SOLITARY AND TRAVELING WAVE SOLUTIONS TO NEMATIC LIQUID CRYSTAL EQUATIONS WITH CUBIC-QUINTIC NONLINEARITY USING THE JACOBI ELLIPTIC FUNCTION EXPANSION METHOD

Nikola Z. Petrović

DOI Number
http://doi.org/10.2298/FUEE2503553P
First page
553
Last page
562

Abstract


In this paper, the Jacobi elliptic function (JEF) expansion method is applied to the system of equations governing nematic liquid crystals with a cubic-quintic nonlinearity. Solutions that are first order polynomials of the JEFs for the wave function and second order for the angle function are obtained. The solutions impose constraints on only two parameters and include a wide range of functions. Both solitary and traveling wave solutions are possible, as well as solutions both with and without chirp.


Keywords

Jacobi, nematic, liquid, crystal, photonics

Full Text:

PDF

References


A. d’Alessandro and R. Asquini, "Light Propagation in Confined Nematic Liquid Crystals and Device Applications", Appl. Sci., vol. 11, no. 18, p. 8713, 2021.

G. Assanto, A. Fratalocchi and M. Peccianti, "Spatial Solitons in Nematic Liquid Crystals: From Bulk to Discrete", Opt. Express, vol. 15, no. 8, pp. 5248-5259, 2007.

G. Assanto, M. Peccianti and C. Conti, "Nematicons: Optical Spatial Solitons in Nematic Liquid Crystals," Opt. Photonics News, vol. 14, no. 2, pp. 44-48, 2003.

G. Assanto, "Nematicons: Reorientational Solitons from Optics to Photonics", Liq. Cryst. Rev. vol. 6, no. 2, pp. 170-194, 2018.

N. Karim, et al., "Molding Optical Waveguides with Nematicons", Adv. Opt. Mater., vol. 5, no. 14, p. 1700199, 2017.

S. Perumbilavil, et al., "Beaming Random Lasers with Soliton Control", Nat. Commun., vol. 9, no. 1, p. 3863, 2018.

S. Zhang, et al., "Deflecting and Routing Nematicons via Orientation Programmable Liquid Crystal Array", Opt. Express, vol. 31, no. 13, pp. 20955-20964, 2023.

U. A. Laudyn, M. Kwasny and M. A. Karpierz, "Nematicons in Chiral Nematic Liquid Crystals", Appl. Phys. Lett., vol. 94, no. 9, p. 091110, 2009.

M. Savescu, et al., "Nematicons in Liquid Crystals", J. Comput. Theor. Nanosci., vol. 12, no. 11, pp. 4667-4673, 2015.

L. Kavitha, et al. "Optically Induced Switching of Nematic Deformations", Physica Scripta, vol. 88, no. 6, p. 065015, 2013.

S. Duran and B. Karabulut, "Nematicons in Liquid Crystals with Kerr Law by Sub-Equation Method", Alexandria Eng. J., vol. 61, no. 2, pp. 1695-1700, 2022.

J. M. L. MacNeil, N. F. Smyth and G. Assanto, "Exact and Approximate Solutions for Optical Solitary Waves in Nematic Liquid Crystals", Physica D, vol. 284, pp. 1-15, 2014.

A. Desyatnikov, A. Maimistov and B. Malomed, "Three-Dimensional Spinning Solitons in Dispersive Media with The Cubic-Quintic Nonlinearity," Phys. Rev. E, vol. 61, no. 3, p. 3107, 2000.

F. Ndzana II, A. Mohamadou and T. C. Kofané, "Modulational Instability in The Cubic–Quintic Nonlinear Schrödinger Equation Through the Variational Approach", Opt. Commun., vol. 275, no. 2, pp. 421-428, 2007.

M. Ekici, et. al., "Nematicons in Liquid Crystals by Extended Trial Equation Method", J. Nonlinear Opt. Phys. Mater., vol. 26, no. 1, p. 1750005, 2017.

D. Kumar, et. al., "Investigation of Dynamics of Nematicons in Liquid Crystals by Extended Sinh‑Gordon Equation Expansion Method", Opt. Quantum Electron., vol. 51, p. 212, 2019.

N. Raza, et al., "Optical Solitons in Nematic Liquid Crystals with Kerr And Parabolic Law Nonlinearities", Opt. Quantum Electron., vol. 51, p. 107, 2019.

A. H. Arnous, et. al., "Nematicons in Liquid Crystals by Modified Simple Equation Method", Nonlinear Dyn., vol. 88, p. 2863-2872, 2017.

O. A. Ilhan, et al., "New Exact Solutions for Nematicons in Liquid Crystals by The Tan (Φ/2) -Expansion Method Arising in Fluid Mechanics", Eur. Phys. J. Plus, vol. 135, no. 3, pp. 1-19, 2020.

V. I. Kruglov, A. C. Peacock and J. D. Harvey, "Exact Self-Similar Solutions of the Generalized Nonlinear Schrödinger Equation with Distributed Coefficients", Phys. Rev. Lett., vol. 90, p. 113902, 2003.

W. Zhong, et al., "Exact Spatial Soliton Solutions of the Two-Dimensional Generalized Nonlinear Schrödinger Equation with Distributed Coefficients", Phys. Rev. A, vol. 78, no. 2, p. 023821, 2008.

M. Belić, et al., "Analytical Light Bullet Solutions to the Generalized (3+ 1)-Dimensional Nonlinear Schrödinger Equation," Phys. Rev. Lett., vol. 101, no. 12, p.123904, 2008.

N. Z. Petrović, M. Belić, and W. Zhong, "Spatiotemporal Wave and Soliton Solutions to the Generalized (3+ 1)-dimensional Gross-Pitaevskii Equation", Phys. Rev. E, vol. 81, no. 1, p. 016610, 2010.

N. Z. Petrović, et al., "Analytical Traveling-Wave and Solitary Solutions to the Generalized Gross-Pitaevskii Equation with Sinusoidal Time-Varying Diffraction and Potential", Phys. Rev. E, vol. 83, no. 3, p. 036609, 2011.

N. Z. Petrović, "Solitary and Traveling Wave Solutions for the Davey–Stewartson Equation Using the Jacobi Elliptic Function Expansion Method", Opt. Quantum Electron., vol. 52, no. 6, p. 319, 2020.

N. Petrović and H. Zahreddine, "Exact Traveling Wave Solutions to Coupled Generalized Nonlinear Schrödinger Equations", Physica Scripta, vol. 2012, no. T149, p. 014039, 2012.

N. Petrović, M. Belić and W. Krolikowski, "Solitary and Traveling Wave Solutions to Nematic Liquid Crystal Equations Using Jacobi Elliptic Functions", Chaos, Solitons & Fractals: X, vol. 13, p. 100121, 2024.

R. Ramaswamy, A. H. Abdel Kader and A. Elsonbaty, "New Exact Nematicon Solutions of Liquid Crystal Model with Different Types of Nonlinearities", IEEE Access, vol. 9, pp. 107909-107916, 2021.

H. F. Ismael, H. Bulut and H. M. Baskonus, "W-shaped Surfaces to the Nematic Liquid Crystals with Three Nonlinearity Laws", Soft. Comput., vol. 25, no. 6, pp. 4513-4524, 2021.

N. Raza, et al., "Investigation of New Solitons in Nematic Liquid Crystals with Kerr and Non-Kerr Law Nonlinearities", J. Nonlinear Opt. Phys. Mater., vol. 32, no. 02. p. 2350020, 2023.


Refbacks

  • There are currently no refbacks.


ISSN: 0353-3670 (Print)

ISSN: 2217-5997 (Online)

COBISS.SR-ID 12826626