
FACTA UNIVERSITATIS  
Series: Electronics and Energetics Vol. 28, No 3, September 2015, pp. 309 - 323 
DOI: 10.2298/FUEE1503309K 

TWO CONTROL-FLOW ERROR RECOVERY METHODS FOR 

MULTITHREADED PROGRAMS RUNNING ON MULTI-CORE 

PROCESSORS

 

 

Navid Khoshavi, Hamid R. Zarandi, Mohammad Maghsoudloo 

Amirkabir University of Technology (Tehran Polytechnic) 

Abstract. This paper presents two control-flow error recovery techniques, CFE Recovery 

using Data-flow graph Consideration and CFE Recovery using Macro block-level Check 

pointing. These techniques are proposed with regards to thread interactions in the 

programs. These techniques try to moderate the high memory and performance overheads 

of conventional control-flow checking techniques. The proposed recovery techniques are 

composed of two phases of control-flow error detection and recovery. These phases are 

designed by means of inserting additional instructions into program at compile time 

considering dependency graph, extracted from control-flow and data-flow dependencies 

among basic blocks and thread interactions in the programs. In order to evaluate the 

proposed techniques, five multithreaded benchmarks are utilized to run on a multi-core 

processor. Moreover, a total of 10000 transient faults have been injected into several 

executable points of each program. Fault injection experiments show that the proposed 

techniques recover the detected errors at-least for 91% of the cases. 

Key words: control-flow checking, control-flow error recovery, multi-threaded 

programs, multi-core processors. 

1. INTRODUCTION 

Recently, multi-core processors have introduced as viable way to keep performance 

improvement rates within a given power budget [11]. Multithread programming energized 

performance of multi-core processors by extracting thread level parallelism from the 

sequential program flow. When a sequential program is parallelized conventionally, the 

programmer or compiler needs to ensure that threads are free of data dependences. If data 

dependences do exist, threads must be carefully synchronized to ensure that no violations 

occur. Additionally, advances in CMOS technology have provided reduction in transistor 

size and voltage levels. Reduction in transistor size and voltage levels coupled with 

increased sensitivity of microprocessors to transient faults. One of the major threats in 
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modern microprocessors is transient faults which induced by energetic particle strikes, 

such as high-energy neutrons from cosmic rays, and alpha particles from decaying 

radioactive impurities in packaging and interconnect materials [13]. It has been shown 

that considerable fraction of transient faults, between 33% and 77%, reflects control-flow 

errors, such as possible errors in program counter (PC), address circuits, steering and 

control logic [12]. A Control-flow Error (CFE) is said to have occurred if the processor 

executes an incorrect sequence of instructions [1]. 

Numerous software-based CFE detection techniques have been devised to assess 

processor errors [2], [3], [5], [6], [7], [8], [9], [14]. In these approaches firstly, program 

code is partitioned into basic blocks and secondly, extra instructions are added to each 

basic block in order to verify the flow of code execution. Basic block includes a maximal 

set of ordered non-branching instructions (except in the last instruction) [2]. A unique 

signature is assigned to each basic block at design time. Signatures also are calculated at 

run-time and next compared with the original ones. If any mismatch has observed (by the 

added instructions), an error is detected and reported. 

Unfortunately, only a few published works have concentrated on CFEs correction [4], 

[10]. After the CFE is detected, control should be transferred back to the block in which 

illegal branch was occurred. However, correcting the CFE is not sufficient and the program 

may fail since there may be some data errors generated by the CFEs [4]. Therefore, any 

data errors caused by CFE should be corrected after or during correcting the CFE, as well. 

Error recovery techniques are classified into two broad categories: forward error recovery 

(FER) and backward error recovery (BER). FER techniques detect and correct the errors 

without requiring roll-back to a previous correct state.  The primary cost of FER schemes is 

the redundant hardware. Backward Error Recovery (BER) techniques periodically save 

(checkpoint) system state and roll-back to the latest validated checkpoint when a fault is 

detected.  

In multi-core systems, since all processors share a single view of data and the 

communication between processors, the method which corrects CFEs and data errors 

should take into account synchronization and communication dependencies between 

threads of multithreaded program. Furthermore, the high memory and performance 

overheads of these techniques can be problematic for real-time embedded systems which 

have tight memory and performance budget. 

Therefore, regarding the importance of handling the CFEs, unsuitability of the 

conventional related techniques in the modern processors and high memory/performance 

overheads of previous CFE recovery techniques, a BER CFE recovery technique is 

proposed in this paper. While previous techniques utilized two set of instructions at the 

beginning and end of each basic block, the proposed CFE detection method only use a set 

of checking instructions at the end of each basic block and it has fewer checking 

instructions in compare to mentioned techniques. To correct CFE and data errors in our 

approach, we also use a checkpoint-based method like MCP technique [Ref], but 

checkpoint instructions are added to particular basic blocks regarding the location of basic 

blocks in dependency graph and acceptable latency for CFE recovery.  

Simulation fault injection is used to evaluate recovery capability of the proposed 

technique. To evaluate the technique, five modified multithreaded benchmarks are used 

and the GNU debugger, GDB [15] has been used to inject faults on the program. It has 

been shown that using the approaches presented in the paper, can recover more than 91% 

of the detected errors with about 67% performance overhead and 89% memory overhead. 
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The structure of this paper is as follows: Section 2 introduces dependency graph in 
multithreaded program. Section 3 introduces control-flow error detection technique. Section 
4 describes different check-pointing used in our approach. The proposed recovery 
technique is described in section 5. Simulation environment and experimental results are 
presented by section 6. Finally Section 7 concludes the paper. 

2. DEPENDENCY GRAPH IN MULTITHREADED PROGRAM 

A multithreaded program, running on the multi-core systems, has a number of threads 
that each one has its own control-flow and data-flow. These flows are not independent 
since inter-thread synchronizations and communications may exist in the program. In 
order to represent multithreaded program, we present a dependency graph. This graph is 
composed of connecting graphs of all single threads in the program, using dependency 
arcs between different threads.  

2.1. Single-threaded dependency graph 

The single-threaded dependency graph consists of a number of Control-flow Graphs 

(CFGs) and Data-flow Graphs (DFGs). CFG is a graph composed of a set of nodes V and 

a set of edge E, CFG={V,E}, where V={N1, N2, …, Ni, …, Nn} and E={e1, e2, …, ei, 

…,en}. Each node Ni represents a basic block and each edge ei represents the branch bri,j 

from Ni to Nj. As shown in Fig. 1, CFGs and DFGs are depicted at compile time and 

represented control conditions and data dependencies between basic blocks. 

 

Fig. 1 Single thread dependency graph. 

2.2. Multi-threaded dependency graph 

Extracting the CFG from relations among basic blocks of a program code is always 
considered as prerequisite step in both of software- and hardware-based CFC methods. 
Any incorrectness and limitation in capturing the control dependencies among nodes of 
the CFG causes that the flow of a given program will not be precisely followed in 
checking phase. The multithreaded program dependency graph consist of a collection of 
single thread dependency graphs that each represent a single thread, and some special 
kinds of dependency arcs to model thread interactions. These dependency arcs are based 
on: 1) synchronization between thread synchronization statements and 2) communication 
between shared variables of the program threads. 
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2.2.1. Synchronization dependencies 

Multithreaded programs must be specially programmed to ensure that threads do not 

step on each other. A section of a code that modifies data structures shared by multiple 

threads is called a critical section. It is important that a critical section should be accessed 

exclusively by each thread. Synchronize access ensure that only one thread can execute in 

a critical section at a time. Synchronization dependency among different threads may be 

caused in two ways: create/join relations, lock/unlock relations. Fig. 2 shows some 

additional synchronization arc to model synchronization between threads.  

 

Fig. 2 Multithreaded program dependency graph. 

2.2.2. Communication dependencies: 

Communication dependency is used to capture dependency relations between different 

threads because of inter-thread communication. If the value of a variable computed at node 

Ni of a thread has direct influence on the value of a variable computed at node Nj of other 

thread through an inter-thread communication, there is a communication dependency 

among mentioned threads. Shared memory is often used to support communication among 

threads. To construct the dependency graph of a multithreaded program, firstly, single 

thread dependency graph is extracted and next, synchronization and communication 

dependencies are considered between different threads of multithreaded program as shown 

in Fig. 2. In this figure, bolded dotted and bidirectional dashed arcs are synchronization and 

communication dependencies, respectively. 

3. CONTROL-FLOW ERROR DETECTION SCHEME 

The CFE detection methods used in the CRDC and the CRMC are quite similar, and 

the differences between the proposed methods which have emerged in Fig. 3, are only 

generated because of applying different types of recovery. CFEs can be divided into three 

types in multithreaded programs: intra-node, inter-node/intra-thread and inter-thread.  

An intra-node CFE is an illegal movement within a basic block (CFE2 in Fig. 4), and 

inter-node or intra-thread CFE is an illegal movement between two blocks of a thread 
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(CFE1 in Fig. 4). Inter-thread CFE is an illegal jump from basic block of a thread to basic 

block of another thread in the same processor (CFE3 in Fig. 4). While our CFE detection 

approach is capable to detect inter-node/intra-thread and inter-thread CFEs, as well as 

possible, it does not have enough power to detect intra-node CFEs. 

 
 (a) (b) 

Fig. 3 Illustration of added instructions for methods: (a):CRDC (b):CRMC. 

 

Fig. 4 Illustration of CFE types in CFG scheme. 
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3.1. Intra-thread/Inter-node CFE detection 

After determining control dependencies among basic blocks of the program, each 

node of the dependency graph should be labeled by a unique signature. The sequence of 

these signatures is checked at run-time by the instructions added at the end of each basic 

block. The checking instructions compare the value of the run-time signature with the 

pre-defined value assigned to each block at compile time. The run-time signatures should 

be updated, after checking instructions confirm the correct execution. Fig. 3 shows the 

added instruction to the basic blocks due to methods implementation. If an illegal jump 

occurs before added instructions at the end of the basic block and control is transferred to 

it illegally, then the CFE can be detected by comparing the stored value in the SSj (as the 

signature of the node) with another one calculated in compile time. If they are not equal, 

the CFE is detected and the function used for recovery is called. Source Signature of 

thread j (SSj) is a shared variable of thread j which is continuously updated in executed 

nodes (where j shows thread number of multithreaded program). SSj finally stores the 

signature of the basic block in which a CFE has occurred. Destination Signature of thread 

j (DSj) is a shared variable of thread j which is continuously updated, and finally stores 

the signature of the basic block that control is transferred to it incorrectly. Shadow 

variables update instructions are placed in some basic blocks based on an algorithm that 

has explained in the proposed CRMC section. Additionally, interaction instructions like 

pthread_create/pthread_join exist in some basic blocks based on the type of program and 

they direct the flow of program to other thread legally. Thereupon if an illegal branch 

jumped to the block including interaction instruction, it cannot be detected before thread 

interaction. So these instructions are placed after DSj update and checking instructions to 

prevent thread interaction before CFE detection. Both source and destination signatures are 

used in CFE_handler function of both proposed techniques to recover CFE and data errors.  

3.2. Inter-thread CFE detection 

Each thread of multithreaded program has particular signature identifier to avoid 

possible interference by the threads in updating and checking phase. Thereupon, signature 

of thread j is allowed to be updated only in thread j and each illegal signature updating in 

thread j considered as CFE. As illustrated in Fig. 5, an inter-thread CFE occurred from N2 

of thread 1 to N2 of thread 2 before the signature of thread 2 updated at the end of N1. This 

CFE can be detected by comparing last updated SSdestination thread with expected value at the 

end of N2 in thread 2. 

4. AUTOMATIC RECOVERY PHASE 

In the previous section, some problems of prior methods used for recovery are 

described. Moreover, as showed in critical applications the recovery methods which only 

concentrate on the CFEs, is not applicable. So, the data errors should be considered and 

finally recovered. The techniques for recovering the data errors by duplicating instructions 

are presented in [2], [10], [11], [12]. However, this type of data errors recovery has high 

overhead because of duplicating and comparing. In the rest of this section, the proposed 

recovery techniques are explained. 
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4.1 The proposed CRDC technique 

When a CFE is detected through added instructions, the control is transferred to 

CFE_handler function. This function is implemented by considering the DFG and CFG 

of the program at design time. The signatures of the source and destination basic blocks 

are given to CFE_handler function as inputs. This function can relocate the control to the 

nearest block from which re-executing the program corrects the CFE, and all of the 

affected variables between source and destination will be re-initialized. 

Fig. 6 (a) shows three basic blocks from the set of basic blocks of a thread in a program 

code as well as the DFG extracted from data dependencies among variables in these basic 

blocks. Fig. 6 (b) illustrates the process of the correction used by the proposed techniques. 

Regarding them, if CFE1 has occurred in basic block 2 and the control is transferred from 

basic block2 to basic block3 (step 1 in Fig. 6(b)), then the values stored in variables X and Z 

cannot be reliable, because of the problems previously explained. For example, suppose that 

the source basic block is basic block2 and the destination one is basic block3, also the 

variables modified by the CFE (X and Z) are initialized in basic block1 and basic block2. 

For CFE and data errors recovery, the control should be transferred to basic block1 (step 

3 in Fig. 6(b)). Therefore, the modified variables are re-initialized and their corresponding 

computations are re-executed after this transmission. By re-executing the code from basic 

block1, the first value which was stored in variable Z is re-loaded again. Also, after 

completing basic block1 and in basic block2, the first value of X is re-loaded. 

 

Fig. 5 Inter-thread CFE detection. 
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(a)                                                        (b) 

Fig. 6 (a): CFG and DFG generated from program code, (b): Scheme of CRDC methods 

Another example is when CFE2 occurs, then the source basic block is basic block3 

and the destination one is basic block1. The variables affected by this CFE are X, Y, and 

Z. The initialization of X is done in basic block2, and the initialization of variables Y and 

Z are done in basic block1. Hence, returning to basic block1 leads to load the initialization 

values to variables and re-execute computations by which the variables had been used. 

In multithreaded programs, since threads act on each other, recovering one thread in 

the case of CFE does not mean the whole of program is recovered. In many cases, several 

threads should rollback to special locations to provide consistency and true execution in 

re-execution process. Threads which were created in our benchmarks were entirely 

independent function and there was no need to rollback several threads to a previous state 

except in the case when inter-thread CFE would happen. In this case, corrupted threads are 

discovered and rollback process is done based on relations among slave threads and main 

thread. 

Furthermore, in this technique for detection and correction of illegal jumps to unused 

space (partition block), the partition block is filled-up with branch instructions to 

CFE_handler function. Zero (Null) is reserved as the destination signature value for the 

partition block to distinguish it from the other blocks in the program code. If the illegal 

jump occurs to it, The CFE_handler function ignores the destination, because it contains 

no computation related to the program. 
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4.1.1. The proposed CRDC CFE_handler function 

Fig. 7 (a) shows scheme of the CFE_handler function defined for a program including 

three threads in CRDC technique. Determining the type of CFE (intra/inter thread CFE) is 

the first step after transferring control of program to the CFE_handler function. As shown 

in condition 1 code, if the SSj and DSj in two different threads were not equal, the occurred 

CFE is inter-thread type. In this case, another situation should be considered that is whether 

the slave threads have only been corrupted or the main thread has also been corrupted. In 

spite of re-starting the program in the situation where the main thread has corrupted, the 

program can resume from the thread creation instructions in main thread when only slave 

threads have corrupted. As shown in Fig. 7 (b), to recover intra-thread CFEs, the CRDC 

function first determines the corrupted thread by comparing SSj and DSj of each thread. 

Next, it specify source basic block by comparing the value stored in SSj with the signatures 

assigned to each basic block at design time. Then, the control is transferred to sub-sections 

which are separately defined for each source basic block. In these subsections the 

destination basic block can be determined as similar as determining the source one, and 

finally the control can be transferred to the basic block in which the first initialization of the 

affected register is done. This transition can be performed by conditional branches to the 

first instruction of the basic blocks. When an illegal jump occurs to the CFE_handler 

function statements, the function can gives the control back to the source basic block, by 

executing the first subsection. The last lines of the subsections (jump instructions to the first 

line of the function) were defined to correct this type of CFEs. 

 

 (a)  (b) 

Fig. 7 CRDC Scheme ((a): Sample flowchart, (b): CFE-Handler function). 

4.1.2. Optimization of the CRDC CFE_handler function 

In some applications, imposing less memory overhead may be more important than the 

other issues, due to the area-efficiency of their designs. Therefore, the structures of this 

function should be optimized under the memory constraint. As shown by Fig. 8, the targets 

of the final branches, used in the last phase of the recovery, are specified taking to account 

the pair of the source and destination basic blocks. So, to reduce the number of instructions 

in the functions, the phase of determining the destination basic block can be omitted. For 
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example, regarding Fig. 8, if the source basic block of an illegal jump is basic block 1, then, 

the target of the final branches is also basic block 1, independent of the destination basic 

block. In the other case (for example the fourth line of the matrix in Fig. 8), considering the 

topmost basic block, nearest basic block to the beginning of the program, from the set of the 

targets for one specific source basic block causes that one of the phases in the recovery 

process (checking the value of the DSj for determining the destination) is omitted. These 

optimizations in designing the structures of the functions lead to effective improvements in 

the percentages of the memory overhead of the proposed technique. 

 

Fig. 8 Schematic of an algorithm for reducing the memory overhead of the CFE-handler 

function. 

4.2. The proposed CRMC technique  

In the first section, some problems (potential of imposing high overhead and high latency) 

of checkpoint-based methods were explained. In CRMC technique, the program gets 

checkpoints at some points during code execution. At these times, the values stored in 

variables (such as registers and memory blocks) should be sustained in shadow variables. 

Then, for CFEs and data errors recovery, it needs to re-execute from the last trustable 

checkpoint, after loading correct values stored in shadow variables to original ones. Through 

the CRMC, the shadow variables always contain the true values of the original ones. If 

shadow variables updated at the end of each basic block in which the corresponding original 

variables has been modified, a noticeable performance and memory overheads are imposed to 

the system. On the other hand, since thread interaction instructions such as synchronization or 

communication change some variables in different threads, these modifies should be 

considered in the proposed recovery technique. Therefore, the shadow variables are divided to 

two different shadows: 

 Local shadows: Local shadows are used to accelerate recovery process while the 

source and destination basic blocks of CFE are from two different threads. The 

contents of the local shadow are chosen by the application programmer with 

respect to the information provided by the DFG of the program and there is no 

need to save the entire system variables or any other information related to the 

hardware or the operating system. To reduce the imposed overheads due to 
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shadow variables, we specify a boundary of consecutive executed basic blocks 

which are free of thread interaction instructions as macro basic block for each 

thread. The local shadow variables are updated at the end of each macro basic 

block; then a snapshot of the thread state is taken. If the macro basic block placed 

within a loop, a variable is used to specify the iteration number and trigger shadow 

variables updating at acceptable iterations. Regards to the points which have 

mentioned above, the pace of  executing thread interaction instructions can be 

introduced as macro basic block size:  

 

 Macro basic block size= 
                            

                                                   
 (1) 

 

Assume a program consists of 24 basic blocks that 3 of them included thread 

interaction instructions. The macro basic block size will be approximately equal to 

3 based on the equation 1. Fig. 9 shows the scheme of this macro basic block. The 

shadow variables are updated at the end of third basic block as illustrated in Fig. 9. 

This optimization directly leads to noticeable reduction in the overheads of our 

method in compare to checkpoint-based methods. 

 

Fig. 9 Illustration of the shadow variables updating location. 

 Global shadows: The places where the global shadows are updated should correspond 

to a consistent state of the application. We considered synchronization/communication 

points of the application like at the beginning and end of create/join and lock/unlock 

relations as natural consistent global states. A miniaturized snapshot of entire system 

saved at global shadows and it will be used when the global consistency needed. 
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4.2.1. The proposed CRMC CFE_handler function  

Regarding Fig. 10 (a), the time of updating the local and global shadows with the 

original ones is illustrated. As shown in Fig. 10 (b), suppose that variables Y and Z are 

initialized in basic block1, and variable X is initialized in basic block2. For example, the 

values of variables Y, Z and X are changed in the different basic blocks of macro basic 

block. Therefore, the local shadow of all modified variables should be updated only at the 

end of macro basic block (instead of updating at the end of the all basic blocks). After 

detection phase, the control is transferred to CFE_handler function (step 2 in Fig. 10 (c)). 

At this time, the signatures of the source and destination basic blocks are already available 

in SSj and DSj, respectively. These two values are given to CFE_handler function as inputs. 

As shown in condition code in Fig. 11 (a), if the SSj and DSj in two different threads were 

not equal, the occurred CFE is inter-thread type. In this case, the program should be updated 

with global shadows and resumed from that point. Otherwise, the occurred CFE is intra-

thread type and the function can update the affected original variables in the source and 

the destination with shadow ones as demonstrated in Fig. 11 (b). Finally, the control is 

transferred to the address of basic block which is placed next to the basic block contained 

local shadow variables updating (step 3 in Fig. 10 (c)) and the code is re-executed from 

this point. Consequently, both of the CFE and the generated data errors can be corrected. 

 

 (a) (b) (c) 

Fig. 10 CFG and DFG generated from program code ((a): local and global shadows 

places, (b): local shadow updating, (c): scheme of CRMC) 
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 (a)  (b) 

Fig. 11 CRMC scheme ((a): sample flowchart, (b): CFE-handler function) 

5. EXPERIMENTAL RESULTS 

In order to evaluate the proposed technique, five multithreaded benchmarks Quick 

Sort, Matrix Multiplication, Bubble Sort, Linked List and Fast Fourier Transform utilized 

to run on a multi-core processor, and a total of 5000 transient faults has been injected into 

several executable points of each program. Branch deletion, branch insertion and branch 

target modification used as considered fault models. Table 1 represents a comparison of 

associated overheads and error recovery coverage in different methods. The memory and 

performance overheads of the proposed techniques are lower than other previous works 

([10], [4]). The memory/performance overhead of the ACCED is comparatively higher 

than the proposed techniques because of adding duplicated instructions and executing the 

set of instructions used for comparing the results to obtain correct output. Moreover, the 

memory and performance overheads of the proposed techniques are slightly increased, 

when the running threads of the programs increase. This is due to the utilizing different 

checkpoint level and concept of macro block in CRMC and using less checking 

instruction at the CFE detection phase in CRDC. 

Table 1 Comparison of the memory and performance overheads and error recovery coverage 

Bench- 

marks 
Category 

 

Bench- 

marks 
 

ACCED[10] CDCC[4] MCP[4] CRDC CRMC 

M.O.a 

(%) 
P.O.b 

(%) 
E.C.c 

(%) 
M.O.a 

(%) 
P.O.b 

(%) 
E.C.c 

(%) 
M.O.a 

(%) 
P.O.b 

(%) 
E.C.c 

(%) 
M.O.a 

(%) 
P.O.b 

(%) 
E.C.c 

(%) 
M.B.Sd 

(%) 
M.O.a 

(%) 
P.O.b 

(%) 
E.C.c 

(%) 

Dual- 
Threaded 

Programs 

QS 222.6 112.3 86.5 86.5 71.4 84.3 178.3 92.4 81.1 72.6 51.2 94.0 4 84.5 62.3 93.2 

MM 219.2 101.0 88.3 75.2 57.7 89.8 144.5 70.2 85.8 55.9 48.0 94.3 5 67.8 59.1 94.0 
BS 226.5 108.4 84.3 88.6 70.0 84.0 182.5 88.4 83.4 74.3 50.2 91.9 4 86.4 61.3 91.1 

LL 228.0 104.4 81.9 91.4 69.1 83.5 184.6 83.1 80.9 75.5 49.9 92.2 4 87.6 60.7 92.8 

FF 195.3 97.8 88.0 71.3 55.2 88.5 135.7 68.0 87.9 54.3 44.3 92.9 4 66.1 55.7 92.0 
Avg. 218.3 104.7 85.8 82.6 64.6 86.0 165.1 80.4 83.8 66.5 48.7 93.0 4 78.4 59.8 92.6 

Quad- 

Threaded 
Programs 

QS 232.0 119.2 85.3 104.1 88.6 83.1 189.0 108.6 80.8 88.3 60.6 93.1 3 99.1 71.9 92.6 

MM 231.7 117.5 87.6 91.5 63.3 88.3 162.0 86.8 83.3 67.2 51.5 93.2 4 78.7 62.5 92.6 

BS 238.1 115.9 82.0 107.8 79.7 83.4 193.6 102.3 81.0 85.1 59.1 90.1 3 96.4 70.7 89.3 
LL 242.6 113.8 80.1 110.7 76.5 81.7 196.2 96.4 79.0 83.7 58.7 91.3 3 94.2 69.1 91.9 

FF 217.5 102.5 86.7 89.0 61.4 86.3 157.9 82.7 84.2 64.6 47.2 92.1 3 75.4 58.8 90.0 

Avg. 232.3 113.7 84.3 100.6 73.9 84.5 179.7 95.3 81.6 77.7 55.4 91.9 3 88.7 66.6 91.2 

 a. Memory overhead  b. Performance overhead  c. Error recovery coverage  d. Macro block size 
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6. CONCLUSIONS 

In this paper, two software techniques to detect and correct CFEs in multithreaded 

programs are proposed. These techniques are implemented via considering control and 

data dependency in dependency graph beside synchronization and communication 

dependency at compile time. Also, proposed techniques correct data errors generated by 

CFEs that can cause considerable corruptions in the systems. Fault injection experiments 

showed that the proposed techniques, when applied on the programs, produce correct 

results in over 91.2% of the cases. The latency and the additional memory required for 

correcting the CFEs and the data errors are considerably less than the duplication based 

and checkpoint based methods which have been recently published. 
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