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Abstract. The fractional order system (FOS) comprises fractional order operator. In order
to obtain the discretized version of the fractional order system, the first step is to discretize
the fractional order operator, commonly expressed as s, 0 < p < 1. The fractional order
operator can be used as fractional order differentiator or integrator, depending upon the
values of w. In general, there are two approaches for discretization of fractional order
operator, one is indirect method of discretization and another is direct method of
discretization. The direct discretization method capitalizes the method of formation of
generating function where fractional order operator s*is expressed as a function of Z in the
shift operator parameterization and continued fraction expansion (CFE) method is then
utilized to get the corresponding discrete domain rational transfer function. There is an
inherent problem with this discretization method using shift operator parameterization
(discrete Z-domain). At fast sampling time, the discretized version of the continuous time
operator or system should resemble that of the continuous time counterpart if the sampling
theorem is satisfied. At very high sampling rate, the shift operator parameterized system fails
to provide meaningful information due to its numerical ill conditioning. To overcome this
problem, Delta operator parameterization for discretization is considered in this paper,
where at fast sampling rate, the continuous time results can be obtained from the discrete
time experiments and therefore a unified framework can be developed to get the discrete
time results and continuous time results hand to hand. In this paper a new generating
function is proposed to discretize the fractional order operator using the Gauss-Legendre 2-
point quadrature rule. Additionally, the function has been expanded using the CFE in order
to obtain rational approximation of the fractional order operator. The detailed mathematical
formulations along with the simulation results in MATLAB, with different fractional order
systems are considered, in order to prove the newness of this formulation for discretization
of the FOS in complex Delta domain.

Key words: continuous fraction expansion, direct discretization, delta operator,
fractional order operator, fractional order system

Received September 30, 2021; revised January 26, 2022; accepted July 4, 2022

Corresponding author: Arindam Mondal

Pailan College of Management & Technology, Faculty of Electrical and Electronics Engineering, India
E-mail: arininstru@gmail.com

© 2022 by University of Nis, Serbia | Creative Commons License: CC BY-NC-ND



314 S. K. DOLAI, A. MONDAL, P. SARKAR

1. INTRODUCTION

Around 300 years ago the concept of fractional calculus [1-2] came into existence. It has
been an untouched and undiscovered part of engineering until the conceptual furtherance of
fractional calculus eventuated in the mid nineteenth century. With time this part attracted the
researchers towards its diversified properties that can be implemented in various field of
engineering, as well as various part of science [3-7]. The postulation of fractional order
calculus has an immense perspective to change the technique we see, manipulate and design
the nature that is around us. The fundamental unit of the non-integer order system is the
operator (s*+), which can also be coined as fractional order differentiator or integrator [8-9] for
variation of p by making it either positive or negative. The important part of digital realization
of fractional order system is the discretization of this operator. In order to implement the FOS
in real time, the rationalization is the only procedure, either in continuous time or in discrete
time. There are various methods for continuous time approximation of fractional order
operators [10-12]. Once it is converted to continuous time rational transfer function [13], there
are methods of discretization to get the discretized version of the FOS [14-18]. This is known
as indirect method of discretization of FOS. There is a second method known as direct
discretization method, where the rational transfer function in Z-domain is directly obtained via
different generating functions, as proposed by Euler, Tustin, Al-Alauoi. In the subsequent
step, the generating function is expanded using methods such as continued fraction expansion
(CFE) [19].

There has been an increased demand in digital system implementation. In order to
implement the FOS digitally, the sampling rate must be increased to at least 10 times the
original system bandwidth. The increased sampling rate makes the poles closer to each
other in Z- domain transfer function and gets focused near the point (1,0) in the discrete
Z- plane. This will result in an unstable system due to finite word length effect [15]. The
conventional or shift operator representation of discrete time system fails to furnish the
significant portrayal of the conventional continuous-time system at fast sampling rate. To
circumvent this problem delta operator parameterization is introduced [20] where, at very
high sampling frequency the continuous time results and discrete time results are
obtained at the same time. The superiority of the delta operator parameterization along
with its various applications are found in [21-29].

In this paper, a method is proposed by which the fractional order operator is directly
discretized [30-31] in delta domain. Initially, a generating function is proposed in delta
domain by using one of the useful numerical computational tools known as Gauss-Legendre
2-point quadrature rule [32]. The classical CFE method is adopted to expand this generating
function to get the rational approximation of the fractional operator in discrete delta domain.

The significant contributions are made in this paper as given below: earlier research
work so far done on the discretization of the fractional order system through the
discretization of the fractional order operator in shift operator parameterization. In this
work the FOS has been directly discretized using delta operator parameterization so that
at a very fast sampling frequency, the discrete time results resemble that of the
continuous time counterpart. One more important contribution of this work is that here
Gauss-Legendre 2-point quadrature rule is used for the close form approximation of the
log(1 + x) function to minimize the approximation error. The comparison with the other
standard methods are done to prove the efficacy of this proposed method.

The paper has been well organized in the following sections as indicated: in Section 2,
fractional order operator and systems are discussed; Section 3 enlightens the direct
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discretization method of FO operator in delta domain; simulation and result analysis are
discussed with different examples in Section 4; and in Section 5 the conclusion is drawn.

2. FRACTIONAL ORDER SYSTEM AND ITS DISCRETIZATION (DIRECT METHOD)
USING TRADITIONAL METHODS

2.1. Fractional order operator and fractional order system

Fractional order system literally means the order of the system is no longer integer
that is non-integer order. A system of fractional order is represented as fractional order
differential equation and Laplace transform of the system can be performed to get the
transfer function.

A non-integer order system can be portrayed by the following equation [30].

aD™y(t)+a D™ ty(t)+...+aDPy(t) =b D™u(t)+b_ D™ u(t) +....+ b Du(t)

Where,

v

- (v >0)
dr
mDY =11 (y=0) (1)

(dz)’ (v <0)

33—

is known as integro-diffrerentiator operator.
The Laplace transform of the Eq. (1) under consideration of zero initial condition, the
transfer function that we get is:

_Y(s) _b,D’ +b, D +...+bD”
u(s) a,D”+a,,D™ +...+a,D%

G(s) )

where, L[y(t)] =Y (s), Llu(®)]=U (s) .
If the fractional differential equation as given in Eqg. (2) may be coined as
commensurate order which further gets reduced to the following form.

> DRy (M) = kﬁﬂk D u(t) 3

where, a,,B, =kaeR,

There are two popular definitions, such as Grunwald-Letnikov (GL) and Riemann-
Liouville (RL) definitions, to express this operator mD" . Here, RL definition is considered.

The RL definition is

voov_ 1 d e g(p)
MDY 40 = ) o | = gy P (4)

Where m and t are the bounds of operation and T is used to represent the Euler's
gamma function.
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For the analysis purpose, the fractional order differentiator is considered in this
section. The fractional order system (differentiator) is realized in complex S-domain for
the ease, which can be acquired by taking the Laplace transform of the Eq. (4), thus the
Laplace transform of the equation is

L{mDY (1)} =s"o(s), for O<y <1 (5)

3. DELTA DOMAIN DISCRETIZATION METHOD OF FRACTIONAL ORDER OPERATOR

In contrast to get better finite-word-length effect under fast sampling, forward shift
operator is going to be replaced by the delta operator [20]. The forward difference
operator of delta operator is defined as

g-1
0=—" 6
- (6)
Where q is the forward shift operator and A is termed as sampling time or internal.
Employing a differentiable signal x(t), at high sampling time (A—0) the delta (&) operator

gravitates with continuous-time derivative operator as shown in Eq. (7).

. Lo X(t+A)—x(®)  dx(t)
lim X0 =lim ==

Y]

The variable corresponding to z in the shift operator parameterization is denoted by y
in complex delta domain and relationship between the two complex variables are given in
Eq. (8)[20].

()

At high sampling time limits (A—0) the delta discrete-time frequency variable (y)
coincides with the continuous-time frequency variable (s) as follows and it is the
philosophy which is capitalized in this work.

S°A®
s 1+sA+ +...—1
=i Tin A -° ®)
To obtain the mapping between s andy, we need to replace z=e*in Eq. (8) as

shown above. After taking logarithm on both sides the relationship between the two
domains can be established by Eq. (10).

S :%In(1+ yA) (10)

Now, In(l+yA) function is approximated in a closed form and the CFE expansion is
made possible. Upon applying different Trapezoidal quadrature rule [32], the close form
approximation of In(1+ x) is obtained through 2P-GILOG approximation as follows:

In(L+ x) ~ OX 3 (11)
6 +6X+ X*

This Approximation is known as 2P-GILOG.
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Now replacing x by yA in Eqg. (11), the expression becomes,

2
In(L+ Ay) ~ A F30A) (12)
6+6(A)+(yA)
The Eq. (10) is re-established by using Eq. (12) and Eq. (13) and is obtained as follows:
1 6y +3Ay°
s=<=In(l+A) pmq —"— 13
{A ( 7)} {6+&A+Aﬁﬁ} (13)

At fast sampling limit (A — 0) the discrete-time frequency variable (y) in delta

domain coincides with the continuous-time frequency variable (s) as can be found out
from EQq.(13) Therefore, at fast sampling limit, the complex variable in continuous
domain is approximated as the complex variable in discrete delta domain.

A FO differentiator is framed as:

G(s)=s"(0<r<]) (14)

CFE2P-GILOG method is used for discretization of s" directly in delta domain.
The fractional order operator discretization is accomplished in two stages.

Initially, the required generating function is selected and that is going to define the
approximate mapping between delta discrete-time variable (y) and continuous-time
variable (s). In the next stage, to obtain the discrete time approximation of s" in the form
of transfer function in delta domain, the selected generating function is expanded. In this
work, Eq. (13) is chosen as the generating function and CFE method is used to expand it
to get respective integer order approximation of s" in delta domain.

G ) ~crel B30 Y °
s NGB(Y)~CFE{[6+6(YA)+(~/A)2J} -

The mathematical expression for CFE approximation is as follow:

r rp
Q+p) =1+ (16)
1+ @-rp

@+r)p
B @
2+r)p
2+73—r)
5+7( P

2
—67+3A72 ~—1 Is substituted in place of p in the Eq. (16) to get the equivalent form
6+6Ay+ A%y

of Eq. (15). Now executing CFE approximation of 6v+38° ) | for third order, and
6+ 6AY +A%y?

fifth order in delta domain are obtained as given in Eq. (17) and Eq. (18) respectively.

r

s" ~G,,(y) = CFE 6y +3yA? 7a°y‘3+aly‘3+a2y‘3+a3 (17)
~Lss\V) = 2.2 =10.3 10,2, 12 1 13
6+6Ay+ A"y by +b%y ™ +b“y™ +b
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' 6y +3Ay° '
s" = G, =CFE]| ——————| =
55 (1) {(6+57A+A2‘{2 (18)
ay P Ayt +a,y vayC +a,y " Fay
boy’5 + bly’4 + bzy’3 + b3y’2 + b4y’1 +bg

Table 1 Numerator coefficients for fifth order approximation in Delta Domain
Dyums = ((r +1)(r +2)(1073741824r" +16911433728r* +13354663936r"° —1002254106624r"
—3869945888768r™ + 20886278111232r" +129327405203456r° —138817498447872r°
—1829934470742016r" —712034173267968r° +12608455533286400r° +13516106683236096r *
—41479456532696640r° —59408759887249392r2 +55098059015583104r
+92016444345172880)))

Coefficients Numerator
a, (—((3/ A)" (1073741824r" — 20132659200r° + 66236448768r" -+ 928367247360r™
—6849998880768r" —7271932231680r" +184246347759616r" — 290937273384960r™°
1987732155678720r° + 6479472582389760r8 + 6812484071998464r’
49917404936559360r° + 24285774583584448r° +156814916118867136r"
206087133711558336r° —138493101617423408r? + 386245451066684864r
—184032888690345760)) / D,
(-((3/ )r (140928614400 r'> 8053063680 r'® 3206125977601 7395229040640 r
42899897057280 r'? 102849152286720r" 1256995122708480 r*°
1 791103107235840 1 ° 15398862690017280r% 30803473842032640r1"
81700461363356160 r® 272889395307594240r° 112347728802349920 r*
1002215818766418432 r® 425460690581907136 1% 1423614499033773056 r
1274294568187684864)) / D,

num5

a, (=((31 A)" (28185722880A°r™ — 422785843200A°r" + 65179484160A°r™ + 26212722278400A%r
—87432002273280A°r"" — 570237360537600A°r" + 3060794314260480A°r’
+4379676740812800A°r" — 43583729456762880A°r " + 7143762905395200A°r°
+300546723808853760A°r° — 267563840484326400A°r* —992987073349200768A°r"

+1262317112875803648A°r” +1327256882051046912A°r — 2019580911193378048A°)) / D,

nums

as (-((31 A)" (634178764800A°r™ - 56371445760A°r™ + 2247811399680A°r™ - 44392513536000A°r™ +

3 10

12672785448960A°r™ +1194755633971200A°r° - 1827599513026560A°r° - 15451885751500800A°r

+32314828390440960A°r® +102031042011494400A°r® - 243411076800568320A°r*
-330417309695155200A°r° + 842112615992487808A°r

+436883676571452608A°r - 1161233166549210368A°)) / D

nums

413

a, (=((31 A (63417876480A"r™ — 396361728000A"r — 4510596464640A°r™ + 27834502348800A°r™°
+122752979435520A*r° — 750819041280000A°r® —1602561749483520A°r” + 9729145062604800A*r°
+10683837557406720A"r® — 64370317952505600A°r* — 34908135243891840Ar*

+208843823902442400A°r? + 46559875383003776A°r — 276641682514481024A%)) / D

nums
as ((3/ A)" (31708938240A°r* — 2255298232320A°r™ + 61376489717760A°r°
—801280874741760A°r°® + 5341918778703360A°r* —17454067621945920A°r”
+23279937691501888A°)) / D

nums
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Table 2 Denominator coefficients of fifth order approximation in Delta domain
Dy = ((r +1)(r +2)(55098059015583104r - 59408759887249392r2 - 41479456532696640r°
+13516106683236096r* +12608455533286400r° - 712034173267968r° -182993447074201617
-138817498447872r® - 712034173267968r° -18299344707420161” -138817498447872r°
+129327405203456r° + 20886278111232r™° - 3869945888768r"" -1002254106624r2
+13354663936r"% +16911433728r* +1073741824r° + 92016444345172880))

Coefficients Denominator

b, ((386245451066684864r +138493101617423408r>
—206087133711558336r° —156814916118867136r*
+24285774583584448r° + 49917404936559360r°
+6812484071998464r — 6479472582389760r°
—1987732155678720r° + 290937273384960r"°
+184246347759616r" + 7271932231680r'?
—6849998880768r"® — 928367247360r™
+66236448768r" + 20132659200r°
+1073741824r"" +184032888690345760)) / Dny
b, ((1274294568187684864A + 1423614499033773056Ar
-425460690581907136Ar? - 1002215818766418432Ar°
-112347728802349920Ar* + 272889395307594240Ar°
+81700461363356160Ar° - 30803473842032640Ar 7
-15398862690017280Ar® + 791103107235840Ar°
+1256995122708480Ar° +102849152286720Ar"
-42899897057280Ar* - 7395229040640Ar + 320612597760Ar*
+140928614400Ar" +8053063680Ar°)) / Dng
b, ((1327256882051046912A%r + 2019580911193378048A2
—1262317112875803648A%r2 — 992987073349200768A%r°
+267563840484326400A°r* + 300546723808853760A%r°
—7143762905395200A%r® — 43583729456762880A%r
—4379676740812800A%r® +3060794314260480A°r°
+570237360537600A%r'° —87432002273280A%r™
—26212722278400A%r*? + 65179484160A%r"
+422785843200A°r* + 28185722880A°r*°)) / Dy
b, ((436883676571452608A°%r +1161233166549210368A°
—842112615992487808A°%r2 — 330417309695155200A°r°
+243411076800568320A°r* +102031042011494400A°%r°
—32314828390440960A°r® —15451885751500800A%r 7
+1827599513026560A°%r® +1194755633971200A°%°
—12672785448960A°r™° — 44392513536000A°%r™
—2247811399680A°%2 + 634178764800A°%™
+56371445760A°r™)) / Dng
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b, ((46559875383003776Ar + 276641682514481024A*
—208843823902442400A%r? — 34908135243891840Ar*
+64370317952505600A*r* +10683837557406720Ar®
—9729145062604800A*r® —1602561749483520A%r”
+750819041280000A%r® +122752979435520Ar°
—27834502348800A%r'° — 4510596464640A°r™
+396361728000A%r'? + 63417876480A*r'®)) / Dng
b, ((23279937691501888A° —17454067621945920A°r2
+5341918778703360A°r* —801280874741760A°r®
+61376489717760A°r® — 2255298232320A°r*°
+31708938240A°r*%))y°) / Dn,

4, SIMULATION AND RESULT ANALYSIS

To prove the effectiveness of the portrayed approach, three examples are taken.

Example 1:

A 1/4™ order differentiator is considered in this example [25] with transfer function
as shown below:

G(s)=s" =s"® (19)

The direct discretization of 1/4™ order differentiator in delta domain is expressed as
follows:

6y 3072 )
o &

%% » Gyp_ciope (v) = CFE (6 +6Ay +A?

A=0.01

The third and fifth order approximation of s°% in delta domain after continued fraction

6 3A 2 0.25
expansion of [%J results in Eq. (21) and Eq. (22) respectively. The
6+6Ay + A%y

sampling time is considered to be A=0.01s

0.25
025 _ _ 6y + 3AY2
$°7 = Gpp_qiLopeLs (Y)‘A:O_Ol =CFE ([W

A=0.01 (21)
_ 5.487y*+0.0003722y° +0.06519y +1.8
1.3177"y* +0.0001026y2 +0.02198y +1
OB L G (7/)| —CFE [( 6y + 3A}/2 jo.sz
~ 2P-GILODELS A=001 N AAL A2 2
6+6A7+A7) ) o 22)

3.2387My° +3.685°y* +1.466° ¥ +0.002369y° +0.1322y +1.439
7.781%%° +9.632°°y* +4.252°° »* +0.0007911y° +0.05562y +1
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For Gop-ciLocpels(y) the denominator and numerator coefficient are calculated using Table
1 and Table 2 taking r = 0.25 and A = 0.01. The frequency responses of delta domain transfer
functions, Gar-ciLocpeis(y) and Gop-ciLocoes are shown in Fig. 1. The magnitude and phase
error of the third order and fifth order approximate transfer function with respect to the
original 1/4™ order differentiator are demonstrated in Fig. 2. It can be seen through the graph
that as the order of approximation goes higher, the precision of approximation gets better.

15
L ,fﬁ”@“w"“ﬂ%& ,,,,,
* *
10 20 * *
— * *
[=a) — * *
=X 3 * *
= 5¢ 5 151 * *
> i * *
=2 a * *
=2 @ I ol
S 0 g 10k %
E ey x* ¥
= o
5t 5
-
-10" 0 :
102 10° 102 102 10° 102
Angular Frequency in [rad/s] Angular Frequency in [rad/s]

— — — - Fractional order differentiator , r=0.25
* ~ 3-order TF realisation
~ 5th -order TF realisation

5

Fig. 1 Fifth order and third order approximation of s®* in delta domain using proposed

method

(o]

Amplitude in [dB]
Phase(Degree)

1072 10° 102 107 10° 10
Angular Frequency in [rad/s] Angular Frequency in [rad/s]

— — — -~ 3-order TF realisation
*  ~5th -order TF realisation

Fig. 2 Error comparison between fifth order and third order approximation of s®® in
delta domain using proposed method

While taking the whole range of frequency into consideration, the magnitude is more
accurate as compared to the phase response. The approximation is compared on the basis
of the maximum absolute magnitude and phase error as shown in Table 3. As we can see



322 S. K. DOLAI, A. MONDAL, P. SARKAR

that the approximation results for the fifth order are more prominent than those of the
third order, therefore fifth order CFE approximation has been chosen to develop the
frequency responses for the different systems considered in this paper. At a sampling time
of A=0.01s, the fifth order discrete realization of 1/4" order differentiator is considered
based upon the four methods described in this paper namely CFE of Al-Alaoui (CFEAL),
CFE of Tustin (CFETO), CFEDO and CFE of 2P GILOG in Delta domain (CFE2P-
GILOGDel) and following results are obtained.

~ (1409-32212"+243527°-639.52° +6.82 2 +5.449 2°°)

G, (2 = 23
ELE N (430.9-861.9 21 +533.6 22-90.88 2°-7.06 " +2°) (23)

 (226.5-56.63 2" -245.4 27 +43.652° +51.03 2" -3.7617°)

G s (z = 24
s (D o (60.24+15.06 21 -65.25 22 -11.612° +13.57 z** + 2°) (24)

3.238)" +3.685%y* +1.466°y° +0.002369)°
+0.1322y +1.439

G = 25
2e-cioous (-0 7.781129° +9.632%y* +4.252%9° +0.000791y> (25)
+0.05562y +1
7157y° +1.282%vy* + 4.186°y® + 3.512°y2 + 7.025%y + 2057
Gerenos (Y)| ! ! ! ! ! (26)

A=0012417y5 +7.373'y* +3.56°° + 4.158°y? +1.242°y + 6526

Table 3 Absolute maximum phase error and magnitude error for discretization of 0.25% -
order differentiator using CFE2P-GILOGDel

Approximation order Maximum magnitude error (dB) Maximum phase error (degree)
Fifth 0.92 7.7415
Third 1.27 30.5

Example 2: A fractional order system [25] is considered:

2.813

0.97
S

G,(s) =0.191+

@7)

For the discretization of the above system, sampling time considered is A =0.0001s .
The discretization of this continuous time transfer function results in four rational
approximation T.F. as given by Eq. (28), Eqg. (29), Eqg. (30) and Eq. (31), by using four
methods CFEAL, CFETO, CFEDO and CFE2P-GILOGDel, respectively,.
1.693" -4.564" 7 +4.33" 7% -1.665" z°
+2.032° 2% +2.54" 7°

8.85" -2.387° 71 +2.266° 22 -8.719" 77
+1.064" 74 +1.33° 2°

GAI5 (Z)|A:O.0001 = (28)
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(3.142°-3.048° z*- 2.177°27 + 2.052°2°+ 1.822"2*-1.486" z°)

G z = 29
rss (Do (21.15+20.512-14.65 22-13.81 2 3+1.226 2 +2°) (29)
71577 y* +1.076 " +3.584 %y + 4.511°y? +0.1549y
+9.672
G = 30
ereoos (Dl omor 6.698 18¢° +5.628 *y* +1.874%° +0.00023567% + 0.8057y (30)
+35.91
4238)° +3.512%y* +7.721°y* +1.341°y* +6.34°y + 6.204
G,p_ciLocpels (y)lazo.oom = 4 z z 4 u (31)

2.207*y° +2.25°)* + 4.603°)° +2.431%) + 2861y + 24.51

Example 3:
The FO system [14] is chosen and the transfer function is as follows:
G,(s)= 428.68+% (32)
0

Here the sampling rate is made higher and that is considered as A =0.00001s. The
discretization of this continuous time transfer function results in four rational approximation
T.F., as given by Eq. (33), Eq. (34), Eq. (35) and Eq. (36), by using four methods CFEAL,
CFETO, CFEDO and CFE2P-GILOGDel, respectively.

8.257° -2.07°2" +1.782°272 -5.872°7®
Gos(2) _ +4.794'77* +3.057°2°°
HeR la-ooomon 1 926° —4.829°71 +4.156°2 7 ~1.37°2°

+1.118°z7* +71327°°

(33)

2.732"-1.743'7"-2541"77% +1.27777°°
_ +4.282°77°-1.033°2°

6.372° —-4.065'2 " +5.927*2? +2.978'2"°

+9987z - 2410z°°

(34)

GTU55 (Z)lA:O.OOOM

5.662°)° +7.6377y" + 2.036%)° +1.436%

+2.053"y +7.853*
G = 35
o005 (1) oo 1.315%)° +1.751°" + 4.964°)° + 2.913%) (35)

+3.077%y +546.5

5.507 %y° +5.827 %y +2.1167°y° +

0.0003013})2 +13.34y + 7.089*
G = 36
ZP—GILOGDeIE(y)|A:0_00001 1.285723})5 +1.3597 )/4 149362 73 ( )

+7.0297 9% +0.03112y +165.3
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Four different discretization methods are utilized to discretize three fractional order
systems as shown in three examples. The frequency responses of all the systems (fractional
order) along with the frequency responses of their corresponding discrete-time approximated
systems are shown in Fig. 3, Fig. 4, and Fig. 5, respectively. In all the discretization methods
magnitude approximation turns out to be superior over the phase approximation. From the
Fig. 3, Fig. 4 and Fig. 5, it is evident that the proposed method, CFE2P-GILOGDel produces
excellent frequency responses in the frequency range of (0.001 rad/s to 1000rad/sec).
Therefore, through experimental analysis, the proposed method is more promising than the
other three approaches for discretization with respect to approximation of original fractional
order system. Moreover, the comparison of the outcomes with another method developed in
the delta domain been made and superiority of the proposed method is established. The
CFE2P-GILOGDel method at high sampling time (A =0.00001) provides frequency
responses very much closer to the original fractional order system as can be seen from Fig. 5.
This leads to a development of a unified approach towards the discretization of fractional
order operator or system in complex delta domain means at high sampling rate the continuous
time result and discrete time results can be obtained at the same time and is a sole reason for
the development of discrete time systems’ in delta operator parameterization.
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Fig. 6 Magnitude and phase error after discretization of G(s) using four methods at
r=0.25and A=0.01
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Table 4 Absolute maximum magnitude error and phase error for four discretization

methods for different systems

FOS Max. magnitude error (dB) Max. phase error (degree)
CFE2PG Al- . CFE2P- Al-
1LogDel “FEPO  ajaoui T g1 ocpel “FEPC Alaoui

G(s) =s*%# 0.72 1.06 1.11 1.2 7.74 183  44.79
G,(s) =0.191+ '097 1.66 2.12 5.83 24.27 44.46 45.1 79.83
&
41.89
G,(s) = 42868+ — 7.6 7.94 28.76 35.78 82.54 82.8 103.52 112.44
"
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Fig. 9 Pole-zero plot for the third-order and fifth order approximation of s%°" using

CFE2P-GILOGDel method
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From the Table 4, it is clearly observed that when the sampling time is increased to a
very high limiting value A = 0.00001s , the maximum absolute magnitude error and phase
error is much higher in case of discretization using Tustin and Al-Alaoui method in Z-
domain in comparison to the discretization using Delta operator parameterization. The
graphical representation can also be viewed from Fig. 8. Also, it can be seen that the
proposed method is superior to the other methods in the literature. At the same time, a
comparison has been made for the fifth order approximation of s97 using another delta
domain based approach, CFEDO method, where poles are in the right half of the plane
Fig. 10, thus making the rational transfer function of the system unstable, whereas the method
proposed in this paper shows that in both third order and fifth order the poles in the region
itself are making the system stable. So, it is evident that the proposed method delivers
preferable approximation amidst all four discretization methods and is a viable alternative in
the literature of direct discretization of fractional order operator in delta domain.

The following analysis has been done to prove the novelty of the direct discretization of
fractional order operator (s*#, 0 < < 1) over the indirect discretization of the fractional order
operator in delta domain. For the illustration purpose, a 1/4" order differentiator is considered
for the discretization purpose. This operator is discretized using indirect discretization using
Oustaloup approximation [33] method as an intermediate step.

Rational approximation of s%%is obtained using [33] as given in Eq. (37).

3.162s” +1899s°® +2.411e05s° + 7.763e06s* + 6.586e075s°® +1.472e08s*
+8.343e07s +1e07
s’ +834.3s® +1.472e05s° + 6.586€06s" + 7.763e07s° + 2.411e08s”
+1.899e08s + 3.162e07

(37)

Eq. (37) is discretized in delta domain to get the rational approximation of %25,

3.162)7 +1532)° +1.745¢05 y° +5.357¢06)" + 4.459¢07y° +9.897¢077
+5.59507y + 6.7¢06
¥ +6677° +1.056¢057° + 4.52¢06)" +5.243¢07y° +1.619¢08)
+1.273608y +2.119¢07

(38)

The rational approximation of s in delta domain using proposed direct discretization
method is illustrated in Eq. (39)

2.55954 1° +0.0235y* + 0.000042y° + 2.6066¢(-08)y* 6.5524¢(-12) y +5.75821¢(16)
y® +0.00556y" +0.000007y° + 4.25183¢(-9)y* +9.63178e(—13)y + 7.7805¢(-17)

(39)

A comparative analysis between the direct discretization and indirect discretization
using delta operator based parameterization is graphically demonstrated in Fig. 13 and
Fig. 14 respectively.
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Fig. 14 Frequency response using direct discretization of s%®at A=0.001s

From the above figure it is clear that using the direct discretization the magnitude and
phase plot resembles that of the 1/4™ order differentiator in continuous time domain,
whereas there is a notable deviation of the magnitude and phase curve when indirect
discretization is approached. Therefore, direct discretization of the fractional operator in
delta domain is superior over indirect discretization.
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5. CONCLUSION

In this paper, a new direct discretization method for fractional order operator is
proposed. The traditional discretization method for fractional order operator works in the
discrete Z-domain and at a high sampling frequency, the resulting system fails to provide
meaningful information. Instead, delta operator parameterized systems give continuous
time results at high sampling frequency. In this work, an approximation mapping
between the S-domain and delta domain is established through trapezoidal quadrature
rule and traditional CFE, method is used to obtain rational transfer function corresponding to
the fractional order operator in discrete delta domain.

Simulation results show that the proposed discretization method using delta operator
is producing gratifying frequency response approximation of the original fractional order
system in resemblance to other two discretization methods. At fast sampling rate, the
discretized system produces almost the same frequency responses as those of continuous
time counter-part. This successfully proves the efficiency of the suggested approach to be
a viable alternative to that of the direct discretization methods of discretizing the
fractional order operator or systems available in the concerned literature and leading to
the development of a unified approach for direct discretization of FOS in delta domain.
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