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ON THE EFFICIENCY OF ENERGY STORAGE 

SYSTEMS – THE INFLUENCE OF THE EXCHANGED 

POWER AND THE PENALTY OF THE AUXILIARIES 

Alfred Rufer  

EPFL, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland 

Abstract. Storage is an important domain of the energy sector, with its traditional, 

classical solutions for smaller and larger amounts of energy. Energy storage has 

become of higher importance in relation with the development of alternative energy 

sources, leading to the development of new technologies. The energy efficiency of the 

storage means is an important parameter, being often not considered in the conception 

and design of the applications. For the evaluation of the energetic performance of a 

storage device, a well-adapted tool has been proposed, namely “The Theory of Ragone 

Plots”. This tool sets in evidence in what way the effectively recoverable energy amount 

of a device is depending on the power level of the charge/discharge process. Further, 

the taking into account of the power needed for the auxiliary equipment of a storage 

system like the circulation pumps of a flow battery, the vacuum pumps of a flywheel or 

the forced cooling of a battery can lead to a globally negative value of the efficiency.  
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1. INTRODUCTION 

High performance solutions for the accumulation of energy in order to cover the needs of 

the applications exist from longer time. Mechanical solutions invented by watchmakers or by 

manufacturers of film cameras are good examples of a pragmatic way to elaborate a solution 

to a specific problem. Higher amounts of energy have also been stored in the form of pumped 

water from a lower to a higher accumulation reservoir as it is widely spread in alpine regions. 

Mobile as well as stationary applications have been the context of the development of 

a long list of different electrochemical accumulators, from the classical lead-acid batteries 

to the today’s high-performance Lithium based metallic associations. All these solutions 

have mainly suffered from limited life cycle or other ageing phenomena like the loose of 

energy capacity or power availability. 
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Other solutions have appeared along the years, as flywheels, compressed-air systems, 
superconductive magnets, but have never reached a breakthrough point, due to limited 
performance, high costs, or missing the adapted materials or infrastructure. Limited 
investment from the side of the industrial world is another reason for a stagnating 
evolution of storage alternatives, in the context of the largely available and cheap energy 
resources of the 20th century. 

Environmental concern and limited fossil resources have been the triggers of the 
development of renewable sources, where the stochastic character of solutions as wind 
and solar generators has been a new motivation for the development of new and more 
performant energy storage solutions. 

Today, the modern Li-ion accumulators can be seen as the most promising storage 
solutions for limited amount of energy at the level of several MWh, while other better 
adapted solutions as supercapacitors can solve the problem of the instantaneous power 
demand with less internal losses. Life cycle issues will remain a high motivation for the 
development of evolved solutions to the actual electrochemical battery, and totally 
different approaches as the chemical transformations into hydrogen or methane will be in 
the future the real alternative to pumped hydro power, allowing longer bridging through 
the seasons due to their much higher energy content [1], [2]. 

  a) 

 b) 

 c) 

Fig. 1 Examples of storage over a wide range of power and energy amount 
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Figure 1a illustrates the evolution seen in the domain of wrist watches, with at the 

right side a classical self-winding movement with an autonomy of 8 days. This former 

world record has been recently smashed up to 50 days [3]. The second object is an 

electronic watch with analogic and digital display and many new functions as altimeter, 

compass, etc. The autonomy of the battery powered watch is given as 24 months. The last 
watch is a connected device with an exploded number of new functions. Its autonomy felt 

down to around one or two tens of hours. 

The second line (Fig. 1b) shows one of the most eccentric application of storage for 

electric mobility with the first airplane able to fly over night with energy collected from 

PV panels during the day (Solarimpulse, [4]). 

The third line (Fig. 1c) represents a pumped storage plant in Switzerland (Nant-de-

Drance, [5]). Its energy capacity is equal to 18’000 MWh, corresponding to an autonomy 

of 20 hours at the rated power of 900 MW. 

The evolution of public grids from the conventional concept of centralized generation 

towards decentralized generation and the integration of as well the renewable sources as 

also decentralized storage facilities has been recently accelerated. The concept of adding 

storage systems in order to achieve the so-called day-to-night shift or in order to replace 

diesel generators has been called “The hybrid Power Plant” [6], (Fig. 2). 
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Fig. 2 The hybrid power plant 

 

As already mentioned before, the different storage systems are covering a very large 

range of power and allow to store or release the energy over up to 103 hours as it is 

represented in Fig. 3. The diagram covers a very wide range of power, over six decades, 

from 1 kW to 1GW 
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Fig. 3 Ratings of different storage systems 

2. FOUR MAIN PARAMETERS FOR THE CHARACTERIZATION OF A STORAGE DEVICE 

For the characterization of a storage device, and especially for mobile systems, not 

only the amount of stored energy is relevant but the power level of the charge and 

discharge processes must be defined. Thus, the energy density and the power density 

must be specified. More precisely, the volume and weight densities are generally 

specified as represented in Table 1. 

Table I Four main parameters of energy storage devices 

Parameter Symbol Unit 

The volume energy density ev [Wh/dm3] 

The weight energy density em [Wh/kg] 

The volume power density pv [W/dm3] 

The power-to-weight ratio pm [W/kg] 

Alternately to the specification of the amount of energy to be stored or to be 

recovered, together with the power level of the energy exchange, one can define the 

power and the time of needed power delivery. But the final result is equivalent. 

On this base, engineers and manufacturers have proposed to use a simultaneous 

representation of the energy density and of the power density in the same diagram. Such a 

diagram is called the “Ragone chart”. Fig. 4 represents in the same Ragone chart the main 

parameters of different storage solutions [7]. 
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Fig. 4 The Ragone chart 

3. ELECTROCHEMICAL SOLUTIONS VERSUS SYSTEMS FROM THE CLASSICAL PHYSICS 

One other aspect of energy storage devices or systems is their life duration. Through 

specific parameters as life cycle or lifetime, the value of a given technology can be evaluated, 

also in terms of global costs of a given application. Fig. 5 shows the characteristics of several 

common technologies, together with the related energy efficiency. From this figure, one can 

see that classical as well as modern batteries show good to very good energy efficiencies. But 

they suffer from limited life cycles. The main reason is the ageing phenomena related to 

electrochemical processes with ion migrations and transformations of the molecular 

structures. The storage technologies based on electrochemical transformations are located 

over the range of only several hundreds to several thousands of cycles, what is a limiting 

factor in the domain of applications to Renewable Energy Sources. On the right side of Figure 

5, beyond the order of magnitude of ten thousand cycles, technologies with higher numbers of 

possible cycles are represented. They generally belong to the category of solutions based 

on reversible physics. In this category, the term of macroscopic energy of a system is 

used and the amount of accumulated energy in the system is related to its movement and 

to the external effects as gravity, magnetism or electricity. More explicitly the category 

includes the classical hydraulic pumped storage, flywheels, superconductive magnetic 

energy storage, supercapacitors or compressed air energy storage. 

Even if by these systems the number of possible cycles is several orders of magnitude 

higher than for electrochemical technologies, the system components are subject to ageing 

phenomena as metal wear, friction and ageing of bearings or alteration of insulations. 

Generally, the indicated lifetime of such systems includes revisions or replacement of 

sensitive sub-components. 
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Fig. 5 Efficiency and lifetime of energy storage solutions 

Recently, the category of storage systems based on physics has been completed by an 

original proposal to realize “dry gravitational storage systems”. In such installations, the 

stored energy amount is obtained from a stack of blocks of concrete. The blocks are 

moved up-and-down with a multiple arm crane system [8], [9]. Figure 6 shows the so-

called Energy Vault demonstration system currently under construction. 

 

 
Fig. 6 The Energy Vault system, a Dry Gravitational Storage System 
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4. A GENERAL MODEL FOR THE EFFICIENCY 

The quality of a storage system is quantified through its energy efficiency, taking into 

account the internal losses during charging and discharging, the self-discharge effect 

during the time the energy is maintained in the storage device even if the exchanged 

power is set to zero. In some specific cases, the energy needed for the auxiliaries must be 

considered. These auxiliaries are for example the circulating pumps of a vanadium redox 

flow battery (VRB), the vacuum pumps of a flywheel for the reduction of the 

aerodynamic drag, or the cryogenic system of a superconductive magnetic energy storage 

device (SMES). Figure 7 shows the energy flow of a storage system where all the listed 

effects are represented. For an internally stored amount of energy, the primary needed 

amount can be significantly higher (Energy to be stored). A typical example of this 

mechanism can be seen in the sector of electrical vehicles when so called Ultra-Fast 

Chargers are used [10]. Similarly, at the output of the storage system, the recovered 

energy can be strongly reduced in comparison with the initially existing amount of 

accumulated energy. In order to evaluate the different penalties, the next section will 

briefly introduce the “Theory of Ragone Plots”. 

Internally stored 
energy  E0

Internal losses  
Ech/disch

Self discharge Esd

Auxiliaries Eaux

Energy to be stored Recovered Energy

 

Fig. 7 Energy flow to and from a storage system 

5. THE THEORY OF RAGONE PLOTS 

As already explained in the previous section, the energy efficiency of a storage device 

is related to the different losses. Charging and discharging losses as well as the self-

discharge losses influence directly the round-trip efficiency. As a consequence the 

amount of energy which can really be recovered from a fully charged storage device has 

to be defined in dependency of the instantaneous power of the energy transfer. This 

principle of interdependency between the energy density and the power density has been 

described under the name of «The theory of Ragone plots» [11]. 

In this reference, a general circuit is associated with Ragone plots (Fig. 8). The energy 

storage device (ESD) feeds a load with constant power P. The ESD contains elements for 
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energy storage. Due to constant power, energy supply occurs only for a finite time tinf(P). 

The energy amount E available for the load in dependency of the power P defines a 

Ragone plot. 

Energy Storage 
Device

Constant 
Power 
Load

 
Fig. 8 General circuit associated with Ragone plots (Adapted from [11]) 

 
Consider the general circuit of Fig. 8. For example, the ESD may consist of a voltage 

source, V(Q), depending on the stored charge Q, an internal resistor R, and an internal 

inductance L. Note that this ESD can describe many kinds of electric power sources.  

The ESD is connected to a load which draws a constant power P ≥ 0. Such a load can 

be realized with an electronically controlled power converter feeding an external user. 

The current I and voltage U at the load are then related nonlinearly by U = P/I. Provided 

reasonable initial conditions  

0(0)Q Q=    and  
0(0)Q Q=  

are given, the electrical dynamics is governed by the following ordinary differential equation: 

 ( )
P

LQ RQ V Q
Q

+ + = −  (1) 

where the dot indicates differentiation with respect to time. 

This equation applies not only to electrical ESD but covers many kinds of physical 

systems (mechanical, hydraulic, etc.). Without making reference to a specific physical 

interpretation of rel. (1), the Ragone curve can be defined as follows. At time t = 0, the 

device contains the stored energy 

 2

0 0 0/ 2 ( )E LQ W Q= +  (2) 

For t > 0, the load draws a constant power P such that Q(t) satisfies the relation (1). It 

is clear that for finite E0 and P, the ESD is able to supply this power only for a finite time, 

say tinf (P). A criterion is given either by when the storage device is cleared or when the 

ESD is no longer able to deliver the required amount of power. Since the power is time 

independent, the available energy is 

 inf( ) ( )E P P t P=   (3) 

The curve E(P) versus P corresponds to the Ragone plot. 
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5.1. The Ragone plot of a battery 

In this section, the particular case of an ideal battery is studied. First, and regarding 

the model leading to the rel. (1), we assume the condition L = 0. Then, the ideal battery 

with a capacity of Q0 is characterized by a constant cell voltage V = U0 if Q0 ≥ Q > 0 and 

V = 0 if Q = 0. In a first step, the leakage resistor RL is neglected.  

Rel. (1) reads: 

0( )P U I U RI I=  = −  

where U is the terminal voltage and I Q=  is the current. 

The solutions of the quadratic equation are 

 
2

0 0

22 4

U U P
I

R RR
 =  −   (4) 

At the limit P → 0, the two branches correspond to a discharge current 

0 /I U R+ →     and  0I− → . 

For the ideal battery, the constant power sink can also be parametrized by a constant load 

resistance Rload. 

The two limits belong then to Rload → 0 (short circuit) and Rload →  (open circuit) 

respectively. 

Clearly, in the context of the Ragone plot, we are interested in the latter limit, such 

that we have to take the branch with the minus sign,  I  I_ in eq. (2). 

Now the battery is empty at time tinf = Q0 / I, where the initial charge Q0 is related to 

the initial energy E0 = QoU0. It is now easy to include the presence of an ohmic leakage 

current into the discussion. The leakage resistance RL increases the discharge current I by 

U0/RL. 

The energy being available for the load becomes: 

 0

2

0 0 0

2
( )

4 2 /
b

L

RQ P
E P P t

U U RP U R R
=  =

− − +
  (5) 

Equation (5) corresponds to the Ragone curve of the ideal battery. In the presence of 

leakage, Eb(0) = 0. For the extracted energy, there exists a maximum at 2

0 / 2 LP U RR=  

Without leakage R / RL → 0, the maximum energy is available for vanishing low power 

Eb(P → 0) = E0. From eq. (5), one concludes that there is a maximum power, 
2

max 0 / 4P U R=   

associated with an energy E0/2  (a small correction due to leakage is neglected). 

This point is the endpoint of the Ragone curve of the ideal battery, where only half of 

the energy is available while the other half is lost at the internal resistance. 

Finally, the expression of the Ragone plot is given in the dimensionless units using 

0 0/b be E Q U=  and 2

04 /p RP U=   

 
1

( )
2 (1 1 2 / )

b

L

p
e p

p R R
=

− − +
 (6) 

Ragone curves according eq. (6) with and without leakage are shown in Fig. 9 for the 

ideal battery. The branch belonging to I+ is plotted by the dashed curve. 
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Fig. 9 Ragone curve of the ideal battery (Adapted from [11]) 

5.2 The case of superconductive magnetic energy storage SMES 

The Ragone curves of superconductive magnet energy storage systems are also described 

in details in [5]. Figure 10 gives the normalized curves for inductive energy storage devices 

with Coulomb (C), Stokes (S), and Newton (N) friction. The dashed double-dotted curve 

corresponds to a SMES with an ohmic bypass (4R/Rb = 0.001). This resistance Rb is used for 

the modelling of the losses of all freewheeling paths, with a dominant contribution of the 

freewheeling elements of the power electronic converter. 
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Fig. 10 Normalized Ragone curves for the inductive ESD (Adapted from [11]). 

6. THE MRR (MODIFIED RAGONE REPRESENTATION) 

A slightly different model for the representation of the relationship between the really 

recoverable energy amount of a storage device and the power level of the exchange has 

been proposed in [12]. This MRR (Modified Ragone Representation) is based on a simple 

equivalent circuit which can be used for example for a battery. This equivalent circuit 

includes a series resistor for the model of the charging and discharging losses, and a 

parallel resistor for the model of the self-discharge (Fig. 11). 
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Fig. 11 Equivalent scheme for the MRR 

The energy that can be recovered from the storage device is represented in function of 

the transfer power P (logarithmic scale, Fig. 12). A too small power in the range of the 

self-discharge losses results into a nearly zero energy to be recovered (left ends of the 

curves in Fig. 12). At the right end of the MRR curves, the effect of a too high transfer 

power results in a similar situation of zero recovery due to the high internal losses. 
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Fig. 12 The MRR (Modified Ragone Representation). 

7. FROM A POSITIVE TO A NEGATIVE EFFICIENCY 

In section 3, the energy needed for the system auxiliaries has been mentioned. Such 

auxiliaries correspond for example to the circulation pumps of a flow battery, to the vacuum 

pumps for the evacuation of the envelope of a high-speed flywheel. Superconductive 

magnetic energy storage must be assisted by a cryogenic equipment assuming the 

superconducting conditions (Fig. 13 left). The power consumed by all such auxiliaries should 

not be higher than the power available for the storage if the storage efficiency has to be kept 

positive. 

For example, in the case of a VRB battery, the mechanical power for the electrolyte 

pumps has to be subtracted from the stack power (the battery itself is powering its 

auxiliaries) during discharge, and it must be added to the stack power during charge (the 

external source is powering the auxiliaries). If the charging time is identical to the 

discharging one, the round-trip efficiency becomes 

 
( )

( )

stackdisch mech

roundtrip

stackch mech

P P

P P


−
=

+
 (7)  
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Fig. 13 Effect of the auxiliaries on the efficiency 

From relation (7), it becomes evident that the round-trip energy efficiency can become 

negative (for example Pmech>Pstackdisch). 

The variation of the round-trip efficiency in dependency of the charging/discharging 

power related to the nominal power of the battery Pn and in dependency of the related 

mechanical power Pmech/Pn is represented in Fig. 13 (right side). The operating range of the 

battery power is comprised between zero and 1.2 [p. u.], and the range of the needed related 

auxiliary power is comprised between zero and 0.2 [p. u.]. In Fig. 13, the negative values of 

the efficiency are only represented at the value of Pmech/Pn = 0.2 in order to illustrate this 

property. A real operation of the storage system under such conditions would correspond to a 

non-sense. 

8. CONCLUSIONS 

Energy storage has been and will be in the future a component with growing importance in 

the wide field of powered systems. A broad range of power and energy capacity is 

characterizing the storage components. 

A general model for the efficiency and new tools have been described where the real 

amount of recoverable energy in dependency of the power level of the exchange can be 

calculated. In the context of alternative and renewable energy supplies, new storage supports 

are proposed as flow batteries, flywheels or even superconducting magnetic components. As 

for all storage devices, the energy efficiency must be quantified and the operation boundaries 

for a reasonable global performance must be defined. 
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