PERFORMANCE ANALYSIS OF PSEUDORANDOM ABSOLUTE POSITION ENCODER WITH EMBEDDED SERIAL PSEUDORANDOM/NATURAL CODE CONVERTER
Abstract
Pseudorandom absolute position encoders represent an advanced version of the widely used absolute position encoders, particularly suitable for high-resolution angular position measurement. This paper presents a detailed performance analysis of the pseudorandom absolute position encoder with embedded serial pseudorandom/natural code converter, focusing on the maximum operating frequency and the absolute error in angular position measurement. The generalized analysis, applicable to various resolution values, represents a significant contribution of the paper. Determining the maximum operating frequency involves a detailed analysis of propagation delays in the serial code converter circuit. It is demonstrated that encoder resolution profoundly impacts performance, with a dual effect: higher resolution decreases the absolute error but also reduces the maximum operating frequency, necessitating the determination of the most suitable resolution value for each specific application. In addition to its theoretical importance, the generalized analysis aids practical application by facilitating performance calculations and the selection of the most suitable resolution for specific applications. The performance evaluation was conducted for code converters implemented using the widely used 74LVC logic circuits, considering a 6-bit converter as a representative example of converters with a single XOR logic gate in the feedback loop of the shift register, and an 8-bit converter as a representative example of serial converters with three XOR logic gates in the feedback loop. By applying the proposed analysis, the maximum clock frequency was determined to be 29.85 MHz for both resolution values (6 and 8 bits). Simulations in NI Multisim software validate the performed analysis, showing a strong correlation between simulation and theoretical results.
Keywords
Full Text:
PDFReferences
W. Chen, W. Zhang, X. Wang, D. Hao and Y. Liu, "A common-mode suppression structure for absolute optical encoders", Opt. Commun., vol. 546, 129741, 2023.
J. Zhao, W. Ou, N. Cai, Z. Wu and H. Wang, "Measurement Error Analysis and Compensation for Optical Encoders: A Review", IEEE Trans. Instrum. Meas., vol. 73, pp. 1-30, p. 1006230, 2024.
H. Wang, J. Wang, B. Chen, P. Xiao, X. Chen, N. Cai, B. Wing and K. Ling, "Absolute optical imaging position encoder", Measurement, vol. 67, pp. 42-50, 2015.
Y. Shi, Q. Zhou, X. Li, K. Ni and X. Wang, "Design and Testing of a Linear Encoder Capable of Measuring Absolute Distance", Sensor. Actuat. A: Phys., vol. 308, p. 111935, 2020.
I. Stojković, G. Miljković, D. Denić and D. Živanović, "Application of Pseudorandom Position Encoder for Crane Positioning", In Proceedings of the 2017 International Scientific Conference UNITECH 2017, Gabrovo, Bulgaria, 2017, vol. 3, pp. 465-468.
B. Shorkry, R. M. Daoud and H. H. Amer, "Fault-Tolerant Rotary Gray Encoder for Industrial Applications", In Proceedings of the 12th Mediterranean Conference on Embedded Computing (MECO 2023), Budva, Montenegro, 2023, pp. 1-5.
K. M. Lee, T. Gu and Y. B. Bang, "Analysis of Accuracy and Measuring Range of Dual Absolute Encoder System", IEEE Sens. J., vol. 20, no. 6, pp. 2997-3004, 2020.
E. M. Petriu, "Absolute Position Measurement Using Pseudorandom Binary Encoding", IEEE Trans. Instrum. Meas., vol. 1, no. 3, pp. 19-23, 1998.
R. Akkaya and F. A. Kazan, "A New Method for Angular Speed Measurement with Absolute Encoder", Elektron. Elektrotech, vol. 26, no. 1, pp. 18-22, 2020.
B. Zhan, C. Wu, X. Liu, P. Huang and P. Yu, "An Integrated High Precision Absolute Angular Displacement Sensor", Meas. Sci. Technol., vol. 35, no. 9, 2024.
S. Wang, L. Luo, J. Zhu, N. Shi and X. Li, "An Ultra-Precision Absolute-Type Multi-Degree-of-Freedom Grating Encoder", Sensors, vol. 22, no. 23, p. 9047, 2022.
D. Gurauskis, D. Marinkovic, D. Mažeika and A. Kilikevičius, "Self-Calibratable Absolute Modular Rotary Encoder: Development and Experimental Research", Micromachines, vol. 15, no. 9, p. 1130, 2024.
J. Yu, R. Dou, W. Zhang, X. Wang, J. Xu, J. Liu, N. Wu and L. Liu, "Precision Encoder Grating Mounting: A Near-Sensor Computing Approach", Sci. Rep., vol. 14, p. 22249, 2024.
E. Celik and A. H. Obdan, "A New Absolute Encoder Design Based on Piecewise Pseudo-Linear Signals", IEEE Sens. J., vol. 24, no. 16, pp. 25590-25600, 2024.
J. G. Webster and H. Eren, Measurement, Instrumentation, and Sensors Handbook: Spatial, Mechanical, Thermal, and Radiation Measurement, 2nd edition. CRC Press, 2014.
J. M. Fuertes, B. Balle and E. Ventura, "Absolute-Type Shaft Encoding Using LSFR Sequences with Prescribed Length", IEEE Trans. Instrum. Meas., vol. 57, no. 5, pp. 915-922, 2008.
D. Denić, G. Miljković, J. Lukić and M. Arsić, "Pseudorandom Position Encoder with Improved Zero Position Adjustment", FU: Elec. Energ., vol. 25, no. 2, pp. 113-120, 2012.
D. Denić, M. Dinčić, G. Miljković and Z. Perić, "A Contribution to the Design of Fast Code Converters for Position Encoders", Int. J. Electron., vol. 103, no. 10, pp. 1654-1664, 2016.
D. Denić and G. Miljković, "Code Reading Synchronization Method for Pseudorandom Position Encoders", Sensor. Actuat. A: Phys., vol. 150, no. 2, pp. 188-191, 2009.
G. Miljković, D. Denić, M. Simić and D. Živanović, "Implementation of New Serial Pseudorandom/Natural Code Converter applied to Position Encoders", In Proceedings of the 13th International Conference Research and Development in Mechanical Industry – RaDMI 2013, Kopaonik, Serbia, 2013, vol. 2, pp. 869-874.
G. Miljković and D. Denić, "Redundant and Flexible Pseudorandom Optical Rotary Encoder", Elektron. Elektrotech., vol. 26, no. 6, pp. 10-16, 2020.
T. Etzion, Sequences and the de Bruijn Graph: Properties, Constructions, and Applications, 1st edition. Academic Press, 2024.
T. Etzion, "Pseduo- Random and de Bruijn Array Codes", In Proceedings of the 2024 IEEE International Symposium on Information Theory (ISIT), Athens, Greece, 2024, pp. 1742-1747.
X. Jing, A. Zhang and K. Feng, "Arithmetic Autocorrelation Distribution of Binary m-Sequences", IEEE Trans. Inform. Theory, vol. 69, no. 9, pp. 6040-6047, 2023.
X. Jing and K. Feng, "Arithmetic Crosscorrelation of Binary M-Sequences with Coprime Periods", Finite Fields Theor. Appl., vol. 96, p. 102424, 2024.
S. Hassan and M. U. Bokhari, "Design of Pseudo Random Number Generator using Linear Feedback Shift Register", Int. J. Eng. Adv. Technol. (IJEAT), vol. 9, no. 2, pp. 1956-1965, 2019.
Z. Zulfikar, Y. Away and R. S. Noor, "FPGA-based Design System for a Two-Segment Fibonacci LFSR Random Number Generator", Int. J. Electr. Comput. Eng. (IJECE), vol. 7, no. 4, pp. 1882-1891, 2017.
J. Ramasamy and D. Samiappan, "A Modified PRBS: Vertical Stacked LFSR Primitive Polynomial for Secure Data Communication", Procedia Comput. Sci., vol. 215, pp. 947-954, 2022.
J. Ramasamy and D. Samiappan, "Design and Analysis of Non-vulnerable PRBS Generation with Internal Shift and XOR of LFSR", In Proceedings of the 4th International Conference on Electrical and Electronics Engineering, Himachal Pradesh, India, 2023, vol. 1, pp. 573-582.
K. Onuma and S. Miyata, "An Improved Intensity Factor of Correlation-Based Steganography Using M-Sequence and DCT", SN Comput. Sci., vol. 5, no. 12, 2024.
Z. Gu, F. Li, X. Dong, B. Zhou and S. Fang, "Estimation of Pollutant Source Using Source-Receptor Response Matrix from Maximum-Length Sequence Pulse Technique", Sustain. Cities Soc., vol. 101, p. 105205, 2024.
F. Asadi, Essential Circuit Analysis using NI MultisimTM and MATLAB. Springer, 2022.
Refbacks
- There are currently no refbacks.
ISSN: 0353-3670 (Print)
ISSN: 2217-5997 (Online)
COBISS.SR-ID 12826626