

Furthermore, this paper gives the evaluation of client’s behaviour and
the PoW impact on the amount of spam traffic.

It is determined that with PoW algorithm, the number of emails sent
from the client per second does not depend on the number of sent requests
from the client per second. It depends only on the value of the weight given
by the server and the client’s processing power, as in:

HP
) v

where N is the number of outbound messages from the client per second, HP
is the hash power of the client, T is the weight parameter, and H(T) is the
average number of required executions of the hash algorithm for the weight
T. The reason is that with the increase in the number of simultaneously
initiated client SMTP requests, the number of executed hash functions per
connection per second decreases due to the increase in CPU load. A direct
consequence of reducing the number of hash function executions per connec-
tion is an increase in the duration of an individual client/server connection.
We can conclude that a client with the intention of abusing the email server
is limited to a constant number of sent emails per second, which is slowing
down his spam attacks [21].

In addition, in this paper we will design and implement an anti-spam
SMTP system based on a discussed Proof of work concept, which is dis-
tributed by using Kubernetes architecture, with the possibility of autoscaling
the number of SMTP server instances depending on the system load.

5.2 The performance evaluation of the undistributed anti-spam
SMTP server

In order to evaluate the system with the increased load, aforementioned
distributed spam attack is simulated using 10 virtual machines. A custom



Autoscalabile Distributed Anti-spam SMTP System Based on Kubernetes 539

generator of a large amount of SMTP requests for sending email is imple-
mented, which supports the PoW algorithm. In order to load the system
with as many parallel connections as possible, the spam generator tries to
send 10,000 emails in a row. Fig. 5 shows the client processor load before
and during the attack. It can be noticed that from the moment when the
client starts sending SMTP requests, its cpu usage is 100%.
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Fig. 5: Individual client CPU load before and during the spam attack

Fig. 6 shows the amount of network traffic generated by the individual
client who performs the spam attack. At the beginning of the attack, the
client initiates large number of connections at the same time, creating a
thread for each email. It can be seen that at the time of the attack beginning
(T0), the client generates traffic of approximately 5MBps. Within each
connection, the proposed PoW system will request CPU time from the client,
which will result in a client CPU load (Fig. 5). The client, relatively quickly
after the start of the attack, opens the maximum number of connections that
its resources can support (because each connection implies one thread that
significantly loads the CPU by sequentially executing hash functions). When
client’s resources become significantly loaded, he is no longer able to send
the initial amount of data, which can be seen in the graph, after the moment
TO. Nevertheless, the client continues to send a relatively small amount of
data to the server, as he solves the challenges one by one (Fig. 6, between
moments T0 and T1).

Fig. 7 shows the dependence of the proposed anti-spam SMTP server
CPU usage on the number of clients simultaneously performing the spam
attack. It can be noticed that the CPU of the server is not significantly
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Fig. 6: Individual client network flow before and during the spam attack

loaded at any time of the attack, which leads to the conclusion that the im-
plementation of the POW system on the SMTP server does not significantly
affect the CPU usage, even during a distributed spam attack.
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Fig. 7: Undistributed SMTP server CPU usage depending on the number of
clients simultaneously performing spam attack
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Unlike CPU load, spam attack has a significant impact on undistributed
anti-spam SMTP server’s memory load. A potential problem on the pro-
posed anti-spam SM'TP solution could occur when it is attacked by multiple
clients, which can deplete its memory resources with a large number of par-
allel open connections (a problem close to DoS attacks). An example of
one such attack is given in Fig. 8, which shows server memory usage as
the number of requests from clients attacking single instance of the system
increases over time. It can be seen that, after approximately 60,000 emails
were sent, the server memory usage reached the upper limit. The memory
usage shown refers to the load of the complete physical host executing the
SMTP server. It can be seen that the anti-spam SMTP solution significantly
loads the host’s resources. At that point, the displayed server’s load may
result in a significant slowdown in request processing and an inability to
respond to new client requests by rejecting their connections.
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Fig. 8: Undistributed SMTP server memory usage during the spam attack

Previous analysis of the SMTP server memory load during a spam at-
tack indicates a potential risk of congestion of proposed server resources by
opening a large number of parallel connections. In order to address this
problem, the server has been distributed and autoscaling on the Kubernetes
architecture has been implemented. The next section will provide the anal-
ysis of the system memory usage during a spam attack, in the case where
the anti-spam SMTP server is distributed on the Kubernetes architecture.
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5.3 Autoscaling

In the configuration of the Kubernetes system initially there is one instance
of the anti-spam SMTP server, which is not replicated until the system load
indicates the need for a larger number of instances that will serve all of
the client requests. Previously presented results of measuring performance
of undistributed anti-spam SMTP server led to the conclusion that the pa-
rameter according to which the system should be scaled primarily is the
memory usage, because the SMTP server CPU usage during a spam attack
is not significant. The memory load in Fig. 8 is measured on the entire
machine executing undistributed SMTP server (including OS and additional
processes). Let us note that, since Kubernetes autoscaling is performed de-
pending on the resource load of individual Pods, and since the execution of
Pods, as a consequence of containerization, does not significantly affects the
physical hosts’ load, only the Pod’s memory load is observed.

Table 2 presents performance analysis of the implemented system dur-
ing the spam attack and demonstrates autoscaling the number of anti-spam
SMTP server instances. The spam attack was simulated using 10 previously
described virtual machines, where each of them is trying to send 10.000
of email requests. The number of SMTP clients which are participating
in the attack has increased gradually. In order to analyze the impact of
each added attacker, one new SMTP client was included in the attack every
120 seconds, as can be seen from the first two columns of Table 2. The
third column gives the total memory usage of the Pods during the attack.
At time TO, just before the start of the attack, it can be seen that the
total Pod background memory usage is 12.9MB. As the number of clients
increases, the total memory usage increases, approximately linearly. The
fourth column gives the number of Pods (anti-spam SMTP server instances)
that the Kubernetes system automatically lifts and maintains, depending
on the average Pod memory usage given in the fifth column. The scaling
of the number of Pods managed by the Kubernetes system is performed in
the manner described previously. The upper limit of the average memory
usage of the Pods running the anti-spam system is set to 100MB, in order
to demonstrate autoscaling process in a given environment. Based on Ta-
ble 2, it can be concluded that the system behaves according to the defined
autoscaling configuration. Every time the average memory usage per Pod
exceeds 100MB, the Kubernetes system creates another Pod (fourth and
fifth columns of Table 2), protecting the anti-spam system from resource
overload. At any time, the current number of Pods running the anti-spam
SMTP system share the overall workload. In this way, the average memory
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Table 2: Autoscaling anti-spam SMTP system instances during spam attack

Time (min) | # of clients | Total mem- | # of Pods | Average
/ # of email | ory  usage Pod mem-
requests of the Pods ory  usage

(MB) (MB)

TO 0/0 12.9 1 12.9

TO + 2 1 / 10000 36.6 1 36.6

TO + 4 2 /20000 52.03 1 52.03

TO + 6 3/ 30000 78.2 1 78.2

TO + 8 4 / 40000 111.9 1 111.9

TO + 10 5 / 50000 142.4 2 71.2

TO + 12 6 / 60000 170.8 2 85.4

TO + 14 7/ 70000 195.4 2 97.7

TO + 16 8 / 80000 218.4 2 109.2

TO + 18 9 /90000 237.9 3 79.3

TO + 20 10 / 100000 | 259.5 3 86.5

usage per Pod is regulated to a value below 100MB. The data in the table
are illustrated in Fig. 9.

This configuration of the system autoscaling prevents the possibility of
its congestion during a spam attack, because the implementation allows the
number of anti-spam SMTP instances to be automatically raised during the
attack, which enables processing all of the client requests without overloading
resources.

The proposed system provides a reliable, efficient and scalable anti-
spam solution. System containerization enables its flexibility and portability,
while execution in distributed Kubernetes environment provides easy scala-
bility, reliability and fault tolerance, but also greater memory and processing
power. Autoscaling of the system maximizes the use of available resources
by maintaining the optimal number of anti-spam SMTP replicas, propor-
tional to the current load. Additionally, not only will the operation of the
anti-spam SMTP distributed system not be compromised by spam attacks,
the proposed anti-spam system will slow down spam attacks, which will re-
sult in a significant reduction in the spam traffic amount on the network. In
future work it would be useful to test how such a system affects legitimate
mass mailing systems, which send a large number of emails that do not have
spam content.
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Fig. 9: Average Pod memory usage depending on the number of clients si-
multaneously performing spam attack

6 CONCLUSION

In this paper design and implementation of a distributed anti-spam SMTP
system is proposed. The usage of PoW algorithm for verifying email client’s
credibility is analysed, and an extension of SMTP protocol, which enables
requiring a certain amount of work from a sender, is proposed. Distributed
Kubernetes architecture was used in order to prevent resource overload of
the implemented system. The great benefit of the proposed system is the
possibility of autoscaling the number of SMTP server replicas depending on
the server load, which maximizes the use of available resources and makes the
system resistant to spam attacks. The implemented system was evaluated
during the distributed spam attempt, simulated by the custom-made traffic
generator tool. Various performance tests have been given: (1) The proposed
system’s impact on the client’s behaviour and the overall amount of spam
traffic, (2) The undistributed anti-spam SMTP server’s performance dur-
ing the spam attempt, followed by a discussion about the reason for system
distribution. Furthermore, (3) Autoscaling demonstration and distributed
environment’s performance evaluation during spam attack was given. We
showed that the proposed solution has the possibility to significantly reduce
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the amount of spam traffic, while processing tens of thousands of simulta-
neous SMTP client requests in a distributed environment and adjusting the
proposed system’s robustness.
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