DESGIN DEVELOPMENT AND SIGNAL PROCESSING OF 5G MIMO ANTENNA ON TWO DISTINCT SUBSTRATES
Abstract
This article covers the design, development, and signal processing of a 5G mm-wave MIMO antenna. The antenna design is first simulated using CST 18 software and optimized iteratively to meet the requirements. After finalizing the design, a prototype is fabricated and tested in an Anechoic Chamber to measure radiation patterns and gain in a controlled environment. The antenna uses two substrate materials: Rogers RT/Duroid and FR4. Rogers RT/Duroid offers higher efficiency, gain, and lower loss at high frequencies compared to FR4. The design features a partial ground plane and orthogonal positioning of radiating components to enhance isolation. The antenna is designed to be compact and provide high bandwidth, making it ideal for 5G applications. The isolation between ports is greater than 13 dB for the Rogers RT/Duroid substrates and greater than 16 dB for the FR4 substrates. The antenna design using Rogers RT/Duroid resonates at 20 GHz, while the one using FR4 substrates resonates at 28 GHz. Key performance parameters for both substrates, such as ECC (Envelope Correlation Coefficient), MEG (Mean Effective Gain), DG (Diversity Gain), CCL (Channel Capacity Loss), gain, radiation pattern, total and radiation efficiencies, are compared. For the RT/Duroid design, the ECC is less than 0.007, DG is greater than 9.97, CCL is less than 0.4 bps/Hz, peak gain is 7.5 dB, radiation efficiency ranges from 82% to 88%, and total efficiency ranges from 62% to 82% within the desired frequency band (15–35 GHz). In contrast, the FR4 design shows an ECC of less than 0.006, DG greater than 9.95, CCL less than 0.4 bps/Hz, peak gain of 5.6 dB, radiation efficiency between 40% and 52%, and total efficiency between 35% and 50%. RT/Duroid has a relative permittivity (εr) of 2.2, loss tangent (tanδ) of 0.0009, and a thickness (t) of 0.8 mm, while FR4 has an εr of 4.3, tanδ of 0.025, and thickness of 1.6 mm. The efficiency, gain, and return loss limitations can be mitigated by carefully selecting the dielectric material.
Keywords
Full Text:
PDFReferences
S. Jun, Y. Kang, J. Kim and C. Kim, "Ultra-Low-Latency Services in 5G Systems. A Perspective from 3GPP Standards", ETRI J., vol. 42, pp. 721-733, 2020.
T. Nahar and S. Rawat, "Survey of Various Bandwidth Enhancement Techniques Used for 5G Antennas", Int. J. Microw. Wirel. Technol., vol. 14, no. 2, pp. 204-224, 2022.
T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi and F. Gutierrez, "Millimeter Wave Mobile Communications for 5G Cellular", IEEE Access, vol. 1, pp. 335-349, 2013.
M. Hussain, E. M. Ali, S. M. R. Jarchavi, A. Zaidi, A. I. Najam, A. A. Alotaibi, A. Althobaiti and S. S. M. Ghoneim, "Design and Characterization of Compact Broadband Antenna and Its MIMO Configuration for 28 GHz 5G Applications", Electronics, vol. 11, no. 4, p. 523, 2022.
B. A. Esmail and S. Koziel, "High Isolation Metamaterial-based Dual-band MIMO Antenna for 5G Millimeter-wave Applications", AEU-Int. J. Electron. Commun., vol. 158, p. 154470. 2023.
M. Hussain, W. A. Awan, E. M. Ali, M. S. Alzaidi, M. Alsharef, D. H. Elkamchouchi, A. Alzahrani, M. F. A. Sree, "Isolation Improvement of Parasitic Element-Loaded Dual-Band MIMO Antenna for Mm-Wave Applications", Micromachines, vol 13, no. 11, p. 1918, 2022.
A. Rahim and P. K. Malik, "Analysis and Design of Fractal Antenna for an Efficient Communication Network in the Vehicular Model", Sustain. Comput.: Inform. Syst., vol. 31, p. 100586, 2021.
S. Islam, M. Zada and H. Yoo, "Low-Pass Filter Based Integrated 5G Smartphone Antenna for Sub-6GHz and mm-Wave Bands", IEEE Trans. Antennas Propag., vol. 69, no. 9, pp. 5424-5436, 2021.
M. M. Kamal, S. Yang, X. C. Ren, A. Altaf, S. H. Kiani, M. R. Anjum, A. Iqbal, M. Asif and S. I. Saeed, "Infinity Shell-Shaped MIMO Antenna Array for mm-Wave 5G Applications", Electronics, vol. 10, no. 2, p. 165, 2021.
M. Khalid, et al., "4-Port MIMO Antenna with Defected Ground Structure for 5G Millimeter Wave Applications", Electronics, vol. 9, no.1, p. 71, 2020.
E. Al-Abbas, M. Ikram, A. T. Mobashsher and A. Abbosh, "MIMO Antenna System for Multi-Band Millimeter-Wave 5G and Wideband 4G Mobile Communications", IEEE Access, vol. 7, pp. 181916-181923, 2019.
N. Kumar and R. Khanna, "A Two-Element MIMO Antenna for Sub‐6 GHz and mmWave 5G Systems Using Characteristics Mode Analysis", Microw. Opt. Technol. Lett., vol. 63, no. 2, pp. 587-595, 2021.
N. Agrawal, M. Gupta and S. Chouhan, "Miniaturized Micro-strip Antenna for 5th Generation Applications", In Proceedings of the IEEE 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA), 2020, pp. 592-595.
E. Al-Abbas, M. Ikram, A. T. Mobashsher and A. Abbosh, "MIMO Antenna System for Multi-Band Millimeter-Wave 5G and Wideband 4G Mobile Communications", IEEE Access, vol. 7, pp. 181916-181923, Dec. 2019.
Z. Wani, M. P. Abegaonkar and S. K. Koul, "A 28-GHz Antenna for 5G MIMO Applications", Prog. Electromagn. Res. Lett., vol. 78, pp. 73-79, 2018.
L. D. Malviya and P. Gupta P, "Millimeter Wave High-Gain Antenna Array for Wireless Applications", IETE J. Res., vol. 69, no. 5, pp. 2645-2654, July 2023.
A. Patel, A. Desai, I. Elfergani, A. Vala, H. Mewada, K. Mahant, S. Patel, C. Zebiri, J. Rodriguez and E. Ali, "UWB CPW Fed 4-port Connected Ground MIMO Antenna for Sub-Millimeter-Wave 5G Applications", Alexandria Eng. J., vol. 61, no. 9, pp. 6645-6658, Sept. 2022.
M. A. Khan, A. G. Al Harbi, S. H. Kiani, A. N. Nordin, M. E. Munir, S. I. Saeed, J. Iqbal, E. M. Ali, M. Alibakhshikenari and M. Dalarsson, "mmWave Four-Element MIMO Antenna for Future 5G Systems", Appl. Sci., vol. 12, no. 9, p. 4280, Apr. 2022.
H. Singh, B. Sohi and A. Gupta, "Designing and Performance Evaluation of Metamaterial Inspired Antenna for 4G and 5G applications", Int. J. Electron., vol. 108, no. 6, pp. 1035-1057, 2020.
R. Azim, A. Meaze, A. Affandi, M. Alam, R. Aktar, M. Mia and M. Islam, "A Multi-Slotted Antenna for LTE/5G Sub-6 GHz Wireless Communication Applications", Int. J. Microw. Wirel. Technol., vol. 13, no. 5, pp. 486-496, 2021.
I. Ishteyaq, I. Shah Masoodi and K. Muzaffar, "A Compact Double Band Planar Printed Slot Antenna for Sub-6 GHz 5G Wireless Applications", Int. J. Microw. Wirel. Technol., vol. 13, no. 5, 469-477, 2021.
N. Agrawal, M. Gupta and S. Chouhan, "Modified Ground and Slotted MIMO Antennas for 5G Sub-6 GHz Frequency Bands", Int. J. Microw. Wirel. Technol., vol. 15, no. 5, pp. 817-825, 2022.
A. K. Saurabh and M. K. Meshram, "Compact Sub‐6 GHz 5G‐Multiple‐Input‐Multiple‐Output Antenna System with Enhanced Isolation", Int. J. RF Microw. Computer‐Aided Eng., vol. 30, no. 8, p. e22246, Aug. 2020.
S. Chouhan, D. K. Panda, V. S. Kushwah and P. K. Mishra, "Octagonal-Shaped Wideband MIMO Antenna for Human Interface Device and S-band Application", Int. J. Microw. Wirel. Technol., vol. 11, pp. 287-296, 2019.
N. Agrawal, S. Chouhan and M. Gupta, "Quad Port Meander Line MIMO Antenna with the Stepped Ground Structure for 5G Wireless Application", In Proceedings of the IEEE 6th Conference on Information and Communication Technology (CICT), 2022, pp. 1-5.
N. Agrawal, M. Gupta and S. Chauhan, "Design and Simulation of MIMO Antenna for Low Frequency 5G Band Application", In Proceedings of the IEEE 2nd Global Conference for Advancement in Technology (GCAT) Banglore, 2021, pp. 1-4.
N. Agrawal, "A Comparative Study of UWB Micro-strip Antenna for Wireless Communication and RF Energy Harvesting", IOP Conf. Ser.: Mater. Sci. Eng., vol. 1116, p. 012062, 2021.
N. Agrawal and M. Gupta M, "Isolation Enhancement Techniques for UWB-MIMO System: A Review", In Proceedings of IEEE International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC), 2020, pp. 113-117.
S. Chouhan, D. K. Panda, M. Gupta and S. Singhal, "Multiport MIMO Antennas with Mutual Coupling Reduction Techniques for Modern Wireless Transreceive Operations: A Review", Int. J. RF Microw. Computer‐Aided Eng., vol. 28, no. 2, p. e21189, 2018.
H. Ullah and F. A. Tahir, "A Broadband Wire Hexagon Antenna Array for Future 5G Communications in 28 GHz Band", Microw. Opt. Technol. Lett., vol. 61, no. 13, pp. 696-701, 2019.
P. Ranjan, S. Yadav and A. Bage, "Dual Band MIMO Antenna for LTE, 4G and Sub–6 GHz 5G Applications", Facta Universitatis Series Electronics and Energetics., vol. 36, no. 1, pp. 43-51, 2023.
A. Khan and J. S. Roy, "Design of Thinned Smart Antenna of Semi-circular Dipole Array for 5G Massive MIMO System", Facta Universitatis Series Electronics and Energetics, vol. 37, no. 3, pp. 409-422, Sept. 2024.
S. Al-Bawri et al., "A High-Performance 3D Eight-Port THz-MIMO Antenna System Verified with Machine Learning for Enhanced Wireless Communication Systems", Int. J. Commun. Syst., vol. 38, no. 4, p. e6006, 2024.
A. Khan and J. S. Roy, "Thinned Smart Antenna of a Semi-circular Dipole Array for Massive MIMO Systems", Adv. Electromagn., vol. 12, no. 4, pp. 17-25, Dec. 2023.
Refbacks
- There are currently no refbacks.
ISSN: 0353-3670 (Print)
ISSN: 2217-5997 (Online)
COBISS.SR-ID 12826626