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Abstract. This paper reviews the activity carried out at the Department of Information 

Engineering of the University of Parma, Italy, in the field of thermal and electro-

thermal modeling of devices, device and package assemblies, circuits, and systems 

encompassing active boards and heat-sinking elements. This activity includes: 

(i) Finite-Element 3D simulation for the thermal analysis of a hierarchy of structures 

ranging from bare device dies to complex systems including active and passive devices, 

boards, metallizations, and air- and water-cooled heat-sinks, and (ii) Lumped-Element 

thermal or electro-thermal models of bare and packaged devices, ranging from purely 

empirical to strictly physics- and geometry-based. 
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1. INTRODUCTION 

Temperature is a key factor in the performance and reliability of electron devices, 

circuits and systems. From basic material properties such as electrical conductivity to 

device parameters and, as a consequence, circuit and system performance, the role of 

temperature is ubiquitous. Reliability-wise, many wear-out mechanisms are exponentially 

accelerated by temperature, and thermal gradients in space and time are the source of 

many a failure, often related with die-attach, solders, etc., which suffer for the differences 

in the thermal expansion coefficients of the various materials. 

For this series of reasons, thermal modeling is mandatory for optimum device and 

circuit design, analysis, reliability estimation, and failure analysis. 

However, there are intrinsic difficulties: 

1. in operating device/circuit/system, temperature may vary dramatically over space 

and time due to localized power dissipation and self-heating, which in general 

depend on local and instantaneous currents and voltages; in turn, temperature 
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affects performance, hence current and voltage values: the electrical and thermal 

behavior are therefore tightly coupled, and the problem has to be solved self-

consistently; 

2. space-wide, thermal modeling is a multi-scale problem: while the volume element 

where power is dissipated in a semiconductor device may have nanometer-size 

scale, the boundary conditions that ultimately determine the whole device thermal 

behavior typically involve regions that are tens or hundreds of micrometers away 

from that volume; when circuits or systems are to be modeled, the scale explodes 

to millimeter- or centimeter-size; 

3. thermal modeling may be a multi-scale problem time-wise, too: when spectrally 

rich signals are applied to the device/circuit/system under evaluation, the overall 

time dependence of temperature is affected by spectral components spanning 

several decades, with time constants ranging from nanoseconds for small 

semiconductor volumes to seconds or minutes for large assemblies. 

This means that thermal modeling is a very rich field for research, the Holy Grail 

being the optimum trade-off between accuracy of the picture and modeling effort. 

This paper overviews the activity carried out in this field over several years by the 

authors and co-workers in the Department of Information Engineering of the University of 

Parma, Italy. 

The next section is focused on finite-element (FE) numerical thermal modeling at the 

device level. These FE physical models are often used to validate nimbler lumped-

element (LE) models, where the electrical behavior and thermal behavior can be self-

consistently linked much more effectively: these models will be described in section 3. 

Section 4 will review our activities in the field of thermal modeling of circuits, systems 

and assemblies, and will be followed by a brief summary.  

2. DEVICE-LEVEL FINITE-ELEMENT THERMAL MODELING 

The beauty of FE models lies in their ability to provide us with a completely physical, 

three-dimensional (when required), accurate description of the thermal behavior of 

complex structures encompassing one or more layers of semiconductor materials, 

metallizations, passivation layers, etc., with due account of non-linearities - like the 

temperature dependence of thermal conductivities – and sometimes complex boundary 

conditions – adiabatic, isothermal, and everything in between, air convection, and even 

forced cooling. 

The flip side is obvious: such model sophistication has a cost in terms of complexity 

of model development and computational burden. For this reason, these models are most 

frequently purely thermal models, although in principle FE tools allow to self-consistently 

couple the thermal problem with the electrical problem, or the electro-magnetic problem. 

Even for purely thermal models, numerical convergence may take extremely long times to 

reach, especially in the simulation of time-dependent characteristics, if it can be reached 

at all: developing practically useful and efficient models is thus far from trivial, and 

requires skilled and experienced users. 

Some of our first works in this field describe the simulation of relative simple structures, 

such as a 2D rendition of a chip/rig assembly for the analysis of press-pack IGBT stress 
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cycles [1] or even the basically 1D structure of a press-pack power p-i-n diode for 

welding applications [2]: these simulations were in general aimed at better understanding 

of accelerated stress experiments. 

More specific works were devoted to the modeling of packaged devices for power 

supplies. Ref. [3], for instance, describes the complete workflow of the development of 

the FE thermal model of packaged power MOSFETs, including the measurements for 

parameter extraction and model validation. Fig. 1 shows a schematic of the die and 

package 3D structure (left) and the actual test rig we built for parameter extraction and 

model tuning by comparison of measured and simulated temperatures (right). 

 

 
 

Fig. 1 3D die and package structure for FE thermal modeling of power MOSFETs (left), 

and the test rig (right) built for parameter extraction and model tuning [3]. 

In the same context, we also applied 3D FE thermal modeling to the study of passive 

components, such as the inductors shown in Fig. 2 [4], [5]. 

The complexity and cost of 3D FE models obviously pay off most handsomely when 

applied in the design phase, when investing in extensive accurate simulations makes good 

economic sense if it allows to avoid taking unsatisfactory solutions all the way to the 

prototyping phase. As an example, Fig. 3 shows a comparison among different 

device/heat-sink assemblies [6]. 

While in the field of power converter applications, as illustrated in the examples 

above, one is often interested in the determination of temperature profiles in assemblies 

made of die, package, and often heat-sink, the device-level thermal simulation of 

semiconductor devices for integrated circuits is typically focused on the semiconductor 

alone – and possibly such top-side elements as metal lines and contacts, and passivation – 

with the external world replaced by suitable boundary conditions: in this respect, the fact 

that individual devices are often close-packed in regular patterns in integrated circuits 

makes things a lot easier, since the planes separating adjacent devices can often be 

replaced by adiabatic boundary conditions thanks to symmetry.  
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Fig. 2 3D simulation of the temperature distribution in wound (left) [4] and  planar (right) 

[5] transformers for switching power supplies; right scales in °C. 

 

  
 

Fig. 3 3D FE simulations (bottom) of the temperature distribution in different 

device/heat-sink assemblies (top); right scales in °C [6]. 

 

From the point of view of the variety of materials and geometries, this is a comparatively 

simpler situation than the one we discussed before, where die/package/heat-sink assemblies 

are to be studied, and 2D analysis (as opposed to 3D) is often satisfactory; as such, it 
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allows the thermal problem and the electrical problem to be solved self-consistently, in 

what may be called an Electro-Thermal (ET) simulation, where classical semiconductor 

device equations (e.g., drift-diffusion equations plus electron and hole continuity 

equations plus Poisson equation) are coupled with the heat transport equation. Here the 

main problem is the dramatically different scale of the regions relevant for the electrical 

and the thermal problem: while the former is typically in the nanometer to micrometer 

range, the latter often measures hundreds of micrometers – think for instance about the 

distance between the channel of a FET and the back-side wafer contact from which most 

of the heat is dissipated. This is a significant computational challenge that can be 

overcome with suitable techniques: an introductory review dealing with these problems 

can be found in [7].  

However, when the structure we want to simulate gets more complex and three-

dimensional, when features like top-side metal lines and contacts, passivation layer, etc. 

cannot be neglected lest the thermal problem be significantly distorted, purely thermal 

simulations – where the electrical problem is condensed in just one piece of information: 

the location and size of the volume where power is dissipated – are again the weapon of 

choice.  

Our group in particular has worked extensively on the 3D thermal simulation of GaN-

based FETs. An example of device design guidelines provided by 3D FE simulations is 

shown in Fig. 4 [8]. The importance of considering top-side heat spreading and heat 

removal due to metal lines and contacts is shown in Fig. 5. 

 

 

 
 

Fig. 4 Maximum power density that can be dissipated under a 150 K temperature increase 

constraint in a 6-finger GaN HEMT as a function of finger width, finger spacing, 

and substrate material (3D FE simulations) [8]. 
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Fig. 5 Simulated GaN HEMT structure (top) and channel temperature increase in a GaN 

HEMT dissipating 3.5 W/mm (bottom); if the effect of top metal lines is neglected 

(red dashed line) the self-heating is grossly overestimated. RTH
L
 is the thermal 

resistance of the top contacts. [8]. 

 

Obviously enough, top-side boundary conditions are not the only relevant ones. In the 

case of GaN-based HEMTs, the thermal boundary resistance (TBR) between the GaN buffer 

and the SiC/Si/sapphire substrate – due to phonon scattering at the hetero-interface - is 

particularly significant; the die attach-layer is also a source of additional temperature 

increase relative to the package back. Fig. 6 illustrates the importance of these two factors 

[9]. In the dynamic simulations of Fig. 7 the TBR layer and the die attach are clearly visible.  

Besides providing valuable guidelines in the design phase, FE thermal simulations are 

extremely useful in the analysis of reliability results.  

As an example, Fig. 8 [10] shows the FE-simulated thermal map and Von Mises stress 

map of a surface-mounted power MOSFET undergoing thermal cycling. Here the thermal 

simulation is part of a self-consistent thermo-mechanical model supporting the 

interpretation of power cycle stress experiments. 

In another recent reliability study, we also applied FE thermal simulation to the study 

of the heavy ion irradiation damage in SiC Schottky diodes [11], [12], showing that the 

ion penetration raises the junction temperature above the SiC melting point, as illustrated 

by Fig. 9, with permanent device damage. 
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Fig. 6 Maximum temperature in a GaN HEMT as a function of the thermal conductance 

of the TBR layer (blue curve, left) and of the die-attach layer (red curve, right) (3D 

FE simulations) [9]. 

 

 

 
Fig. 7 Dynamic simulation of vertical temperature profiles following the application of a 

power step in a GaN HEMT (3D FE simulations). The effect of the TBR layer and 

of the die-attach can be seen in the temperature step at about 3 m depth and in the 

steep temperature gradient at the back surface [9]. 
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Fig. 8 Thermal map (left, scale in °C) and Von Mises stress map (right, scale in N/m
2
) for a 

surface-mounted power MOSFET after 240 s at 0.5 W dissipation (3D FE simulations). 

The box and arrow indicate one of the critical points for mechanical stress [10]. 

 

 
 

Fig. 9 Thermal map of a SiC Schottky diode after heavy ion (
79

Br 240 MeV) penetration 

[11] (3D FE simulation). 

3. LUMPED-ELEMENT THERMAL AND ELECTRO-THERMAL MODELS 

Powerful as they are, FE simulations have some practical limitations, mostly lying in 

the computational complexity of multi-physics models – such as electro-thermal ones – 

and in the difficulty of integration in circuit simulation tools. 

Lumped-Element (LE) thermal models, made of networks of thermal resistances and 

thermal capacitances, offer in this context a good compromise between accuracy and ease 

of implementation and integration in the electrical simulation tools. Here are some of the 

advantages: 

1. thanks to the analogy between thermal resistance and electrical resistance, thermal 

capacitance and electrical capacitance, temperature and voltage, and dissipated 

power and current, thermal LE network can be seamlessly and self-consistently 

integrated in circuit simulation tools; 
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2. if desired, the model can retain a sound physical meaning, since thermal 

resistances and capacitances can be calculated based on device geometry and 

material properties; alternatively, more empirical models can be used, where 

parameter values are optimized to get the best fit with measurements; 

3. including conductive or convective boundary conditions, heat-spreading and heat-

sinking elements is relatively easy, and amounts to inserting additional thermal 

resistances and capacitances between the device and the ambient. 

3.1. Empirical LE thermal models: Foster and Cauer networks 

By far the most common LE thermal and electro-thermal models use multi-stage 

Foster or Cauer networks such as those shown in Fig. 10. These networks may collapse to 

a single stage in the simplest – and most widespread – models (see for instance [13] for 

the use of a single-stage model in the context of reliability predictions). 

      

 
 

Fig. 10 Three-stage Foster (top) and Cauer (bottom) networks for LE thermal simulation. 

The red arrow indicates the injection of dissipated power, the electrical equivalent of 

which is current. The ambient temperature is modeled by a constant voltage 

source between the device back-side node and ground: consequently, node 

voltages give a direct reading of node temperatures. 

 

The Foster network has the advantage that each resistance-capacitance stage 

introduces a specific time constant – given by the product of the two – in the thermal time 

response of the system. Therefore, it is relatively easy to extract the network parameters 

from the experimental step response. An example is given in Fig. 11 [14], where the 

measured collector current response (dots) to a base current step in an AlGaAs/GaAs 

HBT shows three clear plateaus in the self-heating dynamics: this suggested that a 3-stage 

(Foster) thermal network might be good enough to model the heating dynamic, as 

demonstrated by the good match of the modeled curves (solid lines). 

The drawback of the Foster network is that its parameters, and particularly thermal 

capacitance values, have little - if any – physical meaning. The lack of physical meaning 

of the Foster model can be easily grasped if one considers that capacitance discharge may 
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revert the direction of heat flow on a resistance, something than does not happen in 

reality, nor in the Cauer model. Cauer network parameters can be given a physical 

meaning, especially when each stage of the ladder is associated with a specific part or 

layer of the device or assembly. The price to pay is a more cumbersome procedure to 

extract them from measured data. 

 

 

Fig. 11 Measured (dots) and modeled (lines) collector current dynamics following a base 

current step in an AlGaAs/GaAs HBT. Three clear plateaus in the measured step 

response suggested the use of a 3-stage LE network to model the dynamics of 

self-heating [14]. 

 

Regardless of the network topology, the number of stages of the ladder is a key point. 

Single-stage RC networks are most commonly used in compact electro-thermal models, 

but a single time constant is very unlikely to be able to describe the self-heating dynamics 

even for a bare die, let alone a packaged device. On the other hand, using networks with 

more stages than necessary will uselessly burden the model, make parameter extraction 

more cumbersome, and loosen the tie with device physics. 

In our experience with GaN HEMTs, the vertical heat flow dynamics of unpackaged 

devices can be satisfactorily modeled with 3-stage networks. However, in wide-finger 

FETs, one must be aware of the fact that assuming a constant channel temperature is a 

gross simplification, the semiconductor being significantly hotter at the gate finger center 

than at its periphery, as shown in Fig. 12 [15].  
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A situation like that shown in Fig. 12 requires that more than one RC network be included 

in the LE thermal model. We choose to split the finger width in 5 parts, each one represented by 

the temperature marked by a 

letter in Fig. 12. Each of 

these sections was modeled 

with its individual 3-stage 

RC network. The resulting 

match between FE-simulated 

and LE-simulated dynamic 

self-heating was excellent, as 

demonstrated by Fig. 13. 

The next step is that of 

using the LE thermal 

model to develop a self-

consistent dynamic electro-

thermal device model, as 

schematically shown in Fig. 

14 [16]. Here each of the 5 

sections (A-E in Fig. 12) is 

modeled by self-consistently 

coupling a temperature-

dependent large-signal model 

 
Fig. 12 FE-simulated temperature profile 

along a gate finger in a GaN 

HEMT. The dissipated power is 

0.5W/finger. The ambient 

temperature is 300 K. Distance = 

100 m is the finger center. The 

arrows and letters mark five device 

sections with significantly different 

temperatures, that have been 

modeled individually in the LE 

model [15]. 

 
Fig. 13 A comparison between FE-

simulated (lines) and LE-simulated 

(dots) dynamic temperature profiles 

along a gate finger in a GaN HEMT 

following a power step of 0.5 

W/finger. The ambient temperature 

is 300 K. Distance = 100 m is the 

finger center. From top to bottom, 

the curves are taken 1, 10, 100, and 

1000 s after the application of the 

power step [15]. 

 
Fig. 14 Self-consistent electro-thermal model of a GaN 

HEMT. The device is dived into different sections to 

account for temperature non-uniformities along the gate 

fingers, as shown in Fig. 12. Each section self-

consistently couples a temperature-dependent large-

signal model with a 3-stage LE Cauer thermal network 

[16]. 
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with a 3-stage LE Cauer thermal network, for a complete dynamic description of self-heating 

including temperature non-uniformities along the gate fingers and amenable to easy integration 

in circuit simulation tools. 

3.2. Physical LE thermal networks 

We developed another successful approach to LE thermal and electro-thermal 

modeling, whereby the thermal RC network is a physical representation of the 2D or 3D 

structure of the device under study.  

This concept was first applied to the 2D cross-section of unpackaged GaN-HEMTs 

[17], [18]. Here a physical LE thermal network was self-consistently coupled with a 

temperature-dependent large-signal FET model as shown in Fig. 15 for dynamic 

description of self heating, including the 2D temperature distribution over the whole 

structure. A 3D extension of this approach is exemplified in [9] and [19]. The modeled 

results were compared with FE simulations and with experimental data with good success. 

The model was later enhanced including the effect of trapping phenomena [20], a 

significant concern for GaN FETs. Fig. 16 shows the excellent match between measured 

and modeled DC output characteristics at different temperatures, while Fig. 17 is an 

illustration of the interplay between thermal and trapping dynamic in the pulsed response 

of these – and other – devices.  

This physical LE modeling approach has been applied with good results to power 

MOSFET assemblies (see Fig. 18) [21]-[23], as well as to nanometer-scale SOI FinFETs [24]. 

4. CIRCUIT- AND SYSTEM-LEVEL FE THERMAL MODELS 

FE thermal simulations, so far considered at device or device-plus-package level, can 

be effectively used at higher hierarchical levels, to describe the thermal behavior of 

circuits and boards including several active and passive devices, metal lines,  heat-sinks, 

etc. The building blocks are in this case the FE models of the individual components, such 

as those described in section 2. However, for practical reasons the whole circuit/system 

FE model can hardly be built by assembling detailed device-level models like those of 

Figs. 1-3 and 8, due to the excessive number of degrees of freedom of the FE simulation, 

and the attendant overhead and convergence problems. Once detailed FE models of the 

individual components are available, the first step of the circuit/system modeling process 

is a simplification of the device models aimed at obtaining nimbler models amenable to 

integration in the whole circuit/system without simulation overburden, but at the same 

time retaining the fundamental and necessary amount of information on their thermal 

behavior. An example of this simplification process is shown in Fig. 19 [25].  

In particular, we applied this technique to the thermal simulation of converter modules 

for DC power supplies in the context of the re-design of the electronics for one of the 

experiments of the CERN’s ATLAS project [4], [25]-[28]. An example of circuit-level FE 

thermal simulation, and its experimental validation, is given by Fig. 20. 

In this context, accurate description of thermal boundary conditions is key: this is 

often no trivial task, sometimes requiring thermal and fluid-dynamics simulation of water 

heat-sinks [29]-[31], as shown in Fig. 21. 
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Fig. 15 Top: Part of the LE thermal network used in [17], [18]; thermal capacitances are 

connected between each node and thermal ground (only three shown for 

simplicity). Bottom: self-consistent electro-thermal model: each of the 3 fingers 

of the device is individually modeled (HEMT1-HEMT3 large signal models) and 

coupled with the physical LE thermal network (PLECS circuit block). 



338 R. MENOZZI, P. COVA, N. DELMONTE, F. GIULIANI, G. SOZZI 

 

 
 

Fig. 16 Comparison between our electro-thermal GaN HEMT model (lines) and 

experimental data (dots) [20]. Ambient temperatures: 200 K (top), 300 K 

(middle), and 400 K (bottom). 
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Fig. 17 Modeled gate-lag response of a GaN HEMT, in the case of a bulk donor trap 

(top) and a surface donor trap (bottom) [20]. The ambient temperature is 300 K. 
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Fig. 18  LE physical thermal model of a power MOSFET die, package, flange, and heat-

sink assembly [23]. 
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Fig. 19 An example of detailed FE thermal model for rectifier diodes in ISOTOP 

package (left) and it simplified version (right) for circuit simulation [25]. 

 

 
 

 
 

Fig. 20 An example of FE thermal model (top) and experimental IR thermal map 

(bottom) for a single-module DC/DC converter [25]. The output power is 1.2 

kW, and forced-air cooling is in place. The maximum temperature error is 8% all 

over the board. 
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Fig. 21 FE simulation of a converter board on a water-cooled heat-sink [30]. Top: water 

velocity in the hear sink; bottom: thermal simulation of the converter and heat-sink.  

5. SUMMARY 

In this paper we have reviewed the activity carried out over several years at the 

Department of Information Engineering of the University of Parma, Italy, in the field of 

thermal and electro-thermal modeling of devices, device and package assemblies, circuits, 

and systems encompassing active boards and heat-sinking elements. 

We have shown examples of the use of Finite-Element (FE) 3D tools for the thermal 

analysis of a hierarchy of structures ranging from bare device dies to complex systems 

including active and passive devices, boards, metallizations, and air- and water-cooled 

heat-sinks. Increasing the level of complexity requires developing smart solutions for the 

reduction of model complexity, lest numerical convergence be slowed down beyond 

acceptable limits, or made altogether impossible. 

A variety of Lumped-Element modeling examples has also been shown. These models 

lose some of the physical detail of FE models, but are amenable to integration inside 

circuit simulation tools, thus allowing self-consistent electro-thermal simulation of the 

device or circuit under realistic operating conditions, something that is practically 

impossible with FE tools. These models can range from purely empirical to strictly 

physics- and geometry-based. 
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