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Abstract. The fractional order system (FOS) comprises fractional order operator. In order 

to obtain the discretized version of the fractional order system, the first step is to discretize 

the fractional order operator, commonly expressed as s, 0 <  < 1. The fractional order 

operator can be used as fractional order differentiator or integrator, depending upon the 

values of . In general, there are two approaches for discretization of fractional order 

operator, one is indirect method of discretization and another is direct method of 

discretization. The direct discretization method capitalizes the method of formation of 

generating function where fractional order operator s is expressed as a function of Z in the 

shift operator parameterization and continued fraction expansion (CFE) method is then 

utilized to get the corresponding discrete domain rational transfer function. There is an 

inherent problem with this discretization method using shift operator parameterization 

(discrete Z-domain). At fast sampling time, the discretized version of the continuous time 

operator or system should resemble that of the continuous time counterpart if the sampling 

theorem is satisfied. At very high sampling rate, the shift operator parameterized system fails 

to provide meaningful information due to its numerical ill conditioning. To overcome this 

problem, Delta operator parameterization for discretization is considered in this paper, 

where at fast sampling rate, the continuous time results can be obtained from the discrete 

time experiments and therefore a unified framework can be developed to get the discrete 

time results and continuous time results hand to hand. In this paper a new generating 

function is proposed to discretize the fractional order operator using the Gauss-Legendre 2-

point quadrature rule. Additionally, the function has been expanded using the CFE in order 

to obtain rational approximation of the fractional order operator. The detailed mathematical 

formulations along with the simulation results in MATLAB, with different fractional order 

systems are considered, in order to prove the newness of this formulation for discretization 

of the FOS in complex Delta domain. 
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1. INTRODUCTION 

Around 300 years ago the concept of fractional calculus [1-2] came into existence. It has 
been an untouched and undiscovered part of engineering until the conceptual furtherance of 
fractional calculus eventuated in the mid nineteenth century. With time this part attracted the 
researchers towards its diversified properties that can be implemented in various field of 
engineering, as well as various part of science [3-7]. The postulation of fractional order 
calculus has an immense perspective to change the technique we see, manipulate and design 
the nature that is around us. The fundamental unit of the non-integer order system is the 

operator (s), which can also be coined as fractional order differentiator or integrator [8-9] for 

variation of 
 
by making it either positive or negative. The important part of digital realization 

of fractional order system is the discretization of this operator. In order to implement the FOS 
in real time, the rationalization is the only procedure, either in continuous time or in discrete 
time. There are various methods for continuous time approximation of fractional order 
operators [10-12]. Once it is converted to continuous time rational transfer function [13], there 
are methods of discretization to get the discretized version of the FOS [14-18]. This is known 
as indirect method of discretization of FOS. There is a second method known as direct 
discretization method, where the rational transfer function in Z-domain is directly obtained via 
different generating functions, as proposed by Euler, Tustin, Al-Alauoi. In the subsequent 
step, the generating function is expanded using methods such as continued fraction expansion 
(CFE) [19].  

There has been an increased demand in digital system implementation. In order to 
implement the FOS digitally, the sampling rate must be increased to at least 10 times the 
original system bandwidth. The increased sampling rate makes the poles closer to each 
other in Z- domain transfer function and gets focused near the point (1,0) in the discrete 
Z- plane. This will result in an unstable system due to finite word length effect [15]. The 
conventional or shift operator representation of discrete time system fails to furnish the 
significant portrayal of the conventional continuous-time system at fast sampling rate. To 
circumvent this problem delta operator parameterization is introduced [20] where, at very 
high sampling frequency the continuous time results and discrete time results are 
obtained at the same time. The superiority of the delta operator parameterization along 
with its various applications are found in [21-29].  

In this paper, a method is proposed by which the fractional order operator is directly 
discretized [30-31] in delta domain. Initially, a generating function is proposed in delta 
domain by using one of the useful numerical computational tools known as Gauss-Legendre 
2-point quadrature rule [32]. The classical CFE method is adopted to expand this generating 
function to get the rational approximation of the fractional operator in discrete delta domain. 

The significant contributions are made in this paper as given below: earlier research 
work so far done on the discretization of the fractional order system through the 
discretization of the fractional order operator in shift operator parameterization. In this 
work the FOS has been directly discretized using delta operator parameterization so that 
at a very fast sampling frequency, the discrete time results resemble that of the 
continuous time counterpart. One more important contribution of this work is that here 
Gauss-Legendre 2-point quadrature rule is used for the close form approximation of the 
log(1 + x) function to minimize the approximation error. The comparison with the other 
standard methods are done to prove the efficacy of this proposed method. 

The paper has been well organized in the following sections as indicated: in Section 2, 
fractional order operator and systems are discussed; Section 3 enlightens the direct 
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discretization method of FO operator in delta domain; simulation and result analysis are 
discussed with different examples in Section 4; and in Section 5 the conclusion is drawn. 

2. FRACTIONAL ORDER SYSTEM AND ITS DISCRETIZATION (DIRECT METHOD)  

USING TRADITIONAL METHODS 

2.1. Fractional order operator and fractional order system 

Fractional order system literally means the order of the system is no longer integer 

that is non-integer order. A system of fractional order is represented as fractional order 

differential equation and Laplace transform of the system can be performed to get the 

transfer function.  

A non-integer order system can be portrayed by the following equation [30]. 
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is known as integro-diffrerentiator operator.  

The Laplace transform of the Eq. (1) under consideration of zero initial condition, the 

transfer function that we get is: 
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where, [ ( )] ( ), [ ( )] ( )L y t Y s L u t U s= = . 

If the fractional differential equation as given in Eq. (2) may be coined as 

commensurate order which further gets reduced to the following form. 
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There are two popular definitions, such as Grünwald-Letnikov (GL) and Riemann-

Liouville (RL) definitions, to express this operator 



mD . Here, RL definition is considered. 

The RL definition is  
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Where m and  are the bounds of operation and   is used to represent the Euler's 

gamma function. 
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For the analysis purpose, the fractional order differentiator is considered in this 

section. The fractional order system (differentiator) is realized in complex S-domain for 

the ease, which can be acquired by taking the Laplace transform of the Eq. (4), thus the 

Laplace transform of the equation is 

 { ( )} ( ),   0 1L mD t s s for 

  =      (5) 

3. DELTA DOMAIN DISCRETIZATION METHOD OF FRACTIONAL ORDER OPERATOR 

In contrast to get better finite-word-length effect under fast sampling, forward shift 

operator is going to be replaced by the delta operator [20]. The forward difference 

operator of delta operator is defined as 
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Where q is the forward shift operator and  is termed as sampling time or internal. 

Employing a differentiable signal x(t), at high sampling time (→0) the delta (  ) operator 

gravitates with continuous-time derivative operator as shown in Eq. (7). 
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The variable corresponding to z  in the shift operator parameterization is denoted by  

in complex delta domain and relationship between the two complex variables are given in 

Eq. (8)[20]. 
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At high sampling time limits (→0) the delta discrete-time frequency variable () 

coincides with the continuous-time frequency variable (s) as follows and it is the 

philosophy which is capitalized in this work. 
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To obtain the mapping between s  and  , we need to replace sz e = in Eq. (8) as 

shown above. After taking logarithm on both sides the relationship between the two 

domains can be established by Eq. (10). 
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Now, ln(1 )+   function is approximated in a closed form and the CFE expansion is 

made possible. Upon applying different Trapezoidal quadrature rule [32], the close form 

approximation of ln(1 )x+ is obtained through 2P-GILOG approximation as follows: 
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This Approximation is known as 2P-GILOG. 



 A New Approach for Direct Discretization of Fractional order Operator in Delta Domain 317 

Now replacing x by    in Eq. (11), the expression becomes, 

  
2

2

6 3( )
ln(1 )

6 6( ) ( )

 


 

 + 
+  

+  + 
 (12) 

The Eq. (10) is re-established by using Eq. (12) and Eq. (13) and is obtained as follows: 
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At fast sampling limit ( 0→ ) the discrete-time frequency variable (  ) in delta 

domain coincides with the continuous-time frequency variable ( s ) as can be found out 

from Eq.(13) Therefore, at fast sampling limit, the complex variable in continuous 

domain is approximated as the complex variable in discrete delta domain. 

A FO differentiator is framed as: 

 ( ) (0 1)rG s s r=     (14) 

CFE2P-GILOG method is used for discretization of  
rs  directly in delta domain. 

The fractional order operator discretization is accomplished in two stages. 

Initially, the required generating function is selected and that is going to define the 

approximate mapping between delta discrete-time variable (γ) and continuous-time 

variable ( s ). In the next stage, to obtain the discrete time approximation of rs in the form 

of transfer function in delta domain, the selected generating function is expanded. In this 

work, Eq. (13) is chosen as the generating function and CFE method is used to expand it 

to get respective integer order approximation of sr in delta domain. 
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The mathematical expression for CFE approximation is as follow: 
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of Eq. (15). Now executing  CFE approximation of  
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 for third order,  and 

fifth order in delta domain are obtained as given in Eq. (17) and Eq. (18) respectively. 
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Table 1 Numerator coefficients for fifth order approximation in Delta Domain  
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Table 2 Denominator coefficients of fifth order approximation in Delta domain 
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4. SIMULATION AND RESULT ANALYSIS 

To prove the effectiveness of the portrayed approach, three examples are taken. 

 

Example 1: 

A 1/4th  order differentiator is considered in this example [25] with transfer function 

as shown below: 

 0.25( ) rG s s s= =   (19) 

The direct discretization of 1/4th  order differentiator in delta domain   is expressed as 

follows:    

 

0.25
2

0.25

2 2 2

0.01

6 3
( )

6 6
P GILODELs G CFE−

=

   + 
     
 +  +    

 (20) 

The third and fifth order approximation of 0.25s  in delta domain after continued fraction 

expansion of 










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




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+
25.0

22

2

66

36




 results in Eq. (21) and Eq. (22) respectively. The 

sampling time is considered to be 0.01s =  
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For G2P−GILOGDel5() the denominator and numerator coefficient are calculated using Table 

1 and Table 2 taking r = 0.25 and  = 0.01. The frequency responses of delta domain transfer 

functions, G2P−GILOGDel3() and G2P−GILOGDel5 are shown in Fig. 1. The magnitude and phase 

error of the third order and fifth order approximate transfer function with respect to the 

original 1/4th  order differentiator are demonstrated in Fig. 2. It can be seen through the graph 

that as the order of approximation goes higher, the precision of approximation gets better. 

 

Fig. 1 Fifth order and third order approximation of 0.25s  in delta domain using proposed 

method 

  

Fig. 2 Error comparison between fifth order and third order approximation of 
0.25s  in 

delta domain using proposed method 

While taking the whole range of frequency into consideration, the magnitude is more 

accurate as compared to the phase response. The approximation is compared on the basis 

of the maximum absolute magnitude and phase error as shown in Table 3.  As we can see 
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that the approximation results for the fifth order are more prominent than those of the 

third order, therefore fifth order CFE approximation has been chosen to develop the 

frequency responses for the different systems considered in this paper. At a sampling time 

of 0.01s = , the fifth order discrete realization of 1/4th order differentiator is considered 

based upon the four methods described in this paper namely CFE of Al-Alaoui (CFEAL), 

CFE of Tustin (CFETO), CFEDO and CFE of 2P GILOG in Delta domain (CFE2P-

GILOGDel) and following results are obtained. 
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5 5 4 5 3 5 2 4
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Table 3 Absolute maximum phase error and magnitude error for discretization of 0.25th - 

order differentiator using CFE2P-GILOGDel 

Approximation order Maximum magnitude error (dB) Maximum phase error (degree) 

Fifth 0.92 7.7415 

Third 1.27 30.5 

Example 2: A fractional order system [25] is considered: 

 
1 0.97

2.813
( ) 0.191G s

s
= +   (27) 

For the discretization of the above system, sampling time considered is s0001.0= . 

The discretization of this continuous time transfer function results in four rational 

approximation T.F. as given by Eq. (28), Eq. (29), Eq. (30) and Eq. (31), by using four 

methods CFEAL, CFETO, CFEDO and CFE2P-GILOGDel,  respectively,. 
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Example 3: 

The FO system [14] is chosen and the transfer function is as follows: 

 
2 0.638

41.89
4 68) 28.(G

s
s = +  (32) 

Here the sampling rate is made higher and that is considered as 0.00001s = . The 

discretization of this continuous time transfer function results in four rational approximation 

T.F., as given by Eq. (33), Eq. (34), Eq. (35) and Eq. (36), by using four methods CFEAL, 

CFETO, CFEDO and CFE2P-GILOGDel, respectively. 
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Fig. 3 Frequency response comparison after discretization of G(s) using four methods at 

0.25r =  and 01.0=  

 

Fig. 4 Frequency response comparison after discretization of G1(s) using four methods 

0.97r =  and 0001.0=  

 

Fig. 5 Frequency response comparison after discretization of G2(s) using four methods at 
0.638r =  and 0.00001=  
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Four different discretization methods are utilized to discretize three fractional order 

systems as shown in three examples. The frequency responses of all the systems (fractional 

order) along with the frequency responses of their corresponding discrete-time approximated 

systems are shown in Fig. 3, Fig. 4, and Fig. 5, respectively. In all the discretization methods 

magnitude approximation turns out to be superior over the phase approximation. From the 

Fig. 3, Fig. 4 and Fig. 5, it is evident that the proposed method, CFE2P-GILOGDel produces 

excellent frequency responses in the frequency range of (0.001 rad/s to 1000rad/sec). 

Therefore, through experimental analysis, the proposed method is more promising than the 

other three approaches for discretization with respect to approximation of original fractional 

order system. Moreover, the comparison of the outcomes with another method developed in 

the delta domain been made and superiority of the proposed method is established. The 

CFE2P-GILOGDel method at high sampling time ( 0.00001 = ) provides frequency 

responses very much closer to the original fractional order system as can be seen from Fig. 5. 

This leads to a development of a unified approach towards the discretization of fractional 

order operator or system in complex delta domain means at high sampling rate the continuous 

time result and discrete time results can be obtained at the same time and is a sole reason for 

the development of discrete time systems’ in delta operator parameterization. 

 

Fig. 6 Magnitude and phase error after discretization of G(s) using four methods at 

0.25r = and 01.0=  

 

Fig. 7 Magnitude and phase error after discretization of G1(s) using four methods at 

0.97r = and 0.0001=  
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Fig. 8 Magnitude and phase error after discretization of G2(s) using four methods at 

0.638r = and 00001.0=  

Table 4 Absolute maximum magnitude error and phase error for four discretization 

methods for different systems 

FOS 
Max. magnitude error (dB) Max. phase error (degree) 

CFE2PG

ILOGDel 
CFEDO 

Al-

Alaoui 
Tustin 
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Al-
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= +  1.66 2.12 5.83 24.27 44.46 45.1 79.83 88.02 

2 .0.638

41.89
( ) 428.68G s

s
= +  7.6 7.94 28.76 35.78 82.54 82.8 103.52 112.44 
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Fig. 9 Pole-zero plot for the third-order and fifth order approximation of 
97.0s using 

CFE2P-GILOGDel method 
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Fig. 10 Pole zero plot for the third-order and fifth order approximation of 97.0s using 

CFE-DO method 
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Fig. 11 Pole-zero plot for the third-order and fifth order approximation of 
97.0s using 

Tustin method 
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Fig. 12 Pole-zero plot for the third-order and fifth order approximation of 
97.0s using Al-

Alaoui method 
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From the Table 4, it is clearly observed that when the sampling time is increased to a 

very high limiting value 0.00001s = , the maximum absolute magnitude error and phase 

error is much higher in case of discretization using Tustin and Al-Alaoui method in Z-

domain in comparison to the discretization using Delta operator parameterization. The 

graphical representation can also be viewed from Fig. 8. Also, it can be seen that the 

proposed method is superior to the other methods in the literature. At the same time, a 

comparison has been made  for the fifth order approximation  of s0.97 using another delta 

domain based approach, CFEDO method, where poles are in the right half of the plane 

Fig. 10, thus making the rational transfer function of the system unstable, whereas the method 

proposed in this paper shows that in both third order and fifth order the poles in the region 

itself are making the system stable. So, it is evident that the proposed method delivers 

preferable approximation amidst all four discretization methods and is a viable alternative in 

the literature of direct discretization of fractional order operator in delta domain. 

The following analysis has been done to prove the novelty of the direct discretization of 

fractional order operator (s, 0 <  < 1) over the indirect discretization of the fractional order 

operator in delta domain. For the illustration purpose, a 1/4th order differentiator is considered 

for the discretization purpose. This operator is discretized using indirect discretization using 

Oustaloup approximation [33] method as an intermediate step. 

Rational approximation of 25.0s is obtained using [33] as given in Eq. (37). 

 

7 6 5 4 3 2

7 6 5 4 3 2

3 162 1899 2 411 05 7 763 06 6 586 07 1 472 08

8 343 07 1 07

834 3 1 472 05 6 586 06 7 763 07 2 411 08

1 899 08 3 162 07

. s  + s  + . e s  + . e s  + . e s + . e s

+ . e s + e

s  + . s  + . e s  + . e s  + . e s + . e s

+ . e s + . e

 (37) 

Eq. (37) is discretized in delta domain to get the rational approximation of 25.0s .  
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 (38) 

The rational approximation of 25.0s in delta domain using proposed direct discretization 

method is illustrated in Eq. (39) 

 

 
5 4 3 2
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2 55954 0 0235 0 000042 2 6066 ( 08) 6 5524 ( 12) 5 75821 (16)

0 00556 0 000007 4 25183 ( 9) 9 63178 ( 13) 7 7805 ( 17)
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−
(39) 

 

A comparative analysis between the direct discretization and indirect discretization 

using delta operator based parameterization is graphically demonstrated in Fig. 13 and 

Fig. 14 respectively. 
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Fig. 13 Frequency Response using Indirect Discretization of 25.0s at ∆=0.001s 

 
Fig. 14 Frequency response using direct discretization of 25.0s at ∆=0.001s 

From the above figure it is clear that using the direct discretization the magnitude and 

phase plot resembles that of the 1/4th order differentiator in continuous time domain, 

whereas there is a notable deviation of the magnitude and phase curve when indirect 

discretization is approached. Therefore, direct discretization of the fractional operator in 

delta domain is superior over indirect discretization.  
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5. CONCLUSION 

In this paper, a new direct discretization method for fractional order operator is 

proposed. The traditional discretization method for fractional order operator works in the 

discrete Z-domain and at a high sampling frequency, the resulting system fails to provide 

meaningful information. Instead, delta operator parameterized systems give continuous 

time results at high sampling frequency. In this work, an approximation mapping 

between the S-domain and delta domain is established through trapezoidal quadrature 

rule and traditional CFE, method is used to obtain rational transfer function corresponding to 

the fractional order operator in discrete delta domain.    

Simulation results show that the proposed discretization method using delta operator 

is producing gratifying frequency response approximation of the original fractional order 

system in resemblance to other two discretization methods. At fast sampling rate, the 

discretized system produces almost the same frequency responses as those of continuous 

time counter-part. This successfully proves the efficiency of the suggested approach to be 

a viable alternative to that of the direct discretization methods of discretizing the 

fractional order operator or systems available in the concerned literature and leading to 

the development of a unified approach for direct discretization of FOS in delta domain. 
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