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Abstract. In this paper a new non-isolated high step-up interleaved cascade converter is 

presented. In comparison with the conventional cascade boost converter, the proposed 

converter has a higher voltage gain, lower input current ripple and reduced voltage stress 

for the switches and diodes. Besides, unlike the conventional cascade boost converter, in the 

proposed converter the input current is shared between inductors and hence the converter 

can be implemented with lower current rated inductors. Thus, the converter size and 

conduction losses are reduced and the efficiency is increased. The proposed converter is 

analyzed and experimental results of a 200W laboratory prototype are presented. 
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1. INTRODUCTION  

Nowadays, DC microgrid systems due to their self-sustainability in small areas have 

been receiving attention and are expected to be the next generation of power systems. 

Renewable energy sources, such as wind and solar, are increasingly being integrated into 

the electric power grid, while the power system becomes more tightly intertwined with 

other systems, such as buildings, natural gas pipelines, and the transportation sector. In 

microgrid systems, renewable energy sources including photovoltaic (PV), wind turbine, 

waves, and geothermal sources are utilized for generating DC power and batteries, ultra-

capacitors, and fuel cells are adopted as backup power sources for the renewable energy 

sources [1]-[3]. However, since these power sources usually generate a low voltage, a 

high step-up DC–DC converter is required to supply high operating voltages loads [4]. 

For step-up applications, a conventional boost converter can be applied due to its 

simple circuit and low cost. However, it is not suitable for high step-up applications due 

to high duty cycle for the converter switch, high voltage stress of the power devices, 

reverse recovery problems, high conduction losses, stability problems in control and 

efficiency limitation [5]-[8]. 
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To reach a high voltage gain, two or more boost converters can be connected in series. 

These converters are called cascade converters [9]. To reduce the number of required 

components, quadratic boost converters are proposed in [10]-[12]. In these converters, the 

two series boost converters are integrated and the converter needs only one switch. 

However, since the input voltage is low and all the input current flows from the first stage 

inductor, the size, volume and conduction losses of this inductor increase drastically as 

the output power increases. To solve this problem, interleaved technique can be used in 

order to share current between modules [13].  However, the voltage gain of two stage 

cascade boost converter is still limited and more than two stage cascade boost converters 

suffer from low efficiency, complex circuit and control, and high cost [10]. 

In recent years various interleaved high step up converters are presented in which the input 

current of the converter is shared between the interleaved phases. In [14] and [15], switched 

capacitor technique is applied to the interleaved boost converter and the voltage gain has 

increased. Although in these converters the voltage gain is higher than conventional boost 

converter, it is still limited and the voltage stress of semiconductor devices are high. In [16]-

[19], coupled inductors are used instead of main inductors in interleaved boost converter and 

the turn ratio of the coupled inductors is employed to adjust the voltage gain. However, 

because a high turn ratio is required to obtain a high voltage gain higher than 15, the size of 

the coupled inductor and the conduction loss of the winding and the core loss increase. 

Moreover, a snubber circuit or clamping circuit is needed due to the leakage inductance from 

the coupled inductor [19]-[23]. Besides, in [18] the input current of the converter is pulsating 

and its ripple is high. To decrease the input current ripple, three coupled inductors are adopted 

in [20] and [21] which increase the converter size and complexity.  

To solve the problems of conventional cascade boost converter and avoid using 

coupled inductors, in this paper a new non-isolated high step-up interleaved cascade 

converter is presented. The proposed converter has a higher voltage gain in comparison to 

the two stage cascade boost converter and interleaved boost converter. Moreover, the 

voltage stress of the switches in the proposed converter is reduced and the input current is 

shared between converter inductors. Besides, the input current ripple in the converter has 

decreased compared to the conventional cascade boost converter.  Hence, the converter 

can be implemented with lower current rated inductors, and the converter size and 

conduction losses are reduced and efficiency is increased.  

The rest of the paper is organized as follows. The proposed converter operation 

principals are described in Section II. In section III, converter analysis and design 

considerations are discussed in details. Experimental results of a prototype converter are 

presented in Section IV and conclusions are given in Section VI. 

2. PROPOSED CONVERTER OPERATION PRINCIPLE 

Fig. 1 shows the proposed interleaved high step-up converter. In order to indicate the 

operation of the proposed converter, some assumptions are made: 

1) All semiconductor components are ideal; 

2) The output capacitor CO and capacitors C1~C3 are large enough and can be considered 

as voltage sources; 

3) The inductors L1, L2 and L3 are large enough and the converter operates in continuous-

current-mode (CCM); 
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Fig. 1 Proposed interleaved high-step up converter. 

With respect to above assumptions, each switching period can be divided into four 

modes and the key operating waveforms of the proposed converter and equivalent circuits 

are shown in Fig. 2 and Fig. 3, respectively. Likewise, the two-phase interleaved 

converters, switches S2 and S3are driven with the phase shift angle of 180ºand duty cycles 

of them are equal. The gate pulse of switch S1 is similar to S2 as it is shown in Fig. 2.  

Interval I, [t0-t1]: Fig. 3(a) shows the equivalent circuit of the converter in this interval 

and as it is shown in the figure, switches S1 and S2 are turned off and S3 is turned on. In 

this interval inductors L1 and L2 are discharged through pathsVin-D1-C1-L1 and Vin-L2-C2-

D2-C3-S3, respectively.  In addition, inductor L3 is charged through Vin-D1- S3-L3. The 

equations of converter elements in this interval are as follows:  

 

)()()( 0

1

1
011 tt

L

VV
tItI inC

LL −
−

−=  (1) 

 

)()()()( 0

2

23
0222 tt

L

VVV
tItItI CinC

LDL −
−−

−==  (2) 

 

)()()( 030

3

3 tItt
L

V
tI L

in
L +−=  (3) 

 
)()()( 311 tItItI LLD +=  (4) 

 
)()()( 323 tItItI LLS +=  (5) 

Interval II, [t1-t2]: This interval begins when switches S1 and S2 turn on. As it is shown 

in Fig. 3(b), in this interval all of the switches are turned on and inductors L1, L2 and L3 

are charged through Vin-S1-L1, Vin-S1-C1-L3-S3 and Vin-L2-S2, respectively. Important 

equations of converter elements are as follows: 
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Fig. 2 Typical key waveforms of the proposed converter. 
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Interval III, [t2-t3]: At t2, S3 turns off and this interval begins. When S3 turns off, L3 

continues its current and turns D3 and D4 on. Part of L3 current flows through Vin-S1-C1-

L3-C3-D3-Co and the other part of L3 current runs through Vin-S1-C1-L3-D4-C2-S2. Hence, 

C1 and C3 are discharged and Co and C2 are charged in this interval. L1 and L2 are charged 

similar to the pervious interval. Important equations of the converter elements are:  
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Interval IV, [t3-t4]: Fig. 3(b) shows the equivalent circuit of the converter in this 

interval. The converter operation and its important equations are similar to the second 

interval.  

3. CONVERTER ANALYSIS AND DESIGN CONSIDERATIONS 

3.1. Voltage Conversion Ratio 

Following equations can be obtained from Volt-Second-Balance of L1, L2 and L3, 

respectively. 
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From, (14), (15) and (16) following equations are obtained. 
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From (17), (18) and (19), VC1, VC2 and VC3 can be obtained as, 
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Fig. 3. Equivalent circuits of the proposed converterČ (a) Interval I [t0-t1], (b) Interval II 

[t1-t2], (c) Interval III [t2-t3] (d) Interval IV [t3-t4]. 

 

22
)1( D

V
V in

C
−

=

 

(21) 

 

23
)1(

).2(

D

VD
V in

C
−

−
=  (22) 



 A Non-Isolated High Step-Up Converter with Low Ripple Input Current and Reduced Voltage Stress 99 

From Interval III, 

 32 CoC VVV −=   (23) 

By substituting VC2 and VC3 from (21) and (22) in (23), the voltage gain G of the 

proposed converter can be obtained as follows:  
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Relation (24) shows that the proposed converter has a high step up voltage gain. Fig. 

4 shows a comparison between the voltage gains of the proposed converter, the 

conventional cascade boost converter and the converters presented in [14] and [15]. As it 

can be observed from the figure, the proposed converter has a higher voltage gain.  

 

Fig. 4. Voltage gain comparison of the proposed converter with conventional cascade 

boost converter and the converters presented in [14] and [15].   

3.2. Inductors average current  

In the proposed converter, input current is sum of the L1, L2 and L3 currents. Hence, 

the average value of input current is as follows: 
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From the current-second-balance of C3 and Co, following equation can be obtained 
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The following equation can be obtained by assuming ideal condition: 
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By substituting IL2_avg,IL3_avgand Vo/Vin from (28), (29) and (24) into (31), average 

current of inductors are:  
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The proposed converter is compared with the conventional cascade boost and 

converters presented in [14] and [15] in Table 1. From this table, it is obvious that in the 

proposed converter, unlike the conventional cascade boost converter, the input current is 

shared between all the inductors.   

4. SEMICONDUCTOR STRESS ANALYSIS 

Based on the converter operating intervals and equivalent circuits, the voltage stress 

of S1, S2 and D1 is:  
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Also, the voltage stresses of S3, D3, D2 and D4 are as follows:  
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The voltage stress of the semiconductor components in the proposed converter are 

compared with some other transformer-less high step up converters in Table 1 and as it 

can be seen, in the proposed converter the voltage stresses of the components are 

reduced.    

When S1 is on, the currents of L1 and L2 flow through this switch and when it turns off 

its current passes through D1, hence the current stresses of S1 and D1 can be obtained as:  
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The current stresses of other switches and diodes are as follows: 
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Table 1 Comparison of the proposed converter with the conventional cascade boost 

converter and converters presented in [14] and [15].  
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5. INPUT CURRENT RIPPLE AND INDUCTORS 

From equations (6), (7) and (8), the input current ripple is obtained as follows:  
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By replacing VC1 and VC2 from (20) and (21) in (43): 
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By assuming L = L1 = L2, 

 

)
2

)
)1(

1

1

1
1(

1
(

.2

)
)1(

1

1

1
1(

3

2

3

2

L

DD

L
DTV

L

DTV
DD

L

DTV
I in

in

in
in

−
−

−
+

+=
−

−
−

+

+=  (45) 

From (45), if 
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, the input current ripple of the converter would be zero. In the case that Vin=40Vand 

Vo=400V, the converter operating duty cycle from (24) is 0.5 and from (46),L3 is 
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By substituting L3 from (47) and Vin from (24) in (45), the input current ripple of the 

proposed converter is obtained as:  
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The equation of input current ripple in the conventional cascade converter is: 
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Comparing (48) with (49) shows that the proposed converter has a lower input current 

ripple in comparison to conventional cascade boost converter.  The proposed converter 

operates under continuous current mode (CCM) and the design equation of L1, L2 and can 

be obtained from (30) and (31) as: 
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6.CAPACITORS 

The values of the proposed converter capacitors can be obtained from following 

equations: 
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Where, ΔVC1, ΔVC2, ΔVC2 and ΔVCo are the voltage ripple of C1, C2, C3 and Co, 

respectively.  

7. EXPERIMENTAL RESULTS 

In order to verify the performance of the proposed converter and the presented key 

waveforms, a 200 W laboratory prototype is implemented. The component specifications 

of the proposed converter are summarized in Table2.In order to show the ability of 

providing high voltage gain, input voltage and output voltages are selected 40V and 400 

V, respectively. The switching frequency and duty ratio of the gate signals of all switches 

are 100 kHz and approximately 0.5, respectively. The experimental waveforms of the 

converter are shown in Fig. 5. In Fig. 5(a), (b) and (c) the current and voltage waveforms 

of S1, S2 and S3 are represented, respectively. As shown in the figures, the maximum 

voltage across S1, S2 and S3for 40V input and 400V output are about 80V, 80V and 160V, 

respectively. As a result, low voltage rated switches can be adopted to reduce the 

conduction loss and to achieve high efficiency. In Fig. 5(d), (e), (g) and (h) the current 

and voltage of D1, D2, D3 and D4are illustrated, respectively. The voltage stress of D1, D2, 

D3 and D4for 400V output voltage is about 80V, 250V, 160V and 250V, respectively. As 

can be seen, the voltage stresses of diodes are sufficiently lower than the output voltage. 

Fig. 6 shows the measured efficiency of the proposed converter compared with the 

conventional cascade converter. For a fair comparison, the conventional cascade boost 

converter is designed with the same switching frequency. Other important parameter of 

the conventional cascade boost converter is mentioned in Table 2. As it can be observed 

form Fig. 6, the proposed converter has higher efficiency and as the load increases, 

efficiency drop in the conventional converter is higher compared with the proposed 

converter. Fig. 7 shows the input and output voltages of the converter. 
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Fig. 5. Experimental voltage and current waveforms of the proposed converter semiconductor 

components  (a) S1, (b) S2, (c) S3, (d) D1, (e) D2, (f) D3 and (g) D4. 

 

Fig. 6 Measured efficiency of the proposed converter.  
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Table 2 Components value and specification of the implemented converters  

Parameter  

Value 

Proposed  

Converter 

Conventional  

Cascade Converter 

Switching frequency  100 kHz 100 kHz 

Switches S1~S3 (IRF640) 
S1 (IRFP260) 

S2(IRFP460) 

Diodes D1~D4 (MUR460) 
D1 (BYV32-200) 

D2 (MUR460) 

Inductors 
L1 and L2 (500 µH) 

L3(250 µH) 

L1 (1mH) 

L2(500 µH) 

Capacitors 

C1 (10µF/ 100V) 

C2 (10µF/ 200V) 

C3 (10µF/ 450V) 

Co(47µF/ 450V) 

C1 (22µF/ 200V) 

Co(100µF/ 450V) 

Vo

100V

Vin 50V

2.5µs

 

Fig. 7 Input and output voltage waveforms of the sample converter 

8.CONCLUSIONS  

A new interleaved cascade boost DC–DC converter with an improved voltage gain is 

presented in this paper. In the proposed converter, the input current is continuous with 

low ripple and the converter does not need additional filter in the input. Besides, unlike 

the conventional cascade boost converter, the input current is shared between all the 

inductors and hence the proposed converter can be implemented with lower current rated 

inductors. Moreover, the voltage stress of the converter power devices is reduced in 

comparison with conventional cascade boost converters and the converters presented in 

[14] and [15]. Thus, the efficiency of the converter is improved.   
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