GRAPHENE-REINFORCED POLYMERIC NANOCOMPOSITES IN COMPUTER AND ELECTRONICS INDUSTRIES
Abstract
Graphene is the newest member of the multidimensional graphite carbon family. Graphene is a two-dimensional atomic crystal formed by the arrangement of carbon atoms in the hexagonal network. It is the most rigid and thinnest material ever discovered and has a wide range of uses regarding its unique characteristics. It is expected that this material will create a revolution in the electronics industry. Graphene is a very powerful superconductor as the movability of charged particles is high on it, and additionally, because of the high surface energy and π electrons being free, graphene can be used in manufacturing many electronics devices. In this paper, the applications of graphene nanoparticles reinforced polymer nanocomposites in the computer and electronics industry are investigated. These nanoparticles have received much attention from researchers and craftsmen, because graphene has unique thermal, electrical and mechanical properties. Its use as a filler in very small quantities substantially enhances the properties of nanocomposites. There are various methods for producing graphene-reinforced polymer nanocomposites. These methods affect the amount of graphene dispersion within the polymer substrate and the final properties of the composite. The application and the properties of graphene-reinforced polymer nanocomposites are discussed along with examples of results published in the papers. To better understand such materials, the applications of these nanocomposites have been investigated in a variety of fields, including batteries, capacitors, sensors, solar cells, etc., and the barriers to the growth and development of these materials application as suggested by the researchers are discussed. As the use of these nanocomposites is developing and many researchers are interested in working on it, the need to study and deal with these substances is increasingly felt.
Keywords
Full Text:
PDFReferences
S. Park and R. S. Ruof, “Chemical Methods for the Production of Graphenes”, Nature Nanothechnology, 2009.
M.A. Xavior and H.G. Prashantha Kumar, “Graphene Reinforced Metal Matrix Composite (GRMMC): A Review”, Materials Today: Proceedings, vol. 4, no. 2, pp. 3334–3341, 2017.
W. Choi and J. Lee, Graphene Synthesis and Applications, CRC Press Taylor & Francis Group, 2012, pp. 1–223.
R.A. Vaia and H.D. Wagner, “Framework for Nanocomposites”, Materials Today, vol. 7, no. 11, pp. 32–37, 2004.
D.V. Rueger and M.R. Kessler, “Effect of Silane Structure on the Properties of Silanized Multiwalled Carbon Nanotube-epoxy Nanocomposites”, Polymer, vol. 55, pp. 1854–1865, 2014.
S.B. Jin, G.S. Son, Y.H. Kim, and C.G. Kim, “Enhanced Durability of Silanized Multi-walled Carbon Nanotube/Epoxy Nanocomposites under Simulated Low Earth Orbit Space Environment”, Compos. Sci. Tech., vol. 87, pp. 224–231, 2013.
S. Ullah Khan, J.R. Pothnis, and J.K. Kim, “Effects of Carbon Nanotube Alignment on Electrical and Mechanical Properties of Epoxy Nanocomposites”, Composite Part A: Applied Science and Manufacturing, vol. 49, pp. 26–34, 2013.
S. Shadlou, E. Alishahi, and M.R. Ayatollahi, “Fracture Behavior of Epoxy Nanocomposites Reinforced with Different Carbon Nano-reinforcements”, Composite Structure, vol. 95, pp. 577–581, 2013.
M.M. Gallego, M. Hernández, V. Lorenzo, R. Verdejo, M.A. Manchado, and M. Sangermano, “Cationic Photocured Epoxy Nanocomposites Filled with Different Carbon Fillers”, Polymer, vol. 53, pp. 1831–1838, 2012.
J. Lingpu, Y. Shengjiao, J. Yimi and W. Chunming, “Electrochemical Deposition of Diluted Magnetic Semiconductor ZnMnSe on Reduced Graphene Oxide/Polyimide Substrate and its Properties”, Alloy. Compos., vol. 609, pp. 233–238, 2014.
X. Zhang, M. Liu, Y. Mao, Y. Xu, and S. Niu, “Ultrasensitive Photoelectrochemical Immunoassay of Antibody Against Tumor-associated Carbohydrate Antigen Amplified by Functionalized Graphene Derivates and Enzymatic Biocatalytic Precipitation”, Biosensor and Bioelectronics, vol. 59, pp. 21–27, 2014.
T.D. Dao, J.E. Hong, K.S. Ryu, and H.M. Jeong, “Supertough Functionalized Graphene Paper as a High-capacity Anode for Lithium Ion Batteries”, Chemical Engineering Journal, vol. 250, pp. 257–266, 2014.
S. Aoyama, Y.T. Park, W. and Macosko, “Melt Crystallization of Poly(ethylene terephthalate): Comparing Addition of Graphene vs. Carbon Nanotubes”, Polymer, vol. 55, pp. 2077–2085, 2014.
T. Gokkurt, A. Durmus, and V. Sariboga, “Investigation of Thermal, Rheological, and Physical Properties of Amorphous Poly(ethylene terephthalate)/Organoclay Nanocomposite Films”, Appl. Polym. Sci., vol. 129, pp. 2490–2501, 2013.
H. Kim, A.A. Abdala, and C.W. Macosko, “Thermal Analysis of Epoxy-based Nanocomposites: Have Solvent Effects been Overlooked”, Macromolecules, vol. 43, pp. 6515–6530, 2010.
H. Zhang, W. Zheng, Q. Yan, Y. Yang, J. Wang, and Z. Lu, “Electrically Conductive Polyethylene Terephthalate/Graphene Nanocomposites Prepared by Melt Compounding”, Polymer, vol. 51, pp. 1191–1196, 2010.
S. Bandla and J.C. Hanan, “Microstructure and Elastic Tensile Behavior of Polyethylene Terephthalate-Exfoliated Graphene Nanocomposites”, Mater. Sci., vol. 47, pp. 76–82, 2012.
M. Li and Y.G. Jeong, “Influences of Exfoliated Graphite on Structures, Thermal Stability, Mechanical Modulus, and Electrical Resistivity of Poly(butylene terephthalate)”, Appl. Polym. Sci., vol. 125, pp. 53–40, 2012.
N.A. Kotov, “Materials Science: Carbon Sheet Solutions”, Nature, vol. 442, pp. 254–255, 2006.
C.N.R. Rao, K. Biswas, K.S. Subrahmanyam and A. Govindaraj, “Graphene, the New Nanocarbon”, Mater. Chem., vol. 19, pp. 2457–2469, 2009.
C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam and A. Govindaraj, “Graphene: The New Two-dimensional Nanomaterial”, Angew. Chem., Int. Ed., vol. 48, pp. 7752– 7777, 2009.
D. Cai and M.Song, “Recent Advance in Functionalized Graphene/Polymer Nanocomposites”, Mater. Chem., vol. 20, pp. 7906–7915, 2010.
X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colombo and R.S. Ruoff, "Transfer of Large-area Graphene Films for High-performance Transparent Conductive Electrodes", Nano Lett., Vol.9, pp.4359–4363, 2009.
T.D. Dao, H.I. Lee and H.M. Jeong, “Alumina-coated Graphene Nanosheet and Its Composite of Acrylic Rubber”, Colloid. Int. Sci., vol. 416, pp.38–43, 2014.
H.M. Seo, J.H. Park, T.D. Dao, and H.M. Jeong, “Compatibility of Functionalized Graphene with Polyethylene and Its Copolymers”, Nanomaterials, vol. 129, no. 5, pp. 1–8, 2013.
J.T. Choi, T.D. Dao, K.M Oh, H.I. Lee, H.M. Jeong, and B.K. Kim, “Shape Memory Polyurethane Nanocomposites with Functionalized Graphene”, Smart Mater. Struct., vol. 21, 2012.
P. Fabbri, E. Bassoli, S.B. Bon, and L. Valentini, “Preparation and Characterization of Poly (butylene terephthalate)/ graphene Composites by in-situ Polymerization of Cyclic Butylene Terephthalate”, Polymer, vol. 53, pp. 897–902, 2012.
B. Shen, W.Z. Tao, D. Lu, and W. Zheng, “Enhanced Interfacial Interaction between Polycarbonate and Thermally Reduced Graphene Induced by Melt Blending”, Compos. Sci. Tech., vol. 86, pp.109–116, 2013.
J. Dong, C. Yin, X. Zhao, Y. Li, and Q. Zhang, “High Strength Polyimide Fibers with Functionalized Graphene”, Polymer, vol. 54, pp. 6415–6424, 2013.
X. Wang, L. Song, W. Pornwannchai, Y. Hua and B. Kandola, “The Effect of Graphene Presence in Flame Retarded Epoxy Resin Matrix on the Mechanical and Flammability Properties of Glass Fiber-reinforced Composites”, Composites Part A: Applied Science and Manufacturing, vol. 53, pp. 88–96, 2013.
M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.Z. Yu and N. Koratkar, “Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content”, ACS Nano, Vol. 3, pp. 3884–3890, 2009.
M.A. Rafiee, J. Rafiee, I. Srivastava, Z. Wang, H. Song, Z.Z. Yu, and N. Koratkar, “Fracture and Fatigue in Graphene Nanocomposites”, Nano Micro Small, vol. 6, pp. 179–183, 2010.
R. Verdejo, M. Mar Bernal, L.J. Romasanta and M.A. Manchado, “Graphene Filled Polymer Nanocomposites”, Mater. Chem., vol. 21, pp. 3301–3310, 2011.
P. Steurer, R. Wissert, R. Thomann and R. Mulhaupt, “Functionalized Graphenes and Thermoplastic Nanocomposites based upon Expanded Graphite Oxide”, Macro. Rapid Commun., vol. 30, pp. 316–327, 2009.
W. Choi and J. Lee, Graphene Synthesis and Applications, CRC Press Taylor & Francis Group, pp. 1-223, 2012.
C. Low, F. Walsh, M. Chakrabarti, M.A Hashim, M.A. Hussain, “Electrochemical Approaches to the Production of Graphene Flakes and their Potential Application”, Carbon, vol. 54, pp. 1–21, 2013.
A.K. Geim and K.S. Novoselov, “The Rise of Graphene”, Nat. Mater., vol. 6, pp. 183–191, 2007.
C.N.R. Rao, K. Biswas, K.S. Subrahmanyam and A. Govindaraj, “Graphene, The New Nanocarbon”, Mater. Chem., vol.19, pp. 2457–2469, 2009.
C. Soldano, A. Mahmood and E. Dujardin, “Production, Properties and Potential of Graphene”, Carbon, vol. 48, pp. 2127–2150, 2010.
J. Paredes, and S. Villar Rodil, “Atomic Force and Scanning Tunneling Microscopy Imaging of Graphene Nanosheets Derived from Graphite Oxide”, Langmuir, vol. 25, pp. 5957–5968, 2009.
M. Pumera, "Electrochemistry of Graphene, Graphene Oxide and other Graphenoids", Electrochemistry Communications, vol. 36, pp. 14–18, 2013.
K.K. Sadasivuni, D. Ponnamma, S. Thomas, and Y. Grohens, “Evolution from Graphite to Graphene Elastomer Composites”, Progress in Polymer Science, vol. 39, pp. 749–780, 2014.
R. Salvatierra, S. Domingues, M. Oliveira, and A. Zarbin, “Tri-Layer Graphene Films Produced by Mechanochemical Exfoliation of Graphite”, Carbon, vol. 57, pp. 410–415, 2013.
S. Ansari and E.P. Giannelis, “Functionalized Graphene Sheet-Poly(vinylidene fluoride) Conductive Nanocomposites”, Polym. Sci., Part B., vol. 47, pp. 888–897, 2009.
N.A. Kumar, R.R. Gaddam, M. Suresh, S.R. Varanasi, D. Yang, S.K. Bhatia, X.S. Zhao, “Porphyrin-Graphene Oxide Frameworks for Long Life Sodium Ion Batteries”, Journal of Materials Chemistry A, vol. 5, 13204–13211, 2017.
W. Lu, J. Weng, D. Wu, C. Wu, G. Chen, “Epoxy Resin/Graphite Electrically Conductive Nanosheet Nanocomposite”, Materials and Manufacturing Processes, vol. 21, pp. 167–171, 2006.
S.S. Park and N.J. Kim, “Study on Methane Hydrate formation Using Ultrasonic Waves”, Ind. Eng. Chem., vol. 20, pp. 1911–1915, 2014.
L.Y. Choi, S.W. Kim, and K.Y. Cho, “Improved Thermal Conductivity of Graphene Encapsulated Poly(methyl methacrylate) Nanocomposite Adhesives with low Loading Amount of Graphene”, Compos. Sci. Technol., vol. 94, pp. 147–154, 2014.
S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen and R.S. Ruoff, “Graphene-based Composite Materials”, Nature, vol. 442, pp. 282–286, 2006.
D.R. Dreyer, S. Park, C.W. Bielawski and R.S. Ruoff, “The Chemistry of Graphene Oxide”, Chem. Soc. Rev., vol. 39, pp. 228–240, 2010.
D. Kuang, L. Xu, L. Liu, W. Hu and Y. Wu, “Graphene–nickel composites”, Applied Surface Science, vol. 273, pp. 484–490, 2013.
A. Tchernok, M. Krumova, F. Johannes Tölle, R. Mülhaupt and S. Meching, “Composites from Aqueous Polyethylene Nanocrys tal/Graphene Dispersions”, Macromolecules, vol. 47, pp. 3017–3021, 2014.
S. Kim, J. Seo and L.T. Drzal, “Improvement of Electric Conductivity of LLDPE Based Nanocomposite by Paraffin Coating on Exfoliated Graphite Nanoplatelets”, Compos. Part A-Appl Sci, and Manufacturing, vol. 41, pp. 581–587, 2010.
X. Jiang and L.T. Drzal, “Improving Electrical Conductivity and Mechanical Properties of High Hensity Polyethylene Through Incorporation of Paraffin Wax Coated Exfoliated Graphene Nanoplatelets and Multi-Wall Carbon Nano-Tubes”, Compos Part A-Appl. S., vol. 42, pp. 1840–1849, 2011.
M. H. Mohamadzadeh and S. Sabury, “Graphene Oxide-Induced Polymerization and Crystallization to Produce Highly Conductive Polyaniline/Graphene Oxide Composite”, J. Polym. Sci., Part A: Polym. Chem., vol. 52, pp. 1545–1554, 2014.
M. Fang, K.G. Wang, H.B. Lu, Y.L. Yang and S. Nutt, “Single-layer Graphene Nanosheets with Controlled Grafting of Polymer Chains”, Mater. Chem., vol. 19, pp. 7098–7105, 2009.
P. Noorunnisa Khanam, A.M. Almaadeed, M. Ouederni, E. Harkin-Jones, B. Mayoral, A. Hamilton, D. Sun, “Melt Processing and Properties of Linear Low Density Polyethylene-Graphene Nanoplates Composites”, Vacuum, vol. 130, pp. 63–71, 2016.
T. Kuila, S. Bose, C.E. Hong, M.E. Uddin, P. Khanra, N.H. Kim, and J.H. Lee, “Preparation of Functionalized Graphene/Linear Low Density Polyethylene Composites by a Solution Mixing Method”, Carbon, vol. 49, pp.1033–1051, 2011.
S. Kim, I. Do and L.T. Drzal, “Multifunctional xGnP/LLDPE Nanocomposites Prepared by Solution Compounding Using Various Screw Rotating Sys tems”, Macromol. Mater. Eng., vol. 294, pp.196–205, 2009.
S.S. Park and N.J. Kim, “Study on Methane Hydrate formation Using Ultrasonic Waves”, Ind. Eng. Chem., vol. 20, pp. 1911–1915, 2014.
J.Y. Choi, S.W. Kim and K.Y. Cho, “Improved Thermal Conductivity of Graphene Encapsulated Poly(methyl methacrylate) Nanocomposite Adhesives with low Loading Amount of Graphene”, Compos. Sci. Technol., vol. 94, pp. 147–154, 2014.
W. Yang, S. Berthou, X. Lu, Q. Wilmart, A. Denis, M. Rosticher, T. Taniguchi, K. Watanabe, G. F`eve, J.M. Berroir, G. Zhang, C. Voisin, E. Baudin and B. Placais, “A graphene Zener–Klein Transistor Cooled by a Hyperbolic Substrate”, Nature Nano Technology, vol. 13, pp. 47–52, 2018.
L. Chen, G. Chen and L. Lu, “Piezoresistive Behavior Study on Finger-Sensing Silicone Rubber/Graphite Nanosheet Nanocomposites”, Adv. Funct. Mater., vol. 18, pp. 898–904, 2007.
K.H. An, S.Y. Jeong, H.R. Hwang and Y.H. Lee, “Enhanced Sensitivity of a Gas Sensor Incorporating Single-walled Carbon Nanotube–polypyrrole Nanocomposites”, Adv. Mater., vol. 16, pp. 1005–1009, 2004.
J.Q. Liu, L. Tao, W.R. Yang, D. Li, C. Boyer, R. Wuhrer, F. Braet and T.P. Davis, “Synthesis, Characterization, and Multilayer Assembly of PH Sensitive Graphene−Polymer Nanocomposites”, Langmuir, vol. 26, pp. 10068–10075, 2010.
J. Wang, D. Song, S. Jia and Z. Shao, “Poly (N, Ndimethylaminoethyl Methacrylate)/Graphene Oxide Hybrid Hydrogels: PH and Temperature Sensitivities and Cr(VI) Adsorption”, Reac. Func. Polym., vol. 81, pp. 8–13, 2014.
X. Qin, Q. Meng, Y. Feng and Y. Gao, “Graphene with Line Defect as a Membrane for Gas Separation: Design via a First-principles Modeling”, Surface Sci., vol. 607, pp. 153–158, 2013.
F. Li, H. Yue, Z. Yang, X. Li, Y. Qin and D. He, “Flexible Free-standing Graphene Foam Supported Silicon Films as High Capacity Anodes for Lithium Ion Batteries”, Mater. Let., vol. 128, pp. 132–135, 2014.
F. Liu, Y. Piao, J. Choi and T.S. Seo, “Three-dimensional Graphene Micropillar Based Electrochemical Sensor for Phenol Detection”, Biosen. Bioel., vol. 50, pp. 387–392, 2013.
M. Jaroszaewski, J. Ziaja, “EM Shielding- Theory and Development of New Materials”, Research Signpost, Kerala, 2012.
J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai and C. Zhang, “Electromagnetic Interference Shielding of Graphene/epoxy Composites”, Carbon, vol. 47, no. 3, pp. 922–925, 2009.
W.L. Song, M. Cao, M.M. Lu, S. Bi, C.Y. Wang, J. Liu, J. Yuan and L.Z. Fan, “Flexible Graphene/Polymer Composite Films in Sandwich Structures for Effective Electromagnetic Interference Shielding”, Carbon, vol. 66, pp. 67–76, 2014.
D.A.C. Brownson, D.K. Kampouris and C.E. Banks, “An Overview of Graphene in Energy Production and Storage Applications”, J. Power Sources, vol. 196, no. 11, pp. 4873–4885, 2011.
T. Kim, G. Jung, S. Yoo, K.S. Suh, R.S. Ruoff, “Activated Graphene-Based Carbons as Supercapacitor Electrodes with Macro-and Mesopores”, Acs Nano, vol. 7, pp. 6899–6905, 2013.
E. Paek, A.J. Pak, K.E. Kweon, G.S. Hwang, “On the Origin of the Enhanced Supercapacitor Performance of Nitrogen-Doped Graphene”, J. Phys. Chem. C, vol. 117, no.11, pp. 5610–5616, 2013.
L.L. Zhang, R. Zhou, X.S. Zhao, “Graphene-Based Materials as Supercapacitor Electrodes”, J. Mater. Chem., vol. 20, no. 29, pp. 5983–5992, 2010.
A.J. Pak, E. Paek and G.S. Hwang, “Tailoring the Performance of Graphene-based Supercapacitors using Topological Defects: A Theoretical Assessment”, Carbon N. Y., vol. 68, pp. 734–741, 2014.
B.C.B. Wood, T. Ogitsu, M. Otani and J. Biener, “First-Principles-Inspired Design Strategies for Graphene-Based Supercapacitor Electrodes”, J. Phys. Chem. C, vol. 118, no. 1, pp 4–15, 2013.
E. Paek, A.J. Pak and G.S. Hwang, “A Computational Study of the Interfacial Structure and Capacitance of Graphene in [BMIM][PF6] Ionic Liquid”, J. Electrochem. Soc., vol. 160, no. 1, pp. A1–A10, 2012.
S.M. Mousavi-Khoshdel and E. Targholi, “Exploring the Effect of Functionalization of Graphene on the Quantum Capacitance by First Principle Study”, Carbon, vol. 89, pp. 148–160, 2015.
M. Mousavi-Khoshdel, TE. Argholi and M.J. Momeni, “First-Principles Calculation of Quantum Capacitance of Codoped Graphenes as Supercapacitor Electrodes”, The Journal of Physical Chemistry C, vol. 119, pp. 26290–26295, 2015.
Z. Lin, Y. Liu, Y. Yao, O.J. Hildreth, Z. Li, K. Moon and C.P. Wong, “Superior Capacitance of Functionalized Graphene”, The Journal of Physical Chemistry C, vol. 115, pp. 7120–7125, 2011.
S. Park and R.S. Ruoff, “Chemical Methods for the Production of Graphenes”, Nat. Nanotech., vol. 4, pp. 217–224, 2009.
P. Simon and Y. Gogotsi, “Materials for Electrochemical Capacitors”, Natur. Mater., vol. 7, pp. 845–854, 2008.
A.V. Murugan, T. Muraliganth and A. Manthiram, “Rapid, Facile Microwave-solvothermal Synthesis of Graphene Nanosheets and their Polyaniline Nanocomposites for Energy Storage”, Chem. Mater., vol. 21, pp. 5004–5006, 2009.
Y. Zhu, M.D. Stoller, W. Cai, A. Velamakanni, R.D. Piner and D. Chen, “Exfoliation of Graphite Oxide in Propylene Carbonate and Thermal Reduction of the Resulting Graphene Oxide Platelets”, ACS Nano, vol. 4, pp. 1227–1233, 2010.
C.Z. Yuan, L. Zhou and L.R. Hou, “Facile Fabrication of Self-supported Three-dimensional Porous Reduced Graphene Oxide Film for Electrochemical Capacitors”, Mater. Lett., vol. 124, pp. 253–255, 2014.
F. Tu, S. Liu, T. Wu, G. Jin and C. Pan, “Porous Graphene as Cathode Material for Lithium Ion Capacitor with High Electrochemical Performance”, Power Technol., vol. 253, pp. 580–583, 2014.
Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinyaa and L. Qin, “Graphene and carbon nanotube composite electrodes for super capacitors with ultra-high energy density”, Phys. Chem. Chem. Phys., vol. 13, pp. 17615–17624, 2011.
C. Li, X. Zhang, K. Wang, H. Zhang, X. Sun and Y. Ma, “Three Dimensional Graphene Networks for Supercapacitor Electrode Materials”, New Carbon Materials, vol. 30, no. 3, pp. 193–206, 2015.
M. Chen, H. Wang, L. Li, Z. Zhang, C. Wang, Y. Liu, W. Wang, J. Gao, “Novel and Facile Method, Dynamic Self-Assemble, To prepare SnO2/rGO Droplet Aerogel with Complex Morphologies and Their Application in Supercapacitors”, ACS Appl. Mater. Interfaces, vol. 6, pp. 14327–14337, 2014.
H. Wang, H. Yi, X. Chen and X. Wang, “One-Step Strategy to Three-dimensional Graphene/ VO2 Nanobelt Composite Hydrogels for High Performance Supercapacitors”, J. Mater. Chem. A, Vol. 2, pp. 1165–1173, 2014.
Y. He, W. Chen, X. Li, Z. Zhang, J. Fu, C. Zhao and E. Xie, “Freestanding Three-Dimensional Graphene/MnO2 Composite Networks As Ultralight and Flexible Supercapacitor Electrodes”, vol. 7, pp. 174–182, 2013.
J. Ge, H.B. Yao, W. Hu, X.F. Yu, Y.X. Yan, L.B. Mao, H.H. Li, S.S. Li and S.H. Yu, “Facile Dip Coating Processed Graphene/MnO2 Nanostructured Sponges as High Performance Supercapacitor Electrodes”, Nano Energy, vol. 2, pp. 505–513, 2013.
C.C. Wang, H.C. Chen and S.Y. Lu, “Manganese Oxide/Graphene Aerogel Composites as an Outstanding Supercapacitor Electrode Material”, Chem Eur, vol. 20, pp. 517–523, 2014.
S. Wu, W. Chen and L. Yan, “Fabrication of a 3D MnO2/graphene Hydrogel for High-performance Asymmetric Supercapacitors”, Mater. Chem. A, vol. 2, pp. 2765–2772, 2014.
T. Zhai, F. Wang, M. Yu, S. Xie, C. Liang, C. Li, F. Xiao, R. Tang, Q. Wu, X. Lu and Y. Tong, “3D MnO2-graphene Composites with Large Areal Capacitance for High-performance Asymmetric Supercapacitors”, Nanoscale, vol. 7, pp. 6790–6796, 2013.
W. Wang, S. Guo, I. Lee, K. Ahmed, J. Zhong, Z. Favors, F. Zaera, M. Ozkan and C.S. Ozkan, “Hydrous Ruthenium Oxide Nanoparticles Anchored to Graphene and Carbon Nanotube Hybrid Foam for Supercapacitors”, Sci Rep, vol. 4, pp. 4452–4461, 2014.
J. Yuan, J. Zhu, H. Bi, X. Meng, S. Liang, L. Zhang and X. Wang, “Graphene-based 3D Composite Hydrogel by Anchoring Co3o4 Nanoparticles with Enhanced Electrochemical Properties”, Phys. Chem. Chem. Phys., vol. 15, pp. 12940–12945, 2013.
U.M. Patil, S.C. Lee, J.S. Sohn, S.B. Kulkarni, K.V. Gurav, J.H. Kim, J.H. Kim, S. Lee and S.C. Jun, “Enhanced Symmetric Supercapacitive Performance of Co(OH)2 Nanorods Decorated Conducting Porous Graphene Foam Electrodes”, Electrochimica Acta, vol. 129, pp. 334–342, 2014.
Y. Xu, X. Huang, Z. Lin, X. Zhong, Y. Huang and X. Duan, “One-Step Strategy to Graphene/Ni(OH)2 Composite Hydrogels as Advanced Three-Dimensional Supercapacitor Electrode Materials”, Nano Research, vol. 6, pp. 65–76, 2013.
J. Ji, L.L. Zhang, H. Ji, Y. Li, X. Zhao, X. Bai, X. Fan, F. Zhang, R.S. Ruoff, “Nanoporous Ni(OH)2 Thin Film on 3D Ultrathin-graphite Foam for Asymmetric Supercapacitor”, ACS Nano, vol. 7, pp. 6237–6243, 2013.
C. Jiang, B. Zhao, J. Cheng, J. Li, H. Zhang, Z. Tang and J. Yang, “Hydrothermal Synthesis of Ni(OH)2 Nanoflakes on 3D Graphene Foam for High-performance Supercapacitors", Electrochimica Acta, vol. 173, pp. 399–407, 2015.
X. Cao, Y. Shi, W. Shi, G. Lu, X. Huang, Q. Yan, Q. Zhang, and H. Zhang, “Preparation of Novel 3D Graphene Networks for Supercapacitor Applications”, Nano Micro Small, vol. 7, no. 22, pp. 3163–3168, 2011.
H. Wang, Z. Xu, H. Yi, H. Wei, Z. Guo and X. Wang, “One-step Preparation of Single-Crystalline Fe2O3 Particles/Graphene Composite Hydrogels as High Performance Anode Materials for Supercapacitors”, Nano Energy, vol. 7, pp. 86–96, 2014.
W. Tian, Q. Gao, Y. Tan, Y. Zhang, J. Xu, Z. Li, K. Yang, L. Zhu, and Z. Liu, “Three-dimensional Functionalized Graphenes with Systematical Control over the Interconnected Pores and Surface Functional Groups for High Energy Performance Supercapacitors”, Carbon, vol. 85, pp. 351–362, 2015.
J. Hao, Y. Liao, Y. Zhong, D. Shu, C. He, S. Guo, Y. Huang, J. Zhong and L. Hu, “Three-Dimensional Graphene Layers Prepared by a Gas-Foaming Method for Supercapacitor Applications”, Carbon, vol. 94, pp. 879–887, 2015.
S. Liu, J. Wu, J. Zhou, G. Fang and S. Liang, “Mesoporous NiCo2O4 Nanoneedles Grown on Three Dimensional Graphene Networks as Binder-Free Electrode for High-Performance Lithium-Ion Batteries and Supercapacitors”, Electrochimica Acta, vol. 176, pp. 1–9, 2015.
J. Liu, W. Lv, W. Wei, C. Zhang, Z. Li, B. Li, F. Kangb and Q.H. Yang, “A Three-Dimensional Graphene Skeleton as a Fast Electron and Ion Transport Network for Electrochemical Application”, J. Mater. Chem. A, vol. 2, pp. 3031–3037, 2014.
M. Kota, X. Yu, S.H. Yeon, H.W. Cheong and H.S. Park, “Ice-Templated Three Dimensional Nitrogen Doped Graphene for Enhanced Supercapacitor Performance”, Power Sources, vol. 303, pp. 372–378, 2016.
T. Echtermeyer, L. Britnell, P. Jasnos, A. Lombardo, R. Gorbachev, A. Grigorenko, A. Geim, A. Ferrari and K. Novoselov, “Strong Plasmonic Enhancement of Photovoltage in Grapheme”, Nat.Commun,. vol. 2, no.1, pp. 458–468 ,2011.
S. Thongrattanasiri, F. Koppens and F. Abajo, “Total Light Absorption in Graphene”, Phys.Rev,. Lett., vol. 108, 2012.
B. Zhao, J M. Zhao and Z.M. Zhang, “Enhancement of Near-infrared Absorption in Graphene with Metal Gratings”, Appl.Phys. Lett., vol. 105, pp. 031905, 2014.
X. Zhu, L. Shi, M. Schmidt, A. Boisen, O. Hansen, J. Zi, S. Xiao and N. Mortensen, “Enhanced Light-Matter Interactions in Graphene Covered Gold Nanovoid Arrays”, Nnano. Lett, vol. 13, pp. 4690, 2013.
M.H. MahdabiNezhad, M. Pourmahyabadi, “Design of Graphene Based Photodetector with High Absorption and Responsivity”, In Proceedings of the 23rd Iranian Conference on Optics and Photonics and 9th Conference on Photonics Engineering and Technology Tarbiat Modares University, Tehran, Iran, 2017.
B. Chitara, L.S. Panchakarla, S.B. Krupanidhi and C.N.R. Rao, “Infrared Photodetectors Based on Reduced Graphene Oxide and Graphene Nanoribbons”, Advanced Materials, vol. 23, pp. 5419–5424, 2011.
Z. Cheng, J. Wang, K. Xu, H.K. Tsang and C. Shu, “Graphene on Silicon on-Sapphire Waveguide Photodetectors”, In Proceedings of the Conference on Laser and Electro-optic, 2015.
I. Wang, Z. Cheng, Z. Chen, X. Wan , B.Q. Zhu and H. Ki Tsang, “High Responsivity Graphene-On Silicon Slotwaveguide Photodetectors”, Nanoscale, vol. 8, no. 27, pp. 13206-11, 2016.
L. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, “On Chipintegrated Silicongraphene Plasmonic Schottky Photodetector with High Responsivity Andavalanche Photogain”, Nano Letters, vol. 16, no.5, pp. 3005–3013, 2016.
M.H. Mahdabi Nezhad and M. Pourmahyabadi, “Design of Graphene Based Photodetector with High Absorption and Responsivity”, In Proceedings of the 23 rd Iranian Conference on Optics and Photonics and 9th Conference on Photonics Engineering and Technology Tarbiat Modares University, Tehran, Iran, 2017.
H. Zhu, J. Wei, K. Wang and D. Wu, “Applications of Carbon Materials in Photovoltaic Solar Cells”, J. Solar Energy Materials & Solar Cells , vol. 93, pp. 1461–1470, 2009.
H. Choi, H. Kim, S. Hwang, W. Choi and M. Jeon, “Dye-Sensitized Solar Cells Using Graphene-Based Carbon Nano Composite as Counter Electrode”, Solar Energy Materials & Solar Cells, vol. 95, pp. 323–325, 2011.
Y.J. Jeon, J.M. Yun, D.Y. Kim, S.I. Naa and S.S. Kim, “High-performance Polymer Solar Cells with Moderately Reduced Graphene Oxide as an Efficient Hole Transporting Layer, Solar Energy Mater”, Sol. Cells, vol. 105, pp. 96–102, 2012.
X. Zhengguo, Y. Yuan, B. Yang, J. VanDerslice, J. Chen, O.D. Gerd Duscher and J. Huang, “Universal Formation of Compositionally Graded Bulk Heterojunction for Efficiency Enhancement in Organic Photovoltaics”, Advanced Materials, vol. 26, no.19, pp. 3068–3075, 2014.
A. R. Madaria and A. Kumar, “Large scale, Highly Conductive and Patterned Transparent Films of Silver Nanowires on Arbitrary Substrates their Application in Touch Screens”, Nanotechnology, vol. 22, pp. 245201–245208, 2011.
W. Cai and Y. Zhu, “large Area Few-Layer Graphene/Graphite Films as Transparent Thin Conducting Electrodes”, Applied Physics letters, vol. 95, pp. 123115–123118, 2009.
M.J. Large, S.P. Ogilvie, S. Alomairy, T. Vöckerodt, D. Myles, M. Cann, H. Chan, I. Jurewicz, A.A. K. King and A.B. Dalton, “Selective Mechanical Transfer Deposition of Langmuir Graphene Films for High-Performance Silver Nanowire Hybrid Electrodes”, Langmuir, vol. 33, no. 43, pp. 12038–12045, 2017.
Y.D. Kim, H. Kim, Y. Cho, J.H. Ryoo, C.H. Park, P. Kim, Y.S. Kim, S. Lee, Y. Li, S.N. Park, Y.S. Yoo, D. Yoon D, Dorgan VE, Pop E, Heinz TF, Hone J, Chun SH, Cheong H, Lee SW, Bae MH, Park YD, “Bright Visible Light Emission from Grapheme”, Nat Nanotechnol, vol. 10, no. 8, pp. 676–681, 2015.
Y.D. Kim, Y. Gao, R.J. Shiue, L. Wang, O.B. Aslan, M.H. Bae, H. Kim, D. Seo , H.J, Choi, S.H. Kim, A. Nemilentsau, T. Low, C. Tan, D.K. Efetov, T. Taniguchi, K. Watanabe, K.L. Shepard, T.F. Hein , D. Englund and J. Hone, "Ultrafast Graphene Light Emitters", Nano Lett. Vol. 18, No. 2, pp.934-940, 2018.
S. Zhou, K. Chen, M.T. Cole, Z. Li, J. Chen, C. Li and Q. Dai, “Ultrafast Field-Emission Electron Sources Based on Nanomaterials”, Adv Mater., vol. 31, no. 45, 2019.
H. Diker, G.B. Durmaz, H. Bozkurt, F. Yeşil and C. Varlikli, “Controlling the Distribution of Oxygen Functionalities on GO and Utilization of PEDOT:PSS-GO Composite as Hole Injection Layer of a Solution Processed Blue OLED”, Curr. Appl.Phys., vol. 17, pp. 565–572, 2017.
D. Todorović, A. Matković, M. Milićević, Đ. Jovanović, R. Gajić, I. Salom, M. Spasenović, “Multilayer Graphene Condenser Microphone”, 2D Materials, vol. 2, no. 4, 2015.
Q. Zhou, J. Zheng, S. Onishi, M.F. Crommie and A.K. Zettl, “Graphene Electrostatic Microphone and Ultrasonic Radio”, In Proceedings of the National Academy of Sciences, 2015, pp. 8942-6.
S.T. Woo, J.H. Han, J.H. Lee, S. Cho, K.W. Seong, M. Choi and J.H. Cho, “Realization of a High Sensitivity Microphone for a Hearing Aid Using a Graphene–PMMA Laminated Diaphragm”, ACS Applied Materials & Interfaces, vol. 9, no. 2, pp. 1237–1246 , 2017.
R. Z.H.M. Auliya, M.A. Md Ali, M.S. Rusdi, “Graphene MEMS Capacitive Microphone: Highlight and Future Perspective”, Scientific Journal of PPI-UKM, vol. 3, no. 4, pp. 187–191, 2016.
J. Wu, M. Agrawal, H.A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, “Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes”, ACS Nano, vol. 4, no.1, pp. 43–48, 2010.
J. Lee, T.H. Han, M.H. Park, D.Y. Jung, J. Seo, H.K. Seo, H. Cho, E. Kim, J. Chung, S.Y. Choi, T.S. Kim, T.W. Kim and S. Yoo, “Synergetic Electrode Architecture for Efficient Graphene-Based Flexible Organic Light-Emitting Diodes”, Nat. Commun., vol. 7, no. 11791, 2016.
J. Kim, R. Kumar, A.J. Bandodkar and J. Wang, “Advanced Materials For Printed Wearable Electrochemical Devices: A Review”, Advanced Electronic Materials, vol. 3, no. 1, 2017.
K. Arapov, E. Rubingh, R. Abbel, J. Laven, G. de With and H. Friedrich, “Conductive Screen Printing Inks by Gelation of Graphene Dispersions”, Advanced Functional Materials, vol. 26, no. 4, pp. 586–593, 2016.
W.J. Hyun, E.B. Secor, M.C. Hersam, C.D. Frisbie and L.F. Francis, “High-resolution Patterning Of Graphene by Screen Printing With a Silicon Stencil for Highly Flexible Printed Electronics”, Advanced Materials, vol. 27, no.1, pp. 109–115, 2015.
J.R. Windmiller and J. Wang, "Wearable Electrochemical Sensors and Biosensors: A Review", Electroanalysis, vol. 25, no. 1, pp. 29–46, 2013.
S. Majee, M. Song, S.L. Zhang and Z.B. Zhang, “Scalable Inkjet Printing Of Shear-Exfoliated Graphene Transparent Conductive Films”, Carbon, vol. 102, pp. 51–57, 2016.
J. Ren, C. Wang, X. Zhang, T. Carey, K. Chen, Y. Yin and F. Torrisi, “Environmentally-Friendly Conductive Cotton Fabric as Flexible Strain Sensor Based on Hot Press Reduced Graphene Oxide”, Carbon, vol. 111, pp. 622–630, 2017.
A. Quellmalz, A..D. Smith, K. Elgammal, X. Fan, A. Delin, M. Östling, M. Lemme, K.B. Gylfason and F. Niklaus, “Influence of Humidity on Contact Resistance in Graphene Devices”, ACS Applied Materials & Interfaces, vol. 10, no. 48, 2018.
K. Pan, Y. Fan,T. Leng , J. Li, Z. Xin, J. Zhang, L. Hao, J. Gallop, K.S. Novoselov and Z. Hu, “Sustainable Production of Highly Conductive Multilayer Graphene Ink for Wireless Connectivity and IoT Applications”, Nature Communications, vol. 9, no. 1, 2018.
B. Kang, S.K. Lee, J. Jung , M. Joe, S.B. Lee, J. Kim, C. Lee, and K. Cho, “Nanopatched Graphene with Molecular Self-Assembly Toward Graphene–Organic Hybrid Soft Electronics”, Advanced Materials, vol. 30, no. 25, 2018.
R. Ma, Q. Chen, W. Zhang, F. Lu , C. Wang , A. Wang , Y. Xie and H. Tang, “A Dual-Polarity Graphene NEMS Switch ESD Protection Structure", IEEE Electron Device Letters, vol. 37, no. 5, pp. 674–676, 2016.
S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J.J. Piqueras, R. Pérez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galán, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos and F. Koppens, “Broadband Image Sensor Array Based on Graphene-CMOS Integration”, Nature Photonics, vol. 11, no. 6, pp. 366–371, 2017.
American Chemical Society[ACS Nano]. Available from: https://pubs.acs.org/journal/ancac3[Accessed on:15.1.2018]
PLoSONE journal. Available from: http://journals.plos.org/plosone[Accessed on: 15.1.2018]
Scientific Reports[Sci Rep]. Available from: https://www.nature.com/srep/about[Accessed on: 15.1.2018]
T. Roy, M. Tosun, J. S.Kang, A.B. Sachid, S.B. Desai, M.k. Hettick, C.C. Hu and A. Javey, “Field-Effect Transistors Built from All Two-Dimensional Material Components”, ACS Nano, vol. 8, no. 6, pp. 6259–6264, 2014.
Refbacks
- There are currently no refbacks.
ISSN: 0353-3670 (Print)
ISSN: 2217-5997 (Online)
COBISS.SR-ID 12826626