A CRITICAL REVIEW ON THE MATERIAL ASPECTS OF TRIBOELECTRIC NANOGENERATORS (TENG)

Deepak Anand, Ashish Singh Sambyal, Rakesh Vaid

DOI Number
https://doi.org/10.2298/FUEE2303411A
First page
411
Last page
426

Abstract


Triboelectric nanogenerators (TENG) take the advantage of coupling effect for harvesting energy in the area of electronics for various self-powered applications. These nanogenerators are capable of converting energy in our surroundings into electrical energy by using the process of electrostatic induction and contact electrification. Triboelectric layers of a TENG are formed basically with the use of various polymers, metals and other inorganic materials like PTFE (Poly tetra fluoro ethylene), PDMS (polydimethyl siloxane), FEP (Fluorinated ethylene propylene) and Kapton. Selection of different materials for the device fabrication is very important since it contribute towards the triboelectric effect and also forms the fundamental structure for the proposed TENG device. In this review article, we emphasis mainly on various triboelectric materials considering factors such as stability, flexibility, power density etc., to improve upon the electrical output of the devices for different applications.


Keywords

TENG (Triboelectric Nanogenerator); PTFE (Poly tetra fluoro Ethylene); FEP (Fluorinated ethylene propylene); PDMS (Poly dimethyl siloxane); TET (triboelectric textile); PMMA (polymethyl methacrylate); Energy harvesting

Full Text:

PDF

References


X. Cao, Y. Jie and Z. L. Wang, "Triboelectric nanogenerators driven self- powered electrochemical processes for energy and environmental science", Adv. Energy Mater. vol. 6, p. 1600665, 2016.

S. H. Kwon et al., "Fabric active transducer stimulated by water motion for self-powered wearable device", ACS Appl. Mater. Interfaces, vol. 8, pp. 24579-24584, 2016.

S. H. Wang, L. Lin and Z. L. Wang, "Triboelectric nanogenerators as self-powered active sensors", Nano Energy, vol. 11, pp. 436-462, 2015.

C. S. Wu, A. C. Wang, W. B. Ding, H. Y. Guo and Z. L. Wang, "Triboelectric nanogenerator: a foundation of the energy for the new era", Adv. Energy Mater. vol.9, p. 1802906, 2019.

S. M. Niu et al., "Theoretical study of contact-mode triboelectric nanogenerators as an effective power source", Energy Environ. Sci., vol. 6, pp. 3576-3583, 2013.

H. L. Zhang et al., "Triboelectric nanogenerator built inside clothes for self-powered glucose biosensors", Nano Energy, vol.2, pp. 1019-1024, 2013.

B. Yang et al., "A fully verified theoretical analysis of contact-mode triboelectric nanogenerators as a wearable power source", Adv. Energy Mater, vol. 6, p. 1600505, 2016.

S. M. Niu et al., "Theory of sliding-mode triboelectric nanogenerators", Adv. Mater. vol. 25, pp. 6184-6193, 2013.

G. Zhu et al., "A shape-adaptive thin film based approach for 50% high efficiency energy generation through micro-grating sliding electrification", Adv. Mater., vol. 26, pp. 3788-3796, 2014.

B. Meng et al., "A transparent single-friction-surface triboelectric generator and self-powered touch sensor", Energy Environ. Sci., vol. 6, pp. 3235-3240, 2013.

S. W. Chen et al., "An ultrathin flexible single-electrode triboelectric nanogenerator for mechanical energy harvesting and instantaneous force sensing", Adv. Energy Mater. vol. 7, p. 1601255, 2017.

T. Zhou et al., "Woven structured triboelectric nanogenerator for wearable devices", ACS Appl. Mater. Interfaces, vol. 6, pp.14695-14701, 2014.

Z. F. Zhao et al., "Freestanding flag-type triboelectric nanogenerator for harvesting high-altitude wind energy from arbitrary directions", ACS Nano, vol. 10, pp.1780-1787, 2016.

Q. Zheng et al., "In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator", Adv. Mater., vol. 26, pp. 5851-5856, 2014.

Y. H. Ko, S. H. Lee, J. W. Leem and J. S. Ju, "High transparency and triboelectric charge generation properties of nano-patterned PDMS", RSC Adv., vol. 4, pp. 10216-10220, 2014.

F. R. Fan et al., "Highly transparent and flexible triboelectric nanogenerators: performance improvements and fundamental mechanisms", J. Mater. Chem. A., vol. 2, pp. 13219-13225, 2014.

S. Kim et al., "Transparent flexible graphene triboelectric nanogenerators", Adv. Mater., vol. 26, pp. 3918-3925 2014.

X. S. Zhang et al., "Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical Microsystems", Nano Lett., vol. 13, pp. 1168-1172, 2013.

Y. S. Zhou, S. Wang, Y. Yang, et al., "Manipulating Nanoscale contact electrification by an applied electric field", Nano Lett., vol. 14, pp. 1567-1572, 2014.

C. Xu, B. Zhang, A. C. Wang, et al., "Contact-electrification between two identical materials: curvature effect", ACS Nano. vol. 13, pp. 2034-2041, 2019.

C. Xu, A. C. Wang, H. Zou, et al., "Raising the working temperature of a triboelectric nanogenerator by quenching down electron thermionic emission in contact-electrification", Adv Mater., vol. 30, p. 1803968, 2018.

D. W. Kim, J. H. Lee, J. K. Kim, and U. Jeong, "Material aspects of triboelectric energy generation and sensors", NPG Asia. Mater., vol. 12, pp. 1-17, p. 074103, 2020.

S. M. Niu and Z. L. Wang, "Theoretical systems of triboelectric nanogenerators", Nano Energy, vol. 14, pp.161-192, 2015.

Y. L. Zi et al., "Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators", Nat. Commun., vol. 6, p. 8376, 2015.

D. Jang et al., "Force assembled triboelectric nanogenerator with high humidity resistant electricity generation using hierarchical surface morphology", Nano Energy, vol. 20, pp. 283-293, 2016.

M. L. Seol et al., "Nature replicated nano in microstructures for triboelectric energy harvesting", Small, vol. 10, pp.3887-3894, 2014.

C. K. Jeong et al., "Topographically-designed triboelectric nanogenerator via block co polymer self-assembly", Nano Lett. vol. 14, pp. 7031-7038, 2014.

G. Zhu et al., "Triboelectric generator driven pulse electro deposition for micro patterning", Nano Lett. vol. 12, pp. 4960-4965, 2012.

Z. H. Lin et al., "Enhanced triboelectric nanogenerators and triboelectric nanosensor using chemically modified TiO2 nanomaterials", ACS Nano, vol. 7, pp. 4554-4560, 2013.

J. H. Lee, I. Yu, S. Hyun, J. K. Kim and U. Jeong, "Remarkable increase in triboelectrification by enhancing the conformable contact and adhesion energy with a film-covered pillar structure", Nano Energy, vol. 34, pp. 233-241, 2017.

J. Nie et al., "Power generation from the interaction of a liquid droplet and a liquid membrane", Nat. Commun., vol. 10, p. 2264, 2019.

W. Seung et al., "Boosting power-generating performance of triboelectric nanogenerators via artificial control of ferroelectric polarization and dielectric properties", Adv. Energy Mater., vol. 7, p. 1600988, 2017.

S. H. Wang et al., "Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: Methodology and theoretical understanding", Adv. Mater., vol. 26, pp. 6720-6728, 2014.

B. K. Yun et al., "Base-treated polydimethylsiloxane surfaces as enhanced triboelectric nanogenerators", Nano Energy, vol. 15, pp. 523-529, 2015.

X. S. Zhang et al., "High-performance triboelectric nanogenerator with enhanced energy density based on single-step fluorocarbon plasma treatment", Nano Energy, vol. 4, pp. 123-131, 2014.

H. Y. Li et al., "Significant enhancement of triboelectric charge density by fluorinated surface modification in nanoscale for converting mechanical energy", Adv. Funct. Mater., vol. 25, pp. 5691-5697, 2015.

P. H. Ducrot, I. Dufour and C. Ayela, "Optimization of PVDF-TrFE processing conditions for the fabrication of organic MEMS resonators", Sci. Rep., vol. 6, p. 19426, 2016.

J. H. Lee et al., "Control of skin potential by triboelectrification with ferro-electric polymers", Adv. Mater., vol. 27, pp. 5553-5558, 2015.

W. Seung et al., "Boosting power-generating performance of triboelectric nanogenerators via artificial control of ferroelectric polarization and dielectric properties", Adv. Energy Mater., vol. 7, p. 1600988, 2017.

W. W. Shen, B. Muh, G. J. Zhang, J. B. Deng and D. M. Tu, "Identification of electron and hole trap based on isothermal surface potential decay model", J. Appl. Phys., vol. 113, p. 083706, 2013.

J. Y. Li, F. S. Zhou, D. M. Min, S. T. Li and R. Xia, "The energy distribution of trapped charges in polymers based on isothermal surface potential decay model", IEEE Trans. Dielectr. Electr. Insul., vol. 22, pp. 1723-1732, 2015.

T. Takada et al., "Determination of charge-trapping sites in saturated and aromatic polymers by quantum chemical calculation", IEEE Trans. Dielectr. Electr. Insul., vol. 22, pp. 1240-1249, 2015.

N. Y. Cui et al., "Dynamic behavior of the triboelectric charges and structural optimization of the friction layer for a triboelectric nanogenerator", ACS Nano, vol. 10, pp. 6131-6138, 2016.

D. W. Kim, J. H. Lee, I. You, J. K. Kim and U. Jeong, "Adding a stretchable deep- trap interlayer for high-performance stretchable triboelectric nanogenerators", Nano Energy, vol. 50, pp. 192-200, 2018.

H. W. Park et al., "Electron blocking layer-based interfacial design for highly- enhanced triboelectric nanogenerators", Nano Energy, vol. 50, pp. 9-15, 2018.

D. Park, S. Lee, C. V. Anh, P. Park and J. Nah, "Role of a buried indium zinc oxide layer in the performance enhancement of triboelectric nanogenerators", Nano Energy, vol. 55, pp. 501-505, 2019.

C. Wu et al., "Enhanced triboelectric nanogenerators based on MoS2 monolayer nano composites acting as electron-acceptor layers", ACS Nano, vol. 11, pp. 8356-8363, 2017.

C. Wu, T. W. Kim and H. Y. Choi, "Reduced graphene-oxide acting as electron- trapping sites in the friction layer for giant triboelectric enhancement", Nano Energy, vol. 32, pp. 542-550, 2017.

J. Q. Xiong et al., "Skin touch actuated textile based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting", Nat. Commun., vol. 9, p. 4280, 2018.

S. Cheon et al., "High-performance triboelectric nanogenerators based on electro spun poly vinylidene fluoride-silver nanowire composite nanofibers", Adv. Funct. Mater., vol. 28, p. 1703778, 2018.

R. M. Wen, J. M. Guo, A. F. Yu, J. Y. Zhai and Z. L. Wang, "Humidity-resistive triboelectric nanogenerator fabricated using metal organic framework composite", Adv. Funct. Mater., vol. 29, p. 1807655, 2019.

R. M. Wen et al., "Remarkably enhanced triboelectric nanogenerator based on flexible and transparent monolayer titania nanocomposite", Nano Energy, vol. 50, pp. 140-147, 2018.

Z. M. Lin et al., "Triboelectric nanogenerator enabled body sensor network for self-powered human heart-rate monitoring", ACS Nano, vol. 11, pp. 8830-8837, 2017.

W. Seung et al., "Nanopatterned textile-based wearable triboelectric nanogenerator", ACS Nano, vol 9, pp. 3501-3509 2015

L. Zhang et al., "Lawn structured triboelectric nanogenerators for scavenging sweeping wind energy on rooftops", Adv. Mater., vol. 28, pp. 1650-1656 2016.

S. Xu et al., "Stretchable batteries with self-similar serpentine interconnect and integrated wireless recharging systems", Nat. Commun., vol. 4, p. 1543 2013.

P. K. Yang et al., "A flexible, stretchable and shape-adaptive approach for versatile energy conversion and self-powered biomedical monitoring", Adv. Mater., vol. 27, pp. 3817-3824 2015.

M. Vosgueritchian, D. J. Lipomi and Z. A. Bao, "Highly conductive and transparent PEDOT: PSS films with a fluoro surfactant for stretchable and flexible transparent electrodes", Adv. Funct. Mater., vol. 22, pp. 421-428, 2012.

C. Y. Wang, W. Zheng, Z. L. Yue, C. O. Too and G. G. Wallace, "Buckled, stretchable poly pyrrole electrodes for battery applications", Adv. Mater., vol. 23, pp. 3580-3584, 2011.

D. C. Hyun et al., "Ordered zigzag stripes of polymer gel/metal nanoparticle composites for highly stretchable conductive electrodes", Adv. Mater., vol. 23, pp. 2946-2950, 2011.

M. Amjadi, K. U. Kyung, I. Park and M. Sitti, "Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review", Adv. Funct. Mater., vol. 26, pp. 1678-1698, 2016.

N. Matsuhisa et al., "Printable elastic conductors with a high conductivity for electronic textile applications", Nat. Commun., vol. 6, p. 7461, 2015.

G. D. Moon et al., "Highly stretchable patterned gold electrodes made of Au nano sheets", Adv. Mater. vol. 25, pp. 2707-2712, 2013.

F. Yi et al., "Stretchable and waterproof self-charging power system for harvesting energy from diverse deformation and powering wearable electronics", ACS Nano, vol. 10, pp. 6519-6525, 2016.

Y. C. Lai et al., "Electric eel skin inspired mechanically durable and super- stretchable nanogenerator for deformable power source and fully autonomous conformable electronic-skin applications", Adv. Mater., vol. 28, pp. 10024-10032, 2016.

G. H. Lim et al., "Fully stretchable and highly durable triboelectric nanogenerators based on gold-nanosheet electrodes for self-powered human- motion detection", Nano Energy, vol. 42, pp. 300-306, 2017.

M. D. Dickey, "Stretchable and soft electronics using liquid metals", Adv.Mater., vol. 29, p. 1606425, 2017.

R. Matsuzaki. and K. Tabayashi, "Highly stretchable, global, and distributed local strain sensing line using GaInSn electrodes for wearable electronics", Adv. Funct. Mater., vol. 25, pp. 3806-3813, 2015.

J. Yoon et al., "Design and fabrication of novel stretchable device arrays on a deformable polymer substrate with embedded liquid-metal interconnections", Adv. Mater., vol. 26, pp. 6580-6586, 2014.

Y. Q. Yang et al., "Liquid metal based super-stretchable and structure design able triboelectric nanogenerator for wearable electronics", ACS Nano, vol. 12, pp. 2027-2034, 2018.

F. Yi et al., "A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring", Sci. Adv., vol. 2, pp. 150-162, 2016.

J. Shi et al., "A liquid PEDOT:PSS electrode based stretchable triboelectric nanogenerator for a portable self-charging power source", Nanoscale, vol. 11, pp. 7513–7519, 2019.

S. Niu, X. Wang, Yi F., Y. S. Zhou, and Z. L. Wang, "A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics", Nat. Commun., vol. 6, p. 8975, 2015.

X. Nan et al., "Highly efficient storage of pulse energy produced by triboelectric nanogenerator in Li3 V2(PO4)3/c cathode Li-ion batteries", ACS Appl. Mater. Interfaces, vol. 8, pp. 862-870, 2016.

S. H. Wang et al., "Motion charged battery as sustainable flexible-power-unit", ACS Nano, vol. 7, pp. 11263–11271, 2013.

X. L. Zhang et al., "Lithium-ion batteries: charged by triboelectric nanogenerators with pulsed output based on the enhanced cycling stability", ACS Appl. Mater. Interfaces, vol. 10, pp. 8676-8684, 2018.

X. Liu, K. Zhao, Z. L. Wang, and Y. Yang, "Unity convoluted design of solid Li-ion battery and triboelectric nanogenerator for self-powered wearable electronics" Adv. Energy Mater., vol. 7, p. 1701629, 2017.

X. Y. Xue, S. H. Wang, W. X. Guo, Y. Zhang, and Z. L. Wang, "Hybridizing energy conversion and storage in a mechanical to electrochemical process for self- charging power cell", Nano Lett., vol. 12, pp. 5048-5054, 2012.

C. I. Li et al., "Vander waal epitaxy of flexible and transparent VO2 film on muscovite", Chem. Mater., vol. 28, pp. 3914-3919, 2016.

S. R. Bakaul, et al., "High speed epitaxial perovskite memory on flexible substrates", Adv. Mater., vol. 29, p. 1605699, 2017.

Z. Liang et al., "All-inorganic flexible embedded thin-film capacitors for dielectric energy storage with high performance", ACS Appl. Mater. Interfaces, vol. 11, pp. 5247-5255, 2019.

J. Chung et al., "Capacitor-integrated triboelectric nanogenerator based on metal-metal contact for current amplification", Adv. Energy Mater., vol. 8, p. 1703024, 2018.

Z. L. Wang, L. Lin, J. Chen, S. Niu, and Y. Zi, Triboelectric nano-generators. Springer International Publishing, Cham: Springer, 2016.

H. Zou, et al., "Quantifying the triboelectric series", Nat Commun., vol. 10, p. 1427, 2019.

S. Liu, W. Zheng, B. Yang, and X. Tao, "Triboelectric charge density of porous and deformable fabrics made from polymer fibers", Nano Energy, vol. 53, pp. 383-390, 2018.

Z. L. Wang, "On the first principle theory of nanogenerators from Maxwell's equations", Nano Energy, vol. 68, p. 104272, 2020.

Z. L. Wang, "On the first principle theory of nanogenerators from Maxwell's equations", Nano Energy, vol. 68, 104272, 2019.

C. Yao, A. Hernandez, Y. Yu, Z. Cai, and X. Wang, "Triboelectric nanogenerators and power-boards from cellulose nanofibrils and recycled materials", Nano Energy, vol. 30, pp. 103-108, 2016.

C. Yao, X. Yin, Y. Yu, Z. Cai, and X. Wang, "Chemically functionalized natural cellulose materials for effective triboelectric nanogenerator development", Adv Funct Mater., vol. 27, p. 1700794, 2017.

S. Kim, M. K. Gupta, K. Y. Lee, et al., "Transparent flexible graphene triboelectric nanogenerators", Adv Mater., vol. 26, pp. 3918-3925, 2014.

C. Wu, T. W. Kim, J. H. Park, et al., "Enhanced triboelectric nanogenerators based on MoS2 monolayer nanocomposites acting as electron-acceptor layers", ACS Nano., vol. 11, pp. 8356-8363, 2017.

M. Seol, S. Kim, Y. Cho, et al., "Triboelectric series of 2D layered materials", Adv Mater., vol. 30, p. 1801210, 2018.

S. Wang, L. Lin, Y. Xie, Q. Jing, S. Niu and Z. L. Wang, "Sliding- triboelectric nanogenerators based on in-plane charge- separation mechanism", Nano Lett., vol. 13, pp. 2226-2233, 2013.

Y. Xie, S. Wang, L. Lin, et al., "Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy", ACS Nano., vol. 7, pp. 7119-7125, 2013.

W. Tang, C. B. Han, C. Zhang, and Z. L. Wang, "Cover sheet based nanogenerator for charging mobile electronics using low- frequency body motion/vibration", Nano Energy, vol. 9, pp. 121-127, 2014.

J. Chen, X. Pu, H. Guo, et al., "A self-powered 2D barcode recognition system based on sliding mode triboelectric nanogenerator for personal identification", Nano Energy., vol. 43, pp. 253-258, 2018.

J. Wang, W. Ding, L. Pan, et al., "Self-powered wind sensor system for detecting wind speed and direction based on a triboelectric nanogenerator", ACS Nano., vol. 12, pp. 3954-3963, 2018.

R. Zhang, M. Hummelgård, J. Ortegren, et al., "Human body constituted triboelectric nanogenerators as energy harvesters, code transmitters, and motion sensors", ACS Appl Energy Mater., vol. 1, pp. 2955-2960 2018.

S. Wang, L. Lin, Y. Xie, Q. Jing, S. Niu, and Z. L. Wang, "Sliding- triboelectric nanogenerators based on in-plane charge- separation mechanism", Nano Lett., vol. 13, pp. 2226-2233, 2013.

Y. Xie, S. Wang, S. Niu, et al., "Grating structured freestanding triboelectric layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency", Adv Mater., vol. 26, pp. 6599-6607, 2014.

T. Liu, M. Liu, S. Dou, et al., "Triboelectric nanogenerator based soft energy-harvesting skin enabled by toughly bonded elastomer/hydro gel hybrids", ACS Nano., vol. 12, pp. 2818-2826, 2018.

A. Ahmed, Z. Saadatnia, I. Hassan, et al., "Self-powered wireless sensor node enabled by a duck-shaped triboelectric nanogenerator for harvesting water wave energy", Adv Energy Mater., vol. 7, p. 1601705, 2017.

H. Zou, Y. Zhang, L. Guo, et al., "Quantifying the triboelectric series", Nat. Commun., vol. 10, p. 1427, 2019.

J. P. Lee, J. W. Lee and J. M. Baik, "The progress of PVDF as a functional material for triboelectric nanogenerators and self – powered sensors", Micromachines, vol. 9, pp. 1-13, 2018.


Refbacks

  • There are currently no refbacks.


ISSN: 0353-3670 (Print)

ISSN: 2217-5997 (Online)

COBISS.SR-ID 12826626